ECMWF Newsletter

Number 66 - Summer 1994

o
C"TJ

T'!

E JEE ONLY

Chosen solutions for CMOD4
3 hour forecast for 93011021

30°W oW oW 0 10E 2057

Shinfield Park, Reading, Berkshire RG2 9AX, England. Telephone: U.K. (0734) 499000,
International (+44 734) 499000, Telex: 847908 ECMWEF G, Telefax (0734) 869450

P, European Centre for Medium-Range Weather Forecasts
¥ Europaisches Zentrum fiur mittelfristige Wettervorhersage

Centre europeéen pour les prévisions meteorologiques a moyen terme

IN THIS ISSUE

Editorial i e i et e e e e e 1
METEOROLOGICAL

Changes to the operational forecasting system 2
Surface wind observations from the ERS scatterometers 3
COMPUTING

The POSIX shell under UNICOS 8ttt ittt 17
Comparing pointers in CRAY Fortranand Fortran 90 34
COMPUTER USER INFORMATION

NAG Library - Mark 16 newsttt ittt ittt ettt iianeenns 42
GENERAL

ECMWF Annual Seminar00iuiiitiiininnininrinnnneeneennnn 45
Sixth workshop on use of parallel processors in meteorology 46
ECMWF calendar 1994ttt ittt ittt teeeenaneeinennenes 47
ECMWE publicationsttt ittt it ettt ettt 47
Index of still valid Newsletter articles i, 48
Useful names and 'phone numbers within ECMWEFc0 ittt iennnnn. 51
COVER: Scatterometer winds (processed at ECMWF) in the North Atlantic on 11 January

1993, when the deepest-ever low pressure system was reported. The first track of
scatterometer winds (right) was measured at 21:30 UTC and the second at 23:10.
The surface pressure contours are from the operational 3-hour forecast valid at
21:00 UTC.

This Newsletter is edited and produced by User Support.

The next issue will appear in Autumn 1994.

EDITORIAL Number 66 - Summer 1994
Page 1

In this edition of the Newsletter we conclude our series of reprints of articles by Jeanne Adams
on Fortran 90. In the computing field, there is a description of the features of the POSIX shell
under UNICOS 8, and users will also find a helpful article on the Mark 16 news on the NAG
Library.

The main meteorological article this time is a detailed discussion on the use and treatment of
surface wind observations received from the ERS scatterometers.

As regular items at this time of year, the Newsletter contains the announcements of the ECMWF

Annual Seminar (on the parametrization of physical processes in models), and of its sixth workshop
on the use of parallel processors in meteorology.

* %k %k k Kk k ¥k *k *k k *k %k

M

METEOROLOGICAL Number 66 - Summer 1994
Page 2

CHANGES TO THE OPERATIONAL FORECASTING SYSTEM

Recent changes
A change was made to the fields of s0il humidity used in the operational system, starting from the
analysis for 4 July 1994 at 00 UTC. In order to compensate for a drying out of the model boundary

layer which has been noticed over the last few weeks, particularly over Europe and East Asia, the
humidity of the soil was reset to field capacity.

It resulted in a noticeable impact on the temperature in the daytime boundary layer over
continental areas. There was a reduction in the warm bias by several degrees in places, and the

positive impact was also be seen at 850 and 700 hPa. There was also significant reduction in the
bias of the dew point temperature at 2 metres.

Planned changes

A change to the pre-selection of cloud motion wind (SATOB) data for the analysis will be
implemented shortly.

The 3D-variational analysis is planned for implementation in the second half of 1994.

- Bernard Strauss

¥ k k ok ok k Kk k k *k k k

METEOROLOGICAL Number 66 - Summer 1994
Page 3

SURFACE WIND OBSERVATIONS FROM THE ERS SCATTEROMETERS

The first wind observations over the sea were made indirectly. A sailor would observe the ocean
surface and estimate the strength of the wind velocity. In fact these Beaufort estimates are still
received on GTS and used in daily operations at ECMWF. This indirect or remote approach is
mimicked to observe the surface wind velocity from space by use of a scatterometer. The European
Space Agency (ESA) launched the first ESA Remote Sensing satellite (ERS-1) on 17 July 1991
carrying a scatterometer on board. The interpretation of its measurements has proved less
straightforward than anticipated before the launch. Three years after the launch, the scatterometer
wind product is of excellent quality and the challenge of using it in Numerical Weather Prediction
(NWP) clearly lies in the field of data assimilation of surface winds. In this newsletter article 1
shall describe the ERS scatterometer and the problems associated with the interpretation of its
measurements. Subsequently, the use of scatterometer data in "optimal interpolation” (Ol, as in
cu” , 1t ECMWF operations) and variational data assimilation schemes will be discussed.

The ERS satellites

The pre-operational ERS-1 satellite is dedicated to measuring ocean parameters, sea state and ice
conditions. The operation of the microwave instruments is not hindered by clou?- and
measurements are available in all weather conditions. The Active Microwave Instrumentation
(AMI) includes a Synthetic Aperture Radar (SAR) to measure wave spectra, an altimeter to
measure wave height and wind speed at nadir, and a wind scatterometer to obtain the wind field
over the oceans (see Fig. 1). Other instrumentation such as an infra-red radiometer (ATSR) for
measuring sea surface temperature, a passive microwave sounder (MWS) to obtain total
precipitable water in the atmosphere and a satellite tracking instrument (PRARE) are
experimental.

The ERS-2 satellite will be launched in about half a year from now. It will carry instruments
similar to those in ERS-1, with the addition of a total ozone measuring instrument (GOME).

The scatterometer

The wind- and wave- measuring instruments on board the ERS satellites use a radar wavelength
of roughly 5 cm. The radar beam emitted from the scatterometer will hit the ocean surface at an
angle of between 18 and 57. When the ocean surface is smooth the radar beam will be reflected
and no radar power will be returned in the direction of the satellite. However, when capillary
ocean waves with a wavelength of at around 5 ¢m exist on the ocean surface they will interfere

METEOROLOGICAL Number 66 - Summer 1994
Page 4

Wind scatterometer
antennae

SAR antenna

PRARE

Microwave sounder

Solar array \ Along track scanning radiometer

Fig. 1: Overview of the ERS-1 satellite.

METEOROLOGICAL Number 66 - Summer 1994
Page 5

with the radar beam, which will be scattered in all directions. The higher the amplitude of the
ocean capillary waves (i.e. the rougher the surface), the stronger the scattering will be, and the
more radar power will be scattered back to the satellite. Since the roughness is related to the
surface wind speed, the measured back-scattered radar power is related to the surface wind speed
as well.

The generation of capillary waves from wind can easily be observed in a puddle. This confirms
qualitatively the roughness-wind relationship. One can also see that the direction of the capillary
waves is the same as that of the wind, i.e. the generation of capillary waves is anisotropic. The
consequence of this is that the back-scattered power received by a scatterometer depends on the
wind direction. By looking only at the shape of the ripples in the puddle it is difficult to decide
whether the wind is blowing from the left or the right. In practice this results in a so-called
upwind/downwind ambiguity, i.e. from the scatterometer measurements we will find two possible
wind vectors of similar amplitude blowing in roughly opposite directions.

The qualitative description of the scatterometer does not translate into a proper physical model
of the effects involved. For instance, the interaction of the radar beam with the complicated
topography of the ocean surface is not well understood. To describe the behaviour of the
scatterometer quantitatively, an empirical relationship between back-scattered radar power and
surface wind speed and direction (at 10m height) has been derived. Experiments were carried out
to establish such an empirical relationship in preparation for the launch of ERS-1. Measurements
of scatterometers mounted on aircraft were collocated with direct measurements of the surface
wind conditions, and the radar back-scattered power was related to wind speed and direction. This
relationship, called the "transfer function”, has to be inverted to obtain information on wind speed
and direction from measurements of back-scattered power. Since two quantities (speed and
direction) are wanted, at least two measurements from a different horizontal view angle (azimuth)
are required.

The ERS scatterometer

In fact two measurements of back-scattered power are not sufficient to resolve the directional
dependency, and as a result four ambiguous wind vector solutions are generally found. Therefore,
the ERS-1 and ERS-2 scatterometers (which are identical) have three antennae, viewing the ocean
surface in different directions. As the satellite progresses, each node on the Earth’s surface will
be viewed first by the fore beam, then by the mid beam and last by the aft beam, within a period
of 2 to 7 minutes. The back-scattered power is an average over an area of roughly 50 km diameter
(called footprint). The swath is over-sampled on a 25 km rectangular grid (see Fig. 2).

METEOROLOGICAL Number 66 - Summer 1994
Page 6

/ Satellite flight vector

3 antennae

Altitude
(785km nominal)

Fore beam

Mid-beam

Sub-satellite track ,”
/

Resolution cells
50km

Aft beam 25km

O e —
500km Cell centre nodes

Fig. 2: Schematic representation of the ERS scatterometer.

METEOROLOGICAL Number 66 - Summer 1994
Page 7

CMOD4 Node 9

0.4

0.35,

0.3

0.25

o°mid 0.2

0.1

0.05

0y
0
0.05
0.1
o° fore 015 .
0.2 0.05 0.1 0.15 0.2

o®aft

Fig. 3: 3D Measurement space. Triplets of measured back-scattered power are expected to lie close
to a cone-shaped surface.

METEOROLOGICAL Number 66 - Summer 1994

Page 8
0.1
- x"
. . ’ ///
i * /'n
: l‘ ra f;

© 0.05-

0.1

Fig. 4. Example of the distribution of measured triplets in a cross-section along the cone. The
expected cone surface is clearly visible, From the lower left to the upper right the wind
speed is increasing. Triplets are coloured according to the collocated ECMWF analysis wind
speed, where a different colour is used for each 1 m/s wind speed interval. The curve
represents the transfer function derived at ECMWF.

METEOROLOGICAL Number 66 - Summer 1994
Page 9

0.05 :

0.025

-0.025 -

-0.05 T

T
-0.05 -0.025 0 0.625 0.05

GO

Fig. 5: Example of the distribution of measured triplets in a cross-section across the cone. The
expected cone surface can easily be identified. The collocated analysis wind speed for the

triplets plotted is roughly 8 m/s.

["upwind" triplets, according to ECMWF analysis wind direction
x "downwind" triplets, according to ECMWF analysis wind direction
red curve: the pre-launch transfer function

green curve: transfer function derived at ECMWF (CMOD4)

METEOROLOGICAL Number 66 - Summer 1994
Page 10

Calibration and validation

A calibration and validation campaign was carried out after the launch of ERS-1. Calibration of
the ERS-1 scatterometer was planned using both transponders and the Amazon rain forest. When
a transponder is hit by a scatterometer radar beam, an amplified and controlled radar signal is
sent back to the satellite, allowing an absolute calibration of the antennae. The rain forest is a
homogeneous and isotropic scatterer for radar radiation, allowing a relative calibration (i.e. of one
antenna with respect to another). Unfortunately, directly after launch it appeared that the two
calibrations were mutually inconsistent. At ECMWF we developed a method to calibrate the
antennae over the oceans by using ECMWF analysed winds. This confirmed the correctness of the
rain forest calibration. Further, we were able to notify ESA of an incorrect implementation of a
calibration table within one day. The wealth of data available at ECMWF has proved invaluable
for an efficient calibration of the ERS-1 instruments.

Measurement space

The three measurements at each node can be interpreted as a point in a three-dimensional (3D)
space. The measurement by each antenna will then represent a coordinate along one axis. A
distribution of these points can be plotted in the 3D space. Subsequently, the space can be
investigated by making cross-sections through it.

We found that the distribution of measured triplets follows closely a surface in the 3D space and
that this surface is cone-shaped (as in Fig. 3). Figs. 4 and 5 give examples of 2D cross-sections
through the cone and show how the measured triplets lie close to this cone. The extension of the
cone into the 3D space was shown to be related to the wind speed, such that different locations
along the cone can be related to different wind speeds. The opening of the cone is related to the
anisotropy of the back-scattering, and so different locations around the cone surface can be
identified with different wind directions. In fact, two closely overlapping cones exist; one for when
the system measures "upwind" and one for "downwind". Conversely, using the transfer function
for a range of speeds and directions to simulate the radar back-scatter for the three antennae, we
find that these triplets in the 3D space span a cone-shaped surface. This surface should fit the
distribution of measured triplets. We have verified that this is not the case for the transfer
function proposed using pre-launch information. Further, the formulation of this function does not
allow for some of the characteristics of the observed cone.

Occasionally, measured triplets of radar back-scattered power are not close to the general
distribution of triplets. We have discovered that these anomalous measurements are found in areas
where the wind is changing rapidly, e.g. close to tropical cyclones, lows and fronts. A quality
control procedure has been set up to identify and eliminate these points.

METEOROLOGICAL Number 66 - Summer 1994
Page 11

New transfer function

To derive an empirical transfer function a set of collocated radar back-scatter measurements and
surface winds is necessary. An estimation algorithm is then used to find the most probable set of
coefficients defining the transfer function.

Naturally the higher the accuracy of the collocated wind data used, the better the quality of the
resulting transfer function will be. ESA set up a calibration and validation campaign in the
Norwegian Sea (close to Halbenbanken) to obtain an accurate set of wind data. Unfortunately,
during the campaign only a limited range of wind speeds and directions were observed. The US
(NOAA) buoys were also used for collocation, but then a long time span is needed to cover the full
range of speeds and directions. At ECMWF analysis winds were used to collocate with the
scatterometer measurements.

We filtered the winds to avoid mutual correlation of the winds and to reject cases where the winds
were unsteady and therefore probably of lower quality. In a comparison exercise the transfer
function derived at ECMWF was selected for implementation in ESA operations. At ECMWF we
verified that the cone surface of this transfer function fitted the distribution of measured radar
back-scatter triplets very well (see Figs. 4 and 5).

Inversion

Given a triplet of measured back-scattered power we may locate the position on the cone surface
that is closest. We described earlier how each position on the cone surface is related to a wind
speed and a wind direction. This mapping is defined by the transfer function. Thus, the
identification of the closest position on the cone reveals a wind speed and direction solution.
Because a closely overlapping "upwind” and "downwind" cone exists, two almost equally probable
wind solutions will emerge.

Ambiguity removal

Only after resolving the dual ambiguity at each node we do have a resulting wind field from the
scatterometer. Ambiguity removal schemes based on the scatterometer radar power triplets only
(autonomons) were attempted, but these are not successful since both solutions are almost equally
probable. Using a forecast wind field, 95% of the ambiguities can be removed successfully. Here,
the quality of the forecast strongly determines the ambiguity removal skill. We developed a scheme
that corrects wrongly selected solutions (5%), due to a wrong forecast. The scheme attempts to
select the field with the highest wind vector consistency. Areas where the forecast wind vector is
close to one of the two scatterometer wind vector solutions, and where the scatterometer wind

METEOROLOGICAL Number 66 - Summer 1994
Page 12

Chosen solutions for CMOD4
8 hour forecast for 93091112

30°W 20W '10%

7,
0
0

Fig. 6: ERS-1 scatterometer winds (PRESCAT) around the remainder of tropical storm Floyd, 36
hours before it hit the European continent with an unexpected amount of precipitation. The
ECMWF 6 hour forecast of mean sea level pressure is shown for comparison.

METEOROLOGICAL Number 66 - Summer 1994
Page 13

directions are relatively accurate, are initially given high confidence. The filter propagates
information from these high confidence areas to areas where the confidence in the selected solution
is lower.

The scheme, called PRESCAT, has considerable skill, but in areas where the forecast is of very low
quality and forecast directions are wrong by nearly 180’ problems may still occur. An example of
the scatterometer winds retrieved with PRESCAT is shown in Fig. 6 for a case where the remains
of tropical storm Floyd were "seen" by the scatterometer.

Quality of retrieved winds

PRESCAT winds were verified against the ECMWF 6 hour forecasts. Similar verifications are done
routinely for SHIP winds. We found to our surprise that the scatterometer winds generally
compare better to the ECMWTF forecast than SHIP winds (see Fig. 7). One of the main reasons for
this concerns the so-called representativeness error. To use an observation for assimilation into the
analysis, we would like it to represent spatial and temporal scales that can be resolved by the
analysis. The current ECMWF model represents spatial scales down to roughly 200 km and
temporal scales of roughly 30 minutes. For the ERS scatterometers, the corresponding scales are
typically 50 km and 5 minutes, but for conventional wind data these are one metre and 10
minutes. The turbulence on scales between one metre and 200 km (with generally a vector variance
in the wind of ~ 2 m/s) will make a substantial contribution to the difference between SHIP and
short range forecast. It also follows from this that SHIPs will report extreme winds more often
than the scatterometer or the ECMWF model will do.

One problem affecting remotely sensed data is the potential for horizontally correlated error. This
will render the data less useful. For scatterometer winds we verify that no substantial horizontal
error correlation is present. As a result, spatial wind spectra made from scatterometer retrieved
wind fields compare favourably with spectra obtained from conventional anemometers.

Assimilation

Given the quality of the PRESCAT scatterometer winds it seems worthwhile to assimilate them
into the ECMWF model. We have explored both the assimilation into the current "optimal”
interpolation (OI) analysis scheme, and into the 3D- and 4D-variational schemes (3D-VAR and 4D-
VAR).

METEOROLOGICAL Number 66 - Summer 1994
Page 14

201

104

-10-]

U component (m/s) Ship anemometer
(=]

T T T

20 -10 0 10 20
U component (m/s) ECMWF

104

0+

U component (m/s) ERS-1

-20 L

T T T

-20 -10 0 10 20
U component (m/s) ECMWF

Fig. 7: a) Verification of ship anemometer winds against the ECMWF forecast (3 to 9 hours
forecast lead).

b) As a), but for scatterometer winds in the middle of the swath (at node 11).

METEOROLOGICAL Number 66 - Summer 1994
Page 15

o1

The OI problem of the assimilation of scatterometer winds is similar to the assimilation of
conventional surface wind data. However, a greater impact is expected since the scatterometer data
are more numerous and spatially consistent.

We did indeed find that the scatterometer has an impact on the analyses in the Southern
Hemisphere. In the Northern Hemisphere however, the effect of the scatterometer on the weather
analyses is less. The changes in the Southern Hemisphere were verified to be beneficial. Also the
short range wind forecasts (up to 12 hours) were found to be improved.

Scatterometer winds did not improve the medium range forecasts at ECMWF. In fact, they were
found to be redundant with satellite temperature soundings. In data assimilation schemes
assumptions are made on the structure of error of the forecast. This means for example that if the
forecast wind at a certain location is found to be wrong, then it is assumed that the forecast wind,
pressure and temperature are also wrong in an area above, below and around this location. So,
when we have only temperature data, then we will improve on the temperature fields of the
forecast, and have an accurate temperature analysis. However, because of our assumptions on
forecast error structure, we will also adapt the forecast wind field. In verification of the operational
surface wind analyses and forecasts using scatterometer winds, it was found that the changes to
the forecast surface wind field through the use of upper air data are not always beneficial. This
implies that our assumptions on the structure of the forecast error are not adequate. The most
limiting assumption is probably that the forecast error structure is assumed to be constant and
independent of the meteorological conditions. In 4D-VAR experiments the weakness of this
approximation has already been shown. It offers an explanation for the neutral effect of the
scatterometer winds on the medium range forecast skill and the redundancy between scatterometer
and satellite sounding data.

3D- and 4D-VAR

In a variational data assimilation scheme a penalty function is minimised. At the minimum the
most likely "true” meteorological state of the atmosphere is found. This state will be a compromise
between a short range forecast (6 hour forecast in case of 3D-VAR) and the observations. In order
to compute this compromise properly we need to know what the probability of an observed wind
vector is, given the "true" wind vector, in the case of a wind measurement. In the case of
conventional wind data this probability simply depends on experience of how well the observational
system fits the 6 hour forecast wind in general. Similarly, for scatterometer data it has also been
found that the observation error can easily be described using the components of the wind. In
terms of back-scattered power however the observation error structure is very complicated. This
is due to the complex (non-linear) wind-to-radar relationship, embodied in the transfer function,
and the relatively small detection error of the measured radar power. Therefore, also in 3D- and
in 4D-VAR, scatterometer data are most easily treated like other surface wind data.

METEOROLOGICAL Number 66 - Summer 1994
Page 16

By defining an observation cost function with two minima the ambiguity of scatterometer winds
can be taken into account. Meteorological balance constraints on the resulting analysis will then
be taken into account for the selection of the proper wind direction solution. This should result in
a better ambiguity removal than the constraint of wind vector consistency currently used in
PRESCAT. In this respect the first results from 3D-VAR look promising.

It is expected that the best use of surface wind data can be made within 4D-VAR. Scatterometer

information will then effect the atmosphere in a dynamically consistent manner that depends on
meteorological conditions.

- Ad Stoffelen, ECMWF
(current affiliation - KNMI)

* % ok K ok K ok ok ok Kk k *

COMPUTING Number 66 - Summer 1994
Page 17

THE POSIX SHELL UNDER UNICOS 8

Introduction

With UNICOS 8 the standard command and programming language shell is the POSIX shell, i.e.
/bin/sh is the POSIX shell, not the Bourne shell. The POSIX shell is functionally equivalent to the
Korn shell, so much so that at UNICOS 8 they are one and the same binary i.e. file /bin/ksh is
a link to file /bin/sh, and both contain the binary for the POSIX shell. The Bourne shell is the
default shell under UNICOS 7, where file /bin/ksh contains the Korn shell binary and file /bin/sh
contains the Bourne shell binary. All Bourne shell scripts should work unchanged under the
POSIX shell, since the features of this shell are a superset of those of the Bourne shell.

In the past users have generally used the Bourne shell for Batch work and the C shell for
Interactive work. This is because the Bourne shell, on UNICOS at least, is more efficient than the
C shell and allows redirection of the standard error file. The C shell with its command history and
"alias" capabilities is more suited to interactive use. The Korn shell attempts to incorporate, and
in many ways improve upon, some of the useful C shell features, while still allowing Bourne shell
scripts to execute unchanged.

This article will mainly concentrate on the new features of the POSIX shell over and above those
provided by the Bourne shell. These include: command history, command editing, tilde
substitution, aliases, exporting of aliases and functions, the "ENV" file, the ability to do integer
arithmetic and to use array variables, regular expressions and pattern-matching operators, the
"select” control structure, and extra shell variables and special built-in commands.

Command History

The POSIX shell, like the C shell, keeps a record of the most recently typed commands. The
number of interactive commands recorded is determined by the shell variable HISTSIZE, which,
if not set, defaults to 128. A record of the commands is kept in a file determined by the shell
variable HISTFILE, which if not set, defaults to $HOME/.sh_history, though on the Cray
computers at ECMWF this variable has been set to $TMPDIR/.sh_history. To list the last 16
commands input to the shell all you need to type is:

history (or h, both are aliases for fc -1)
To see more history, just supply the amount as a negative number, e.g.

h -30

COMPUTING

Command Editing

Number 66 - Summer 1994
Page 18

On the Cray computers at ECMWF the shell variable VISUAL has been set to /usr/bin/vi. This
means that while typing an interactive command it is possible to correct errors by using the POSIX
shell’s built-in vi-like editor (there is also a built-in emacs-like editor, though this will not be
described here). To enter the editor command mode you need to press the ESCAPE key. You can
then use many of the normal "vi" commands to correct the line of text, and the press the RETURN
key to execute the modified command. The "vi" commands include:

[countTh

[countN
i

[countlx

[countlr

/fqgg

to position 1 (or count) character(s) to the left

to position 1 (or count) character(s) to the right

to insert text; press the ESCAPE key to terminate insert mode
to delete 1 (or count) character(s)

to replace 1 (or count) character(s)

to replace a word

to undo the last modification

to undo all modifications

to do filename generation

to do filename completion

While in editor command mode it is possible to abandon the command being typed, and edit any
of the commands in the history file. This is done again by using standard "vi" commands, which

include:

{count]k
[count]-
[count]j
[count]+
[countlG

Istring

?string

to fetch the previous (count) command

same as [countlk

to fetch the next (count) command

same as [count]j

to fetch command number count. If count is not specified then it
defaults to the least recent history command, unlike in "vi" where
G means the last line in the file.

to search backward in the history file for a previous command
containing string (less recent). string is terminated by the
RETURN key. If string is preceded by a caret *»’ then the matched
command must begin with string.

to search forward in the history file (more recent).

Another way of editing and re-executing commands from the history file is to use the built-in
command "fe". An alias is available, called "r" for "repeat”, which uses "fc". Some examples should
make it easy to see how to use it:

COMPUTING Number 66 - Summer 1994

Page 19

r this will repeat the previous command

r122 this will repeat command number 122

rcf this will repeat the last command beginning with the string
[1] cf'

r abcsxyz this will repeat the last command, replacing the string
"ab¢" within the command by the string "xyz"

r lib="-1 lib" cc this will repeat the last command beginning with the string
"cc", replacing the string "lib" within the command by the
string "-1 lib"

Tilde "~" Substitution

Like the C shell, the POSIX shell allows you to specify a user's $HOME directory by using the
string "~userid". If userid is not a valid user identifier then no substitution is performed. A ~ by
itself or in front of a / is interpreted as the current user's $HOME directory. A ~ followed by a +
or - is interpreted as $PWD and $OLDPWD, respectively.

Aliases

POSIX shell aliases are similar to, but different from, C shell aliases. The syntax for defining them
is different and they do not allow arguments. Aliases can be exported to child processes and you
can also set up "tracked" aliases, this being the POSIX shell equivalent of the C shell hashing
mechanism. The format for defining an alias is:

alias [-t] [-x] name=command

The ’-x¥’ makes this an exported alias, and the "-t" makes it a tracked alias. Without the
"name=command" portion the command lists the aliases currently in effect.

Aliases are frequently used as short forms for full path names. A tracked alias has as part of its
initial value the full path name of the command as defined by the PATH variable and becomes
undefined each time the PATH variable is reset. The alias is tracked so that the next subsequent
reference will redefine the value. Aliases can be removed by using the special command:

unalias name

COMPUTING Number 66 - Summer 1994
Page 20

The following example shows how to set up and list some aliases:

alias -x ls="1ls -1 "

alias
1s=1s -1
alias -t dir="1ls -CF "
alias
dir=1s -CF
1s=1s -1
alias -x
1s=1ls -1
alias -t
ls=/bin/1ls
PATH=SPATH: $HOME/bin
alias -t
none

Exporting Aliases and Functions and the "ENV" File

As mentioned above, aliases may be exported to POSIX shell child processes by defining them with

the "-x" option specified. Functions may be exported by defining them and then using the "-f -x"
options of the special command "typeset” e.g.:

cdls()

{
cd $1
1s -la $1

}
typeset -fx cdls

The "typeset” special command has many uses and will be described later in this article. The first
line of the above function definition "cdls()" is similar to the way the C language defines a

function; it could be replaced by the more Fortran-like syntax "function cdls", which is
equivalent.

Unless specified, aliases and functions, as with normal shell variables, are not exported to child

processes. To explore this further we will explain the steps which are followed when the POSIX
shell is invoked and shell scripts are executed.

If your login shell is set to the POSIX shell, or if you run a batch job under the default (POSIX)
shell, then the following sequence of events takes place.

COMPUTING Number 66 - Summer 1994
Page 21

The file /ete/profile is read by the shell and the commands within this file are executed. Next the
file $HOME/.profile is read and the commands executed. Usually $HOME/.profile has in it a
reference to the file SHOME/.user_profile. This file is also read and its commands executed. After
this the POSIX shell then checks the ENV shell variable, which by default on the ECMWF Cray

computers is set to /ete/sh_env. If it is set and the file it references is readable then the shell
executes the commands stored in the file.

lete/profile is set up by ECMWF systems staff and contains commands to set up such global shell
variables as TERM - terminal type, DISPLAY - display console name, ECLIB - the location of the
eclib library, TEMP - the name of the user’s directory in Amp etc.

$HOME/ profile is owned by the user and therefore can be modified by him. However in general
it should not be modified, as the next file is available for that purpose.

$HOME/.user_profile is owned by the user and can be tailored by him to contain any commands
he wishes to execute automatically at login time or at the beginning of batch job execution. This
may be used to set up other global shell variables, modify the PATH parameter, or set up private
aliases and shell functions, though these are better done in an "ENV"” file.

/letc/sh_env is set up by ECMWF systems staff and this is the value of the ENV shell variable. The
file contains alias and function definitions which are deemed to be useful for all users. There is a
reference within this file to the file $HOME/.sh_env. If this file exists and is readable then the
commands within it are also executed.

$HOME/.sh_env is owned by the user and can be tailored by him to contain any private aliases
and functions or global shell variables.

As can be seen there are quite a few files to read and execute. The "ENV™" files would appear to
be surplus to requirements, but these files, /etc/sh_env and $HOME/.sh_env are special in that not
only are they read at login or start of job time, but they are also read and the commands executed
whenever a new shell is invoked, whereas the various "profile” files are only read once. To see how

this matters we need to look at the steps involved when a new shell is invoked and when a child
shell is invoked.

If a script is executed by name then it normally runs as a forked process of the current shell and
all exported variables, aliases and functions are available to this forked process. If the the script
is run via the "sh” (or "ksh") command, or if it has execute but not read permission, or if it has a
line saying "#! /bin/sh" (or /! /bin/ksh") as its first record, then a new shell (not a forked shell
process) is started and although the exported variables are available, the exported aliases and
functions are not. However in this case, commands in the file specified by the ENV variable are
executed when the new shell starts up. From this one can see that it is best to define exported

COMPUTING Number 66 - Summer 1994
Page 22

aliases and functions in the file SHOME/.sh_env, rather than in $HOME/.user_profile, so that they
are available to all subsequent scripts, not just those executed by forked shell processes.

If you have a lot of shell functions, putting them in the $HOME/.sh_env file becomes unwieldy. It
may also affect the time it takes to start new shells, as the file has to be read each time and the
functions loaded. The command "autoload function" circumvents these problems. "autoload” is
a standard alias for the ubiquitous "typeset" special command, the alias being "autoload="typeset -
fu™. This tells the shell that the function exists but is undefined. When the POSIX shell encounters
a reference to this function it then searches the set of directories specified by the FPATH
environment variable (whose format is the same as PATH), for a file with the same name as the
function. This function is then loaded into the shell. If, for example, your FPATH variable is set
up in your $HOME/.user_profile as:

FPATH="$HOME/sh_functions"

Then the first reference to any function specified on an "autoload" command will cause the shell
to look into the directory $HOME/sh_functions to see if a file with the same name as the function
exists. The function definition will then be loaded into the shell and will be used directly from the
shell from then on. Initially this variable FPATH is set in /etc/sh_env to:

FPATH="/usr/local/bin/sh_functions"

This directory contains some functions which are of general use and which are defined as
"autoload” functions in /ete/sh_env also. If you want to add your own functions, it is suggested that
you put each function definition in a separate file in a directory called $HOME/sh_functions, define
each function as an "autoload” function (or if you wish them to be exported use: autoload -x) in
your $SHOME/.sh_env file, and define the FPATH variable in your $HOME/.user_profile file as

FPATH="$FPATH:$HOME/sh_functions"

To see what functions are defined use the functions command (an alias for typeset -f), and to
delete a function definition use unset -f function. This will erase the function from the shell’s

memory; however, autoloaded functions are still remembered and any reference to one will cause
it to be reloaded.

Functions help to simplify scripts by making them more modular. Since they reside in the shell’s
memory (however see the description of autoloaded functions above), they execute quickly and do
not run as a separate process, which is the case with script files. A function which has the same

name as a script or executable binary takes precedence over these. The command precedence of
the POSIX shell is:

COMPUTING Number 66 - Summer 1994
Page 23

Keywords such as "if", "while", "else” etc.

Aliases

Built-in special commands such as "ed”, "print", "set" etc.
Functions

Scripts and executable binaries

Integer Arithmetic and Array Variables

The ability to do integer arithmetic is provided by the POSIX shell with the special command "let".
Constants are of the form [base#]n, where base is a decimal number between 2 and 36 representing
the arithmetic base and n is a number in that base. base# is optional and if omitted then base 10
is assumed, e.g. 16#1f is decimal 31 and 2#111 is 7.

An arithmetic expression uses the same syntax, precedence and associativity of expression as in
the C language. All integral operators, other than +4+, - -, 2: and , are supported, including +, -, *,
l, %o, >>, <<, 1, ~, &, |, A, &&, | |, >, <, >=, <m, |=, um, +m, -u, *u, /=, %=, Named parameters can
be referenced by name within an expression without using the parameter substitution ($) syntax.
When a named parameter is referenced, its value is evaluated as an arithmetic expression, unless

it has been specified to be of integer type using the "-i" parameter of the "typeset" special
command.

Because many of the arithmetic operators need quotation marks, to prevent them from being
interpreted by the shell, an alternative form of let ” " is available, in the form of ((....)). The
result of an arithmetic expression can be obtained using the form $((....)). Do not confuse this
with $(command), which is analagous to using back-quotes () to substitute the output produced
by running command. One possible problem with using "let" or "(....)", which also exists with the
expr command, is that an expression which evaluates to 0 (zero) sets the shell status variable "$?"
to a non-zero value, which will abort the shell if the "set -e” command has been used. This
problem does not occur with the "$((...)) construct. Some examples should make this clearer.

COMPUTING Number 66 - Summer 1994
Page 24

Create a function to see if a value is an odd number

¥

is_odd()

{

Return TRUE status (0) if argument is an odd number
((($1 % 2) = 1))

}

Show different ways of setting c to 4 and printing
#
expand="(a + b)"
typeset -i a=8#12
b=2
let "c = expand &% 8"
echo $c

4
((c = expand % 8))
echo $c

4
c=$((expand % 8))
echo $c

4
echo §((expand % 8))

4

Show how status depends on value and construct

#

((n =1+ 1)) && print "n = §n, status = §?"
n = 2, status = 0

(n=1-1)) || print "n = $n, status = $?"
n =0, status =1

n=$((1 - 1)) && print "n = $n, status = $?"
n =0, status = 0

Obtain the time and print minutes since midnight
¥
hr=§ (date +%H)

mn=$ (date +%M)

sc=$§ (date +%8)

secs=$((sc + 60 * (mn + 60 * hr)))
print $hr $mn $sc $sacs

15 21 04 55264

COMPUTING Number 66 - Summer 1994
Page 25

The POSIX shell supports the use of one dimensional array variables. Array subscripts can be
constants, variables or expressions in the range 0 to 1023. Arrays need not be declared. Whole
arrays can be assigned values using the "-A" parameter of the special command "set", while
individual elements can be set as normal. Any reference to a named parameter with a valid
subscript (0 - 1023) is legal and an array will be created if necessary. Referencing an array without
a subscript is equivalent to referencing element 0 of the array. For example, exporting array is
equivalent to exporting array[0], i.e. only the first element, not all elements of the array. To
reference an array element, other than in an expression, it is necessary to use the construct
${arraylelement]). The construct ${array(*]} or $larrayl@]) gives the value of each element
separated by a space. The construct ${#array[*]) gives the number of valid elements of array. A
strange feature of POSIX shell arrays is that if an array element has not been assigned, then it
does not exist. If this value were, for example, 4, then this would not necessarily mean that
elements 0, 1, 2 and 3 of the array existed, just that 4 elements in the range 0 to 1023 existed.
Normally a script would be written to use consecutive elements, starting at 0. Some examples
should make this clearer:

Run 4 resolutions with associated "n" and "s" options
#
set —-A nvals 1 22 53 75

set -A svals 7 16 31 96

set —-A resolution T21 T63 T106 T213
code[0]="OK - no problem"
code[1l]="ERROR — correct and rerun"

n=0

while [$n -1t ${#resolution[*]}]

do
./run_spm -n ${nvals[$n]} -8 ${svals[$n]} ${resolution[$n])}
echo ${code[§?]}
((n += 1))

done

Create a 10 element array of random numbers in range 0 -~ 31

#

RANDOM=$§$ # set the random number generator seed
integer i=0 # integer is an alias for "typeset -i "
while ((i < 10)) # note - arithmetic expression used

do

{(ran[i] = RANDOM $ 32))
print "Random number $i = ${ran[$i]}"
((i += 1))

done

COMPUTING Number 66 - Summer 1994
Page 26

Create a 3 element array with "funny" element numbers

#

odd val[3]="value 0"

odd_val[l3]="value 13"

odd_val[23]="value 23"

echo "number of elements of odd value = ${#odd value[*]}"
number of elements of odd value = 3

echo "number of characters in element 13 = §${#odd _val[l3]}"
number of characters in element 13 = 8

echo "all = ${odd val(@]}" # @ is like * but preserves spaces
all = value 0 value 13 value 23

Regular ressions and Pattern-matchin erators

The POSIX shell, like the Bourne shell has the concept of "wildcard" characters, (*, ? and [).
However the POSIX shell goes much further, in that it allows regular expressions to be used.
This gives it very powerful string matching capabilities, similar to those of UNIX utilities such as
awk(1), egrep(1), sed(1) and others, although the syntax is different. In fact since the shell
allows extended regular expressions, it is more powerful in this respect than "sed", which only
allows normal regular expressions. Regular expressions can be difficult to understand and it is
beyond the scope of this article to explain them. The books mentioned at the end give detailed
explanations. A few simple examples are given here, just to show what may be done:

Return a good status (0) if the argument contains only digits
#
isnumber ()

{

[$1 = +([0-9]) 1]
}

Return a good status (0) if the argument contains only letters

#
isalpha () # Return TRUE status if argument is a word
{
[[$1 = +([a-zA-2])]]
}
read data

if isnumber $data ; then
print $data is a number

COMPUTING Number 66 - Summer 1994
Page 27

elif isalpha $data ; then
if [[$data = [A-Z]*]] :; then
print "§data begins with an upper case letter"

else
print "$data begins with a lower case letter"
£i
elsa
print "$data is neither a number nor a word"
£i

Notice in the above example that the test format used above is "if [[condition 11", rather than
the old format "if [condition 1". This new POSIX shell test format allows regular expressions to
be used on the right-hand side. The old format does not allow regular expressions, but allows for
Bourne shell compatibility.

There are a set of pattern-matching operators #, ##, % and %%, which allow patterns to be stripped
from strings, contained within shell variables. The classic use of these are to strip off components
of pathnames. The operator ${variable#pattern} will, if pattern matches the beginning of the
value of wvariable, delete the shortest part that matches and return the rest. Operator
${variable#¥pattern} is similar, but this time deletes the longest part that matches.
${variable%pattern) and ${variable%%pattern) are also similar, but this time the match is at
the end of variable’s value not the beginning. Again, to learn more in detail about these consult
one of the books listed below. The following are examples of how they can be used:

Obtain the last element of a pathname (i.e. the filename)
#
basename () # see basename(l)

{

print ${1##*/}) # to remove all but the last element
}

Obtain the directory part of a file’s pathname
M .
dirname () # see dirname (1)

{

print ${1%/%*} # to remove last element only
}

For Fortran (.f) or C (.c) files return the object name (.0)
¥

objname ()

{

COMPUTING Number 66 - Summer 1994
Page 28

print ${1%@(.f|.c)}.o # to produce an object filename
}

SCRIPT=$ (basename $0)
for file in * £ * ¢

do
if [[$file = * £]] ; then
c£77 $file
else
cc $file
£i
print “"$SCRIPT: SRC = $file, OBJ = $(objname $file)"
done

Notice in this example that the "*.f" in the "for" statement expands to gll filenames in the current
working directory which have a ".f" suffix". However the "*.f" in the "if" statement does not. It is
a regular expression and means any pattern that ends with a ".f” suffix.

The "select” Control Structure

The "select” control structure provides a simple method for creating menus for interactive scripts.
The shell sends menu items to the standard error file and prompts the user for a selection. The
structure is as follows:

select identifier in words
do

commands
done

Typically the words are the names of the menu items. Select presents each word (which can be a
phrase) preceded by a menu number and then prompts the user for input. The prompt used is
defined by shell variable PS3, which defaults to "#?" if not set. If the user enters a number
corresponding to one of the menu items, the POSIX shell sets identifier to the word corresponding
to that item number. If the user presses the RETURN key without typing anything, the menu and
prompt are displayed again. If the user types something other than a menu number, the identifier
is set to null. The user’s input is saved in the shell variable REPLY so that if the user entered an
invalid response it is possible to find out what was typed.

COMPUTING Number 66 - Summer 1994
Page 29

A simple example should make this clear:
PS3="Enter your selection: "
echo " COMMAND MENU \n"

select choice in "Date & Time" "Users Logged—in" "Files" "Exit"
do
case $choice in
"Date & Time")
date
"Users Logged—-in™)
who
"Files")
1ls
"Exit")
print "End of selection menu"
exit
*)
echo "Invalid selection: $REPLY"
esac
done

Executing this produces the following:
COMMAND MENU

1) Date & Time

2) Users Logged-in

3) Files

4) Exit Menu

Enter your selection: 1

Tue May 10 07:43:33 GMT 1994
Enter your selection: 4

End of selection menu

COMPUTING Number 66 - Summer 1994

Page 30

New Shell Variables and Built-in Commands

The POSIX shell has several new variables that can be used in scripts, including:

ERRNO
LINENO
OLDPWD
RANDOM
REPLY

SECONDS

The value of errno as set by the most recently failed system call.

The number of the current line within the script or function being executed.

The previous working directory set up by the cd command.

A random number, uniformly distributed between 0 and 32767.

The input given to the select statement and to the read statement, when no
arguments are supplied.

The number of seconds that have elapsed since the shell was invoked.

New built-in commands include:

cd [arg]
cd old new

The first form is the "normal” change directory command, if arg is "-" then the
directory is changed to the previous directory.

In the the second form cd substitutes the string new for the string old in the
current directory name and tries to change to this new directory.

fc [-e enamel [-n] [-1] [-r] [first [last]]
fc - - [old=new] [command]

In the first form, a range of commands from first to last is selected from the last
HISTSIZE commands that were typed at the terminal. The arguments first and
last may be specified as a number or a string. A string is used to locate the most
recent command beginning with the string. A negative number is used as an offset
from the current command number. The "-I" flag causes the command(s) to be
listed at the terminal. Otherwise the editor ename is invoked on a file containing
these commands. If ename is not supplied then the value of FCEDIT is used. When
editing is complete, the edited commands are executed. Flag "-r" reverses the order
of the commands and "-n" omits the line numbers when listing them.

In the second form the command, which can be a string or a number, is re-executed
after the substitution old=new is performed (see earlier).

print [-R] [-n] [-p] [-r] [-s] [-uln]] [arg...]

This is the shell output mechanism and can be used instead of echo(1). For more
information see the manual page for ksh(1).

COMPUTING Number 66 - Summer 1994
Page 31

read [-p] [-r] [-8] [-u [nl] [name?prompt]l [name]
This is the shell input mechanism. For more information see the manual page for
ksh(1).

typeset [tH] [tL [n]] [sR [n]] [£Z [n]] [2f] [xi [n]] [+l] [2r] [xt] [zu] [2x]
[namel=valuel]] ...
This sets attributes and values for shell variables.
Flag "-L" left justifies and removes leading blanks from value. If n is nonzero, it
defines the width of the field, otherwise the first assignment determines the width.
When name is assigned a value, it is filled with trailing blanks, or truncated if
necessary. Leading zeros are removed if flag "-Z" is set.
Flag "-R" right-justifies the field.
Flag "-f" indicates that name is a function and no assignment may be specified. In
this case the only other valid flags are "-t" to turn on tracing for the functions, "-u"
to undefine (autoload) the function and "-x" to export the function.
Flag "-i" specifies that name is an integer of base n.
Flag "-I" converts all uppercase characters to lowercase.
Flag "-u" converts all lowercase characters to uppercase.

Flag "-r" specifies that name is read-only.
Flag "-x" marks the given name(s), for automatic export to the environment of
subsequently executed commands.

"won "n "

Using a "+" instead of a "-" turns the flag off.
The following examples demonstrates some of these new commands:

Print (the number 12 in Decimal, Octal and Binary

#

typeset -i8 octal number

typeset -i2 binary number=12

decimal number=12

octal number=$decimal number

print "$decimal number $octal number $binary number"
12 8#14 2#1100 '

Input a username, get the corresponding id and print both
#
typeset —R10 username

typeset -R6 id

typeset -u upper

while : # Loop until "exit" is input.
do

read uid?"Username? "

COMPUTING Number 66 - Summer 1994
Page 32

username="$uid"
upper="$§uid"
if ["$upper"™ = "EXIT"] ; then
print "Finished"
break
£i
id=$ (grep "~$uid:" /etc/passwd | cut -£3 -d:)
print "$username $id"
done

Username? abc
abc 123
Username? vVwxyz
VWXYZ 1370
Username? Exit
Finished

Conclusion

The POSIX shell has many new features over and above those of the Bourne shell. It contains
features which make it more suitable for interactive use than the C shell. In essence there is now
one shell which is suited both to interactive and batch use and which will continue to run existing
Bourne shell scripts. However it is not downwardly compatible with the Bourne shell and any use
in a script of the new features described here will make that script unusable under the Bourne
shell, unless, of course, the system posesses a Korn shell, in which case you should be able to prefix

the script with a record stating "#! /bin/ksh", causing the Bourne shell to start a Korn shell to
execute the script.

UNICOS 8 is running on the YMP-EL at ECMWF. It will also be the operating system running
on the YMP-2E/T3D machine and will eventually become the production system on the C90.

To use the POSIX shell as described here you should copy the file "/usr/local/src/public/profile”
to the file "$HOME/.profile" and tailor "$HOME/.user_profile" and "$HOME/.sh_env" to your
requirements. You can print the /etc/profile and /etc/sh_env files to see what has been set up by
default and you can print any of the files in /usr/local/bin/sh_functions to see what functions are
available. Under UNICOS 8 to make the POSIX shell your default interactive shell you should use
the command:

chsh $USER /bin/sh

COMPUTING Number 66 - Summer 1994
Page 33

Although this article has concentrated on the POSIX shell under UNICOS 8, most of this
information also applies to the Korn shell, "/bin/ksh", under UNICOS 7 and under the IRIX
operating system on the Silicon Graphics workstations at ECMWF. The Korn shell is not available
on the SUN workstations at ECMWF.

One slight problem with the Korn shell under UNICOS 7 is that it does not support the "-S" flag
of the "set” special command, whereas the POSIX shell under UNICOS 8 does.

The purpose of this article is to show some of the new features that can be used with the POSIX
shell. It is not intended as a reference manual. To obtain further information, read the "man" page
for ksh(1), or better still, read one of the books describing the Korn shell such as:

"The Korn Shell User & Programming Manual” by Anatole Olczak (Addison-Wesley)
"The Kornshell Command & Programming Language" by Morris 1. Bolsky & David G. Korn

"Learning the Korn Shell” by Bill Rosenblatt (O’Reilly & Associates)
"A Practical Guide to Unix System V" by Mark G. Sobell (Benjamin/Cummings)

- Neil Storer

* ¥ k Xk ¥k &k ¥ *k Xk k %k *

COMPUTING Number 66 - Summer 1994
Page 34

The following article is reprinted here by courtesy of SCD Computing News, January/February
1993 issue. Jeanne Adams chaired the International Programming Languages Committee of the ISO
(International Standards Organisation) and chaired the ANSI Committee which developed Fortran
90. She also co-authored the books "The Fortran 90 Handbook: Complete ANSI/ISO Reference”, and
"Fortran 90 Handbook".

COMPARING POINTERS IN CRAY FORTRAN AND FORTRAN 80

Editor’s note: This is the eleventh and last in a series of articles about Fortran 90 features.

Most scientific programs involve large amounts of data that the programmer is called upon to
manage. If space is a problem, and it often is, using space efficiently becomes important. A
pointer facility makes it possible to do this with efficiency and clarity. Versions of Fortran at most
installations running large data codes have some form of pointer and a set of related memory-
management functions as extensions to FORTRAN 77; the Cray pointer facility is one of these
extensions. A pointer facility is also included in the Fortran 90 standard.

A pointer facility makes it possible to use space efficiently.

However, Cray pointers are not like Fortran 90 pointers. While converting from Cray pointers to
Fortran 90 pointers is possible, you will have to modify your existing programs to conform with
the Fortran 90 standard. FORTRAN 77 did not have a pointer facility, and Cray pointers were
added as an extension responding to user needs at the time.

Cray pointers are supported in version 5.0 of CF77, the Cray compiling system, and will be
supported in Cray’s Fortran 90 compiler (tentatively scheduled for release in early 1994).
However, Cray pointers may not be available on new computer architectures. The Cray Fortran
90 compiler will support both Cray and Fortran 90 pointers. This will be possible because there
is no ambiguity in having both types of pointers in the same compiler.

COMPUTING Number 66 - Summer 1994
Page 35

Fortran 90 pointers are not currently available in CF77, but are available on the IBM RS/6000
cluster and will be available on most computer architectures in the near future. The Fortran 90
pointer facility fits nicely into the new array features and extensions for declaring data in the new
standard.

Because Cray pointers and Fortran 90 pointers are based on two different standards (FORTRAN
77 and Fortran 90), the syntax and semantics are different. In general, a Cray pointer is a new
data type that does absolute addressing and address arithmetic. A Fortran 90 pointer is a data
attribute and is a descriptor pointing to a named variable.

Cray pointers

The most common use of Cray pointers is to manage a workspace efficiently and conveniently. A
Cray pointer is an absolute memory-addressing facility that points to or addresses various work
areas of an array, making it possible to use another name for space in memory. The pointer and
its target, the pointee, are declared in the following statement:

POINTER (pointer,
$ pointee [(dimensions)]) [,...]

Examples might be:

POINTER (P1, A), (P2, B)
POINTER (PX, X(1:40))

A, B, and X(1:40) are pointees - that is, targets pointed to by P1, P2, and PX. A pointee may be
a variable name, an array declarator, or an array name.

Example 1 demonstrates a simple memory-management scheme for the array WORK. Simple
pointer integer arithmetic changes the starting address of the array associated with the pointer,
and therefore, the placement of the pointee in the array WORK. Example 2 shows output for the
program in Example 1.

COMPUTING Number 66 - Summer 1994

Page 36

Example 1. A simple memory-management scheme for the array WORK

10C
11C
12C
13
14 C
15
16 C
17
18
19
20
21
22C

24
25
26
27C
28
29
30C
31
32
33
34
35

PROGRAM CRAY_POINTERS
COMMON WORK (20)
REAL PNTEE (5,2), X (5,2), Y (5,2), WORK
The type and shape of pointer targets PNTEE, X, Y established.
POINTER (PTR, PNTEE), (PX, X), (PY, Y)
PNTEE, X and Y are pointees; PTR, PX and PY are pointers.

N=10
Next make PTR point to the WORK array in Common; that is,
PNTEE (1,1) will be equivalenced to WORK(1), and effectively
assigning space. LOC is a Cray function to obtain the address
of the argument.
PTR = LOC(WORK)
Next make PX point to 10 address locations beyond LOC(WORK).
PX=PTR+ N

PNTEE = 1.0

X=20

PRINT "(A/,(5F5.1))", "The WORK array", WORK
PRINT "(A/,(5F5.1))", "Arrays PNTEE and X", PNTEE, X
PRINT "(A,2110)", "Value of Pointers", PTR, PX

PTR = PX

PRINT "(A/,(5F5.1))", "The WORK array", WORK

PRINT "(A/,(5F5.1))", "Arrays PNTEE and X after PTR=PX", PNTEE, X
PRINT "(A,2110)", "Value of Pointers”, PTR, PX

PNTEE (1:5, 1) = 3.0
PY=PX-5

PRINT "(A/,(6F5.1))", "The WORK array”, WORK

PRINT "(A/,(5F5.1))", "Arrays PNTEE and X after PNTEE reset”, PNTEE, X
PRINT "(A/(5F5.1))", "The Y array", Y

PRINT "(A,3110)", "Final Value of PTR, PX, and PY", PTR, PX, PY

END

COMPUTING Number 66 - Summer 1994
Page 37

Example 2. Output for the program in Example 1

The WORK array
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
20 20 2.0 2.0 2.0
20 20 2.0 2.0 2.0

Arrays PNTEE and X
1.0 10 1.0 1.0 1.0
1.0 10 1.0 1.0 1.0
20 20 2.0 2.0 2.0
20 2.0 2.0 2.0 2.0

Value of Pointers 85872 85882

The WORK array
1.0 10 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
20 20 2.0 2.0 2.0
20 20 2.0 2.0 2.0

Arrays PNTEE and X after PTR=PX
20 20 2.0 2.0 2.0
20 20 2.0 2.0 2.0
20 20 2.0 2.0 2.0
2.0 20 2.0 2.0 2.0

Value of Pointers 85882 85882

The WORK array
1.0 1.0 1.0 1.0 1.0
1.0 10 1.0 1.0 1.0
3.0 3.0 3.0 3.0 3.0
20 2.0 2.0 2.0 2.0

Arrays PNTEE and X after PNTEE reset
3.0 3.0 3.0 3.0 3.0
20 2.0 2.0 2.0 2.0
30 3.0 3.0 3.0 3.0
20 20 2.0 2.0 2.0

The Y array
10 10 1.0 1.0 1.0
3.0 30 3.0 3.0 3.0

Final Value of PTR, PX, and PY 85882 85882 85877

COMPUTING Number 66 - Summer 1994
Page 38

Fig. 1 illustrates the targets PNTEE and X in the work array WORK after line 18 in Example 1.
Fig. 2 shows the targets PNTEE and X after the assignment statement PTR = PX (line 23 in
Example 1). Fig. 3 shows the targets Y, PNTEE, and X after the assignment statement PY=PX-5
(line 29 in Example 1).

Figure 1
POINTERS ADDRESSES WORK SPACE IN MEMORY NAMES OF POINTEES
WORK (20)
PTR 85872 ----> 1.0 1.0 1.0 1.0 1.0 PNTEE (5,2)
85877 1.0 1.0 1.0 1.0 1.0
PX 85882 ----> 2.0 2.0 2.0 2.0 2.0 X (5,2)
85887 2.0 2.0 2.0 2.0 2.0
Figure 2
WORK (20)
85872 1.0 1.0 1.0 1.0 1.0
85877 1.0 1.0 1.0 1.0 1.0
PTR, PX 85882 --—=> 2.0 2.0 2.0 2.0 2.0 PNTEE (5,2), X (5,2)
85887 2.0 2.0 2.0 2.0 2.0
Figure 3
WORK (20)
85872 1.0 1.0 1.0 1.0 1.0
PY 85877 ----> 1.0 1.0 1.0 1.0 1.0 Y (5,2)
PTR, PX 85882 3.0 3.0 3.0 3.0 3.0 PNTEE (5,2), X (5,2)
85887 2.0 2.0 2.0 2.0 2.0

COMPUTING Number 66 - Summer 1994
Page 39

Cray pointers may point to variables of different types during execution. They are assigned
absolute addresses, and while address arithmetic can be performed, there is no way to nullify the
pointer status.

When porting code from the Cray Y-MP8/864 (shavano) to the cluster, note that the IBM RS/6000
is byte- and not work-oriented, so that in the program in Example 1, N should be 40 and not 10.
If these pointers are used on the IBM compiler XLF, DO loops must be used instead of whole-array
assignment.

Fortran 90 pointers

In Fortran 90, a pointer is a variable that has the POINTER attribute. A pointer may be
associated with or aliased to various data objects (targets) during execution, or it may be undefined
or null (not aliased to any data object). The pointer and the target attributes must be declared in
the specification part of the program in order for data to be used in this way. The pointer and its
target must be of the same type; the pointer must have the POINTER attribute, and the target
data must have the TARGET attribute.

A Cray pointer is a data type; a Fortran 90 pointer is a data attribute.

For example:

REAL, TARGET : POINTEE
REAL, POINTER : PTR

PTR => POINTEE

The pointer PTR points to the target POINTEE. This is done with the pointer-assignment
statement and the new pointer-assignment operator =>. The target may be a scalar, an array, or
an array section. ‘

A new statement, the ALLOCATE statement, creates space for variables with the POINTER
attribute or for arrays with the ALLOCATABLE attribute. Space may subsequently be
deallocated. For example:

COMPUTING Number 66 - Summer 1994
Page 40

REAL, POINTER : P1()
ALLOCATE (P1(100))

DEALLOCATE (P1)

A pointer variable may be nullified - that is, cleared so that it does not point to anything. A
NULLIFY statement removes the association of a pointer and a target. The pointer may then
point to a different target later in the program. For example:

PRT => POINTEE
NULLIFY (PTR)
PTR => A

An important additional use of Fortran 90 pointers will be in processing linked lists.

Differences between Cray and Fortran 90 pointers

An informal report, "Fortran 90 Pointers vs. Cray Pointers” (Jeanne Martin, Lawrence Livermore
National Laboratory, UCRL-ID 108534), provides additional insight into the differences between

Cray and Fortran 90 pointers. The following discussion is taken from that report, with permission
of the author.

Cray pointers and Fortran 90 pointers differ in the following ways:

There are two names associated with a Cray pointer: the name of the pointer and the name used
to refer to the pointer target. There is only one name associated with a Fortran pointer. The
interpretation of this name is determined by context; that is, certain statements can refer only to
pointers, while others can refer only to target objects.

Cray pointers are memory locations. The pointer is treated as an integer, and the type of the
target can change during execution. Fortran 90 pointers, on the other hand, are descriptors
containing both type and rank information. They point to specific kinds of data objects; that is,
Fortran 90 pointers are "strongly typed”. For example, if a given pointer is declared to point to
a two-dimensional real array, it can never point to any other kind of data object. It may point to

several different arrays, and the dimensions may vary; but it can never point to a scalar integer
object, for instance.

COMPUTING Number 66 - Summer 1994
Page 41

A pointer is an attribute in Fortran 90. This attribute may be given to any data object, including
an object of user-defined type. In some implementaions of Cray pointers, it is not possible to point
to objects of type CHARACTER. An implementer (that is, a writer of a Fortran 90 compiler) might
find it equally difficult to extend Cray pointers to point to some of the new Fortran 90 data objects
of user-defined type or nondefault kind. An implementer who added Cray pointers to a standard
Fortran 90 compiler would have to decide whether to make the pointers pervasive throughout the
language or to provide them only to aid code migration (that is, applying only to FORTRAN 77
features).

Cray pointers can be assigned absolute addresses; Fortran 90 pointers cannot.

A Fortran 90 pointer can be set to point to no object by a NULLIFY statement. There is no
language-provided way to nullify a Cray pointer.

A compiler may assume that a Cray pointer target has no storage in common with another
variable, This provides optimisation at the expense of possibly unreliably code. A Fortran 90
compiler assumes that pointers and objects with the TARGET attribute may overlap. This
provides reliable code at the expense of some optimisations.

Note

Differences between the two types of pointers can cause significant problems when porting code
from Cray pointers to Fortran 90 pointers; however, a discussion of these problems is beyond the
scope of this article.

- Jeanne Adams

* % * %k * % ¥ * %k *x %k %

COMPUTER USER INFORMATION Number 66 - Summer 1994
Page 42

NAG LIBRARY - MARK 16 NEWS

Introduction

Implementations of the NAG Library at Mark 16 are now starting to appear. These will gradually
be made available at ECMWF over the coming months. As yet only the SUN implementation has
been received. The following summary, provided by NAG Ltd., gives information at this Mark on
the new features, changed algorithms, and routines that have been removed.

For more detailed information, including routines due for withdrawal at later Marks please see the
entry in the ECMWF on-line help system "echelp”. It is available in the file "NAG 16 preview"

under "Local facilities -documentation"”.

New Features of Mark 16

Mark 16 represents a further considerable expansion of the NAG Fortran Library. It contains a
total of 1134 documented routines, of which 126 are new at this Mark. Two new chapters have
been introduced:

F08 - Least-squares and Eigenvalue Problems (LAPACK)
G10 - Smoothing

Of the 126 new routines, 72 are in the new chapter F08. This chapter includes routines to
compute the solution of linear least-squares, symmetric eigenvalue, unsymmetric eigenvalue,
singular value and generalized symmetric-definite eigenvalue problems. In addition there are
routines to perform various matrix factorizations associated with the above problems, estimate
condition numbers of eigenvalues and eigenvectors, estimate the rank of a matrix, and to solve
the Sylvester matrix equation.

Twenty-two of the new routines are in the Statistics chapters. They include facilities (in the
stated chapters) for: '

- further statistical distribution functions (G01)
- cluster analysis (G03)
- improved analysis of variance routines (G04)

- further random number generators, including matrices (G05)

COMPUTER USER INFORMATION Number 66 - Summer 1994
. Page 43

- computation of robust confidence intervals (G07)

- smoothing techniques (G10)

- two way contingency table analysis (G11)

- computation of partial autoregressive matrices (G13).

Coverage in the differential and integral equations chapters has been improved and extended
with (in the stated chapters):

- new Runge-Kutta methods for the initial value problem in ordinary differential equations
(D02)

- a Keller box discretization technique for first order partial differential equations (with
coupled differential algebraic systems) in one spatial dimension and remeshing facilities (D03)
- routines to solve weakly singular nonlinear convolution Volterra-Abel equations (D05).

New, more robust, techniques have been incorporated in the optimization Chapter (E04) for the
solution of linear programming and quadratic programming problems.

New black-box eigenvalue problem routines which exploit software in the new F08 (LAPACK)
Chapter have been included in the eigenvalues and eigenvectors Chapter (F02).

Routines Revised at Mark 16

A new algorithm has been adopted in the Random Number Generator routines GO5DHF,
GO5DJF and GO5DKF. Results produced by these routines prior to this Mark will not be
repeatable.

Routines withdrawn at Mark 16

The following routines have been withdrawn from the NAG Fortran Library at Mark 16.
Warning of their withdrawal was included in the Mark 15 Library Manual, together with
advice on which routines to use instead. The relevant Chapter Introduction documents give
more detailed guidance.

COMPUTER USER INFORMATION Number 66 - Summer 1994

Page 44
Withdrawn Routine Recommended Replacement
CO02AEF C02AGF
E02DBF E02DEF
E04HBF not needed except with E04JBF
E04JBF E04UCF
E04KBF E04UCF
FO01ACF FO01ABF
F01BQF F07GDF (SPPTRF/DPPTRF) or
FO7PDF (SSPTRF/DSPTRF)
FO1CLF FO6YAF (SGEMM/DGEMM)
FO2WAF FO2WEF
FO04AQF FO07GEF (SPPTRS/DPPTRS) or
FO7PEF (SSPTRS/DSPTRS)
F06QGF FO06RAF, FO6RCF and FO6RJF
FO06VGF FO06UAF, FOSUCF and FO6UJF
GO1BAF GO1EBF
GO1BBF GO1EDF
GO1BCF GO1ECF
GO1BDF GO1EEF
GO1CAF GO1FBF
GO1CBF GO1FDF
GO1CCF GO1FCF
GO1CDF GO1FEF
GO02CJF GO2DAF and GO2DGF
GO5DGF GO5FFF
GO5DLF GO5FEF
GO5DMF GO5FEF
GOSABF GO8AGF
GOSADF GOSAHF, GOSAKF and GOSAJF
GO8CAF GO8CBF
MO1AJF MO1DAF, M0O1ZAF and MO1CAF
MO1AKF MO1DAF, MO1ZAF and MO1CAF
MO1APF MO1CAF
X02AAF X02AJF
X02ABF X02AKF
X02ACF X02ALF
X02AGF X02AMF

- John Greenaway

* ok ok ok ok ok &k % % * ok ok

GENERAL Number 66 - Summer 1994
Page 45

ECMWF ANNUAL SEMINAR

The ECMWF Annual Seminar for this year will be on "The Parametrization of Physical Processes
in Models". It will be held at ECMWF from 5 to 9 September 1994. The seminar will deal with
a wide range of problems associated with surface and boundary layer processes, radiation and
cloud processes, cumulus convection and gravity wave drag. There will be a review of recent
developments including the formulation of affordable representations of these processes, and the
understanding of interactions both mutually and with basic model dynamics.

Posters and application forms have been mailed to the national meteorological services and major
universities in the ECMWF Member States.

- Els Kooij-Connally

* %k %k k *k &« &k & *k k ¥ %

GENERAL Number 66 - Summer 1994
Page 46

SIXTH WORKSHOP ON USE OF PARALLEL PROCESSORS IN METEOROLOGY

21 - 25 NOVEMBER 1994

Every second year ECMWF organises a workshop on the use of parallel processing in meteorology.
This year’s workshop has the overall title "Coming of Age - The Use of Parallel Processors in
Meteorology".

Once again we expect participants and speakers from the national weather services of our Member
States and other meteorological centres, as well as from project teams working on this subject.
Manufacturers of parallel supercomputers have been invited to present their latest developments.

Invited speakers at the workshop will comprise, amongst others, Tor Bloch from the Advanced
Computer Research Institute at Lyon (France), Horst Forster from the Commission of the
European Communities, Friedel Hossfeld from KFA Jiilich (Germany), Jean-Pierre Peltier from
ONERA, Paris, and Hans Zima from the University of Vienna.

It is planned that the proceedings of the workshop will be published by World Scientific Publishing
Co.

- Norbert Kreitz

* k ok k k &k & k * k * %

GENERAL

29 August

5 - 9 September
26 - 28 September
28 - 30 September
4 - 5 October

25 - 26 October
14 - 16 November
21 - 25 November
1 - 2 December

23 - 27 December

Number 66 - Summer 1994
Page 47 -

ECMWF CALENDAR 1994

ECMWF HOLIDAY

Seminar - Parametrization of the physical processes in models
Scientific Advisory Committee, 23rd session

Technical Advisory Committee, 20th session

Finance Committee, 53rd session

Policy Advisory Committee, 3rd session

Workshop - Modelling and assimilation of clouds

Workshop - Parallel processing in meteorology

Council, 41st session

ECMWF HOLIDAY

* % %k %k %k ¥k ¥ % Xk X % *

ECMWF PUBLICATIONS

Forecast and Verification Charts to 31 May 1994

* ok ok k Kk Kk k k ¥ %k * %k

GENERAL Number 66 - Summer 1994
Page 48

INDEX OF STILL VALID NEWSLETTER ARTICLES

This is an index of the major articles published in the ECMWF Newsletter series. As one goes
back in time, some points in these articles may have been superseded. When in doubt, contact the
author or User Support.

Newsletter
No Date Page
GENERAL
ECMWF publications - range of 26 June 84 16
Technical Advisory Committee and Computing Representatives,
Meteorological Contact Points 61 Mar 93 46
COMPUTING
Data handling system 57 Mar 92 16
ECMWF Documentation
- Current Computer Bulletins 64 Dec 93 46
- On line 64 Dec 93 44
Fortran 90 features in CF77 60 Dec 92 23
& 61 Mar 93 29
& 62 June 93 26
& 63 Sept 93 33
& 65 Spring 94 20
MAGICS - the ECMWF graphics package 62 June 93 15
Massively parallel computing - ECMWF’s current investigations 61 Mar 93 15
Multitasking ECMWF spectral model 60 Dec 92 3
Networks
- ECMWF's internal network 54 June 91 20
- New LANs at ECMWF 59 Sept 92 20
Supervisor Monitor Scheduler (SMS) 59 Sept 92 13
Telecommunications
- The ECNET system 54 June 91 16

- Digital links to Member States 57 Mar 92 19

GENERAL Number 66 - Summer 1994

Page 49
Newsletter
No Date Poge
COMPUTING (continued)
Workstations at ECMWF 55 Sept 91 7
& 61 Mar 93 21

Y-MP/C90: An introduction 57 Mar 92 10
Y-MP/C90: I/O optimisation techniques 64 Dec 93 21
METEOROLOGY
Comparison between SSM/I and ECMWTF total precipitable water 57 Mar 92 3
Data acquisition - ECMWF’s new system 46 June 89 21
Development of the operational 31-level T213 version of the ECMWF
forecast model 56 Dec 91 3
Envelope orography - discussion of its effects 33 June 86 2
ECMWF Analysis
- New version of analysis system 35 Sept 86 16
- Divergent structure functions 42 June 88 2
- Revised use of satellite data 39 Sept 87 4
- The variational analysis scheme - main features and

some early results 62 June 93 5
- Use of TOVS satellite data at ECMWF: a new approach 61 Mar 93 3
ECMWF Preprocessing - new scheme 43 Sept 88 3
ECMWF Re-analysis (ERA) Project - plans and current status 64 Dec 93 3
Ensemble prediction 58 June 92 5
Ensemble prediction system - expert meeting 63 Sept 93 18
Ensemble prediction system: status and plans 65 Spring 94 3
ERS-1 mission 54 June 91 8
Evaporation from tropical oceans 51 Sept 90 3
Forecast model
- Cloud cover scheme 29 Mar 85 14
- Convection - parametrisation of 43 Sept 88 6
- Increased resolution - studies of 38 June 87 10
- Initial conditions - the spin-up problem 39 Sept 87 7
- New surface/boundary layer formulation 63 Sept 93 3
- Parametrisation of gravity wave drag 35 Sept 86 10
- Revisions to physics 46 June 89 3
- Revision of the clear-sky and cloud radiative properties 61 Mar 93 3
Global forecast experiment at T213 resolution 41 Mar 88 3
Good prediction of a severe storm over
southern Sweden 50 June 90 10
GORBUSH - a storm in the Mediterranean Sea 53 Mar 91 4
MARS - the ECMWF meteorological archival 32 Dec 85 15

and retrieval system & 33 Mar 86 12

GENERAL Number 66 - Summer 1994

Page 50
Newsletter
No Date Pege

METEOROLOGY (continued)
Meteorological applications at ECMWF utilizing EMPRESS 64 Dec 93 11
Minimum temperature forecasts at the Regional Meteorological Service
of the Emilia Romagna region (N. Italy) by the application of the
Kalman filter technique 60 Dec 92 9
Monte Carlo forecast 49 Mar 90 2
Performance of the ECMWF model in tropical cyclone track
forecasting over the western north Pacific during 1990-1991 58 June 92 16
Potential vorticity maps at ECMWF 50 June 90 3
Recent verification of 2m temperature and cloud cover over Europe 54 June 91 3
Skill forecasting - experimental system 40 Dec 87 7
Systematic errors - investigation of, by
relaxation experiments 31 Sept 85 9
Use of reduced Gaussian grids in spectral models 52 Dec 90 3

* k ok Kk &x k k * %k k ¥ *k

GENERAL Number 66 - Summer 1994
Page 51

USEFUL NAMES AND 'PHONE NUMBERS WITHIN ECMWF

Room* Ext.**

DIRECTOR - David Burridge OB 202 2001

DEPUTY DIRECTOR and

HEAD OF OPERATIONS DEPARTMENT - Michel Jarraud OB 010A 2003

ADVISORY: Available 9-12, 14-17 Monday to Friday 2801
Other methods of quick contact: - Telefax (+44 734 869450)

- VMS MAIL addressed to ADVISORY
- Internet mail addressed to

Advisory@ecmwf.co.uk

REGISTRATION

Project Identifiers - Pam Prior OB 225 2384

User Identifiers - Tape Librarian CB Hall 2315
COMPUTER OPERATIONS

Console - Shift Leaders CB Hall 2803

Console fax number - +44 734 499 840

Reception Counter - Tape Librarian CB Hall 2315

Tape Requests - Tape Librarian CB Hall 2315

Terminal Queries - Norman Wiggins CB 026 2308

Telecoms Fault Reporting - Michael O’'Brien CB 028 2306
ECMWF LIBRARY &
DOCUMENTATION - DISTRIBUTION - Els Kooij-Connally Library 2751
LIBRARIES (ECLIB, NAG, etc.) - John Greenaway OB 226 2385
METEOROLOGICAL DIVISION

Division Head - Horst Béttger OB 007 2060

Applications Section Head - John Hennessy (acting) OB 014 2400

Operations Section Head - Bernard Strauss OB 328 2420

Meteorological Analysts - Andreas Lanzinger OB 314 2425

- Ray McGrath OB 329 2424
- Anders Persson OB 315 2421

Meteorological Operations Room - CB Hall 2426

GENERAL Number 66 - Summer 1994

Page 52
Room* Ext.** Bleeper
COMPUTER DIVISION
Division Head - Geerd-R. Hoffmann OB 009A 2050 150
Systems Software Sect. Head - Claus Hilberg OB 104A 2350 115
User Support Section Head - Andrew Lea OB 227 2380 138
User Support Staff - Antoinette Alias OB 224 2382 154
- John Greenaway OB 226 2385 155
- Norbert Kreitz OB 207 2381 156
- Dominique Lucas OB 206 2386 139
- Pam Prior OB 225 2384 158
Computer Operations
Section Head - Peter Gray CB 023 2300 114
Security, Internal Networks and
Workstation Section Head - Walter Zwieflhofer OB 140 2352 145
GRAPHICS GROUP
Group Leader - Jens Daabeck CB 133 2375 159
RESEARCH DEPARTMENT
Head of Research Department - Anthony Hollingsworth OB 119A 2005
Computer Co-ordinator - David Dent OB 123 2702

* CB - Computer Block
OB - Office Block

** The ECMWF telephone number is READING (0734) 499000, international +44 734 499000,
or direct dial to (0734) 499 + last three digits of individual extension number, e.g. the
Director’s direct number is (0734) 499001.

DEC MAIL: Contact scientific and technical staff via VMS MAIL, addressed to surname.

Internet: The ECMWF address on Internet is ecmwf.co.uk
Individual staff addresses are firstname.lastname, e.g. the Director’s address is
David.Burridge@ecmwf.co.uk

