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INTRODUCTION

In this series of lectures we shall attempt to combine statistical
and dynamical ideas about the behavior of the larger scales of motion in
the atmosphere. The purely statistical methods of a few decades ago did
not adequately treat the essentially nonlinear nature of the atmosphere
and thus fell out of favor. They were replaced by thg purely dynamical
methods that culminated in the "deterministic" nonlinear numerical
simulations of the atmosphere. But in fecent years it has become clear
that many aspects of the "deterministic" simulations rest on statistical
grounds, that many important questions are statistical in nature, and
thus that a full description requires a statistical hydrodynamics of the
atmosphere,

There are two important developments in recent years that are con-
tributing to a statistical hydrodynamics. One of these is the develop-
ment of turbulence approximations for treating the statistical properties
of solutions of the Navier-Stokes equations. The other is the recent
work of Epstein (1969) and his students on stochastic dynamic prediction
which has so far been applied to relatively simple models of the atmo-~
sphere. We shall be discussing both of these developments.

Because of the recent favoring of dynamical over statistical methods
most of us are more familiar with equations of motion of the atmosphere
than we are with the relevant statistical concepts. We shall begin then
by reviewing some of the basic ideas of probability theory and statistical

mechanics.,

1. Probability and Statistics

l.1 Random Variables

We shall be dealing with random variables, random vectors, random
functions, random vectof fields, etc, and it is important at the outset
to define precisely what is meant by the adjective "random." A random
real variable u can take on real values at random but according to a
precisely defined probability distribution. A simple example of a random

variable is the height of Canadian children born during 1970. 1In this
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example and in general we must bear in mind the population or ensemble
in terms of which the adjective "random" is defined. Often the precise
nature of an ensemble is not well known in practice, but we must at least

"vrandom."

conceive of the existence of an ensemble whenever we use the word

In many cases in which we are considering random errors in measurement
the ensemble is a hypothetical set of outcomes of many repetitions of the
measurement process even if we are in reality only permitted to make a
single measurement. In this application the ensemble describes the ex-
tent of our knowledge and ignorance about the measured quantity.

In the example given we may characterize the distribution of heights u
in the population by defining the distribution function P(uo) as the

fraction of the ensemble for which u £ u Obviously 0 S P(u) S 1, and

P(u) is a nondecreasing function of u. gor a large enough population we
can often assume that the distribution function is continuous and define
a probability density distribution p(u) such that p(u)du = dP(u) for any
differential interval du. Clearly p(u) 2 0 and ffw p(u) du = 1. The
idea of probability has been introduced here in an inductive sense as a
fraction of a population. Without overly concerning ourselves with philo-
sophical arguments about the meaning of probability we shall say that
p(u)du = dP(u) is the probability that the random variable has a value
in the interval du about u. This corresponds to the idea that of the
individuals in the ensemble, in our example Canadian children born during
1970, each has an equal probability of random selection. Note also that,
as in our example, the probability distribution may be time dependent.
Subject only to the integral and non-negative properties described,
a probability density distribution can be quite general. A common
example to which we shall be making frequent reference is the normal or

Gaussian distribution. The normal distribution

-1 (g~ 2 2

p(u) = —— = &5 w*/o (1.1)
/2 ©

is characterized by two parameters, the mean p which is real and the

the standard deviation ¢ which is real positive. The normal distribution

has many simple analytical properties that make it an attractive choice
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as an approximation especially when only_two parameters of a real
probability distribution are knoﬁn.

We shall indicate the calculation of averages with respect to a
probabiiity distribution by the special angular brackets < >. Thus for

any real function f(u) of the random variable u we have

<> = fzm fu)p(u) du.

The calculation of averages is a linear operation so that for any two
constants a,b and for any two functions f(u),g(u) we have <af + bg> =
a<f> + b<g>. Such an average is an ensemble average énd, depending on
the convergence of the integral, may or may not exist as a finite real
number. It is not itself a random variable but rather is a constant.
Special examples of such averages are the n-th moments <u™ for
n=0,1,2,3,ee, Evidently for n =‘O we have €l> = 1. Forn =1 we
have the first moment <u> called the mean which for the normal distri-
bution is <uw> = u. It is often convenient to translate the probability
distribution by defining a new random variable u - <uw> with vanishing
mean <u> = <<w> = 0 and to speak of higher moments.about the mean or
central moments defined as < (u - <u>)n> for n = 2,3,¢¢¢, Forn = 2
the second moment about the mean is called‘the variance which for the
normal distribution is <(u - <u>)2> = 02. It is clear that the
normal distribution is characterized in a simple way by its mean and its
variance,

Of particular interest are the properties of the unit normal

probability distribution withuyu = 0, ¢ = 1. For its normalization we

note that
52 b e L2 o dpd 0 -
[ e X ax fe Y gy = [fe 2T 4xdy = 2m [T et rar = o [ e % az =
0 0 (1.3)
thus that
452 : : o
1 [ 2% 4x = 1 (1.4)
Vo o
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We designate a unit normal random variable by a thus

-154°2

pla) = e . (1.5)

L
van
To compute the moments of a consider the definite integral

2
Fh) = —— fe—l/zahda = % (1.6)
oy

Multiple differentiation with respect to h gives us

152 -
£ ™y = f—/f—_:— f(—%_a%“e B g = (<1/2) (=3/2)« (= (2n-1)/2)n" (2D /2
2m
a.7)
which we evaluate at h = 1 to see that
wlsg?
<’ = L 27 40 o qiseseee (2ne1) (1.8)

V21
0dd moments vanish owing to the antisymmetric nature of the defining
integrands.
The unit normal random variable a with

-
dP = p(a)da = ﬁ%: e % da (1.9)

V2w

may be used to generate by an inhomogeneous linear transformation any

normal random variable

u = U+ Ca (1.10)
since
a = (u-u)/o da = du/o
(1.11)
- 2 2
dP = p(u) du = —%i:§~e (u31)" /o du
v
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This is a convenient representation for computing moments of a normal

random variable:

<u> = y +o<a> = q

<u2> = pz + 2uo<a> + 02<a2> = uz + 02

<u3> = p3 + 3p20<a> + 3u02<az> + <a3> = U3 + 3u02
<u4> = 1,14 + 4u3o<a> + 6p202<a2> + 4u03<a3> + 04<a4>

u4 + 6u202 + 304 ‘ (1.12)

it

In considering the random variable u that is generated by a trans-
formation of the random variable a the question arises as to whether
averages are to be computed with respect to the probability distribution
of a or of u. 1In fact, the probability distributions are related in such
a way that either may be used. This may be seen most easily by recognizing

that an ensemble average can also be computed as .

1w )
<f> = T Y " (1.13)
m=1],
for an ensemble of 7/ members each with an attached value of a(m), u(m),
or f(m). Here we have used the fundamental concept that the members

of an ensemble are equally probable.

For a normal random variable all moments can be computed in terms
of the first two. For random variables in general this is not so. For
n = 3,4,5, the difference between the actual nth moment and the value
computed from an assumption of normality is called the cumulant. Thus
for a normal distribution.au.cumulants vanish; the cumulants serve as a
measure of the difference of a probability distribution from being normal.

1.2 Computer Generated Normal Random Variable

There is usually a routine available for generating random numbers

X such that p(x) =1 for 0 £ x £ 1, p(x) = 0 otherwise. A good approxi-

mation for a unit normal random variable is
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12
a 6 + ;Z% X, (1.14)
i.e., the sum of -6 and 12 independent random numbers x. Use is being
made here of the tendency for sums of independent random variables to
approach a normal distribution when the number of variables becomes
large.

For a general normal random variable we may, of course, set
u =y + m . (1.15)

1.3 Random Vectors

In two dimensions the random vector (ul,uz) will be charac~

terized by the probability distribution p(ul,uz) > 0 such that

/f p(ul,uz)duldu2 = 1 ., (1.16)
We now have an ensemble distributed in a two-dimensional phase space
£ of vectors (ul’u2)°

Note that although the vector components Uy and u, are each

random variables with probability distributions

pl(ul) = f p(ul,uz)du2

(1.17)
pZ(UZ) = .[ p(ulauz)dul
there is, in general, more information contained in p(ul,uz) than
is available from a knowledge of pl(ul) and pz(uz) alone.
The average of a function of phase f(ulsu2> is defined by
<f> = fjf(ul’uZ)P(UlSUZ)dulduZS (lelS)

. . o
and various moments of order o + B are given by <uq u26>°
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In an arbitrary number N of dimensions we have an N-dimensional
phase space of random vectors (ul,uz,"-,uN) with the average of a phase

function defined by

f = ff'-°ff(ul,u2,--',uN)p(ul,uz,-'-,uN)duldu2-°-duN . (1.19)

The first momeﬂ:<ui> is a nonrandom vector. The second moment Mij = <uiuj>
is a nonrandom second rank tensor. Considered as a matrix it is ob-
viously symmetric and also in fact non-negative definite since for any

arbitrary constant vector X, we have

ijxixj = <uiuj>xixj = <(uixi)(ujxj)> = <(uixi)2> 2 0. (1.20)
The matrix M has non-negative real eigenvalues., The matrix M is called

' the covariance matrix when the random vector ug is such that <ui> = 0.

To avoid pathologically singular cases we shall assume in general that
covariance matrices are positive definite, nonsingular, and without zero
eigenvalues.

Normal random vectors have multivariate normal probability distri-
butions. We consider first the generalization to N dimensions of the
unit normal random variable. This will be a random vector a; with
<ai> = (0, and with Mij = <aiaj> = Gij; that is, the covariance matrix M
is the identity matrix I. The probability distribution of the random
vector {ai} is

2

2
tesstag) (1.21)

y = 1 e—%(a12+a

= 2
(ZW)N/Z

p(al,az"..,aN

As in one dimension we may generate any normal random vector by an

inhomogeneous linear transformation

u, = Rijaj + My (1.22)

with the matrix R being nonsingular, i.e. such that its inverse R

exists.
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The probability distribution for u, may be obtained from that for

a,. Let S = R SO that
a, S L \U, u. (1-23)
( )

then

1]

p(ul,uz,°°°,uN)duldu2“°duN

) B(alSa‘zSe“’a )

1 =55, (u,=-u.)S,, (u, -u .
—75 e id 3 a7 Tikte Mk du’du, - edu

(Zﬂ)N/z a(ul,uz, ,uN) 172 N

(1.24)
Thus we have
1 I LT, i -
Plupsug,cevuy) = ——m [T %7 3y THy) (i) (1.25)
(2m)

where |T| is the determinant of the matrix T = S*S where S* is the
(complex conjugate) transpose of S.

For this distribution the first two moments are

<ui> = Rij<aj> + P
> = + > = < > 4 UL,
<uiuj <(Rikak ui>(Rang + uj) RikRjQ aa, bW
= = + 1.2
Ry + Hihy Mij T Hi¥y (1.26)

-1
where the covariance matrix M = RR¥ = T ~,

To generate a normal random vector with given mean My and covariance
matrix Mij we first compute the matrix Rij such that R2 = M. A positive
definite matrix M has a unique positive definite square root R which we
may compute in the following way.

We use throughout the coordinate system of the ui's in which the

matrix elements of M are Mij° We can find for M a complete set of
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orthonormal eigenvectors ei(k), k=1,2,***,N, with associated real eigen-

values m > 0, These are sometimes called the empirical orthogonal

vectors of M. The decomposition of the identity relative to M is
N o
I = p () (1.27)
k=1

(k) (k)

where the matrices P are projections onto the eigendirections e,
» i
@ _ W, ®

with matrix elements Pij The spectral decomposition

i
of M is
o= 3 a®p® | (1.28)
k=1
or in terms of matrix elements
N, 0 (K
M, = 2 om e, e, . (1.29)
] k=1 o

By the spectral mapping theorem for any function f we have

N
e = Y £y ® (1.30)
o k=1
thus, in particular,
5 o (K))%, (K)
R = M> = D (m/)° (1.31)
: k=1
where we take the unique positive square root of each m(k) > 0. The
matrix elements of R are given by ‘
N Ry ) () |
R,. = 2: (m ) ‘e. e, . (1.32)
ij = i j .

We may generate the random vector a; by generating independent unit
normal random variables for each component. The desired general normal

random vector will be
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ui = Rijaj + ui
L mk, (W (k)
k};l (m ) (ej aj)ei

1

+ U, . (1.33)
i
The matrix M is real and thus symmetric and its eigenvectors have
real components since they arise from the solutions of the real linear
systems

(k) (k)

M-m7I) e = 0 , (1.34)
1
Consequently R = M” will be real and the random vector ug will be real,
In fact any real function of M will be a real matrix.
The concept of a random function is an infinite-dimensional
generalization of that of a random vector. For our purposes, however,
all meteorological fields are, in practice, represented by a large but
finite number of values, and we shall treat these values as components
of a multi-dimensional vector in a meteorological phase space. In order
to speak of such a vector as random we must consider an ensemble and a

multivariate probability distribution to be defined in the phase space.
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2, Dynamical Phase Space

2.1 Definition

The meteorological system with which we are dealing is, of course,
evolving rapidly in time. Thus we afé, in general, interested in an
N-dimensional phase space ) of vectors (91’u2""%“N) in Which there is

defined at each pdint a fixed velocity vector

ua = Qa(ul’UZ’f‘..’uN) ) o =1,2,***,N (2.1)

givén by some dynamics equation. At a particular instant in time t we
imagine an ensemble of dynamical systems each represented by a point
in a cloud of points distributed through'phése spaéé according to the

probability distribution
P(ul’uz, ‘..’uN’t)-’

As each system evolves according to the dynamics equation, the corre- .
sponding phase point moves, the cloud as a whole will move, and its
probability density distribution will change.

We deduce an equation for the change in the probability density
distribution based on the conservation of phase points in the phase
flow. At any point u in  the flux of phase points will be

Gap(ul,uz,"°,uN,t), and the accumulation per unit N-volume will be

Bp(ul,uz,'°',uN,t)/3t o

= ] 808 (up,uy, e, u))p(ug,uy,t e quy, £ 1/3u
Q

i

- O% BLQy (uy,uys s u)p(uy,uy, o sug, ) 1/3u
(2.2)
This is a linear partial differential equation for the evolution of an
ensemble probability density distribution as it is induced by specified
dynamics. TIts solution would answer all single-time statistical questions
at any later time. The practical difficulty is that for N large it is
difficult to compute such solutions exactly, and we must find some method

of approximation.
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In many cases the dynamics is such that

g ada/aua = 0 2.3)

that is, that the phase flow is nondivergent in its N-dimensional space.
In these cases the probability evolution equation reduces to the Liouville

equation
ap(ulﬁu23 QQ.DUN3t)/at = —QZ ua(ulSuZS .‘.5uN} ap(ulauz:»".suNst)/Bua (2'4)

Since in this case volume elements and phase points are conserved in the
flow, the probability density remains constant along a phase path.

2.2 Time Dependence of Averages

Consider the phase function f(g,t) that may be a function of time
as well as of position u in the phase space {}. Its average <f> is no
longer a function of uy, but is still a function of time explicitly
through the time dependence of f(u,t) as well as implicitly through that

of p(u,t). Let us compute the time derivative of <f>,
d<f>/dt = [ 3{f(u,t)p(u,t)}/dt du (2.5)

The time derivative inside the integral is a partial derivative since

the integrand unlike the integral is a function of uy as well as of t.
d<f>/dt = [ p(u,t)df(y,t)/dt du + [ £(u,t)dp(u,t)/9t du . (2.6)

For the second integral we use the equation of conservation of probability

to find

J £(e,0)9p () /0t dy = - [ £(g,6) ] 3ls (@p(u,0)}/3u, dy
8

i

-/ g 31£(u,t)u, (Wply,£)}/du, dy

/] u W ef,0)/0u tplu,t) du . (2.7)
a
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The first of these two integrals yanishes as the integral of a divergence

since p + 0 as u > » , Thus
d<f>/dt = [ {3f£(w,t)/3t + ] u_(w)dE(y,t)/du bp(u,t) du
Q
= <3f(u,t)/dt + g a () 9F (g, €)/3u >
= <f(g,t)> (2.8)

where f(u,t) is the Lagrangian time derivative of f(y,t) following the
phase flow in phase space. This notation is consistent with the use of

, . . : :
u, as a velocity component in space since u, gives the time rate of

change of the coordinate u, with the phase flow.

dua/dt = Buu/at + é ueaua/aus
= 0+ é UBSGB }é u, ' 1‘ (2.9)

An alternate, more direct, derivation of the result d<f>/dt = <f> is
based on the consideration of a myriad M phase points of the ensemble

with f = fm being the value of f on point m. Then

<E> = 1 %4: £ : ’ (2.10)
M =l m
and -
d<t>/dt = = % df_/dt = <f> (2.11)
, : M el m :

where dfm/dt is the rate of change of f attached to and moving with the
point m. The evolving probability distribution in this picture is
implicit in the evolving distribution of phase points.

2.3 Forecast Ensemble

Our principle concern in these lectures is with the optimal
estimation of the present and future states of the atmosphere. The

classical theory of optimal‘estimation (Gauss, 1809) is most succinctly
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described in terms of a state or phase space for the system being
considered. A discussion of the use of a phase space for atmospheric
dynamics can be found in a paper by Gleeson (1970). The system of
interest here is the whole atmosphere, but we always treat it, in fact,
in some finite approximation in numerical models, and we shall consider
therefore the large- but finite-dimensional phase space of a numerical
model. The state of the model atmosphere at a particular time t is
specified as a point u(t) in its phase space; the coordinates of the
point are the values at that time of all prognostic variables in the
model, Depending on the representation used, the phase space components
may be made up of the values of fields of physical variables such as
velocity, temperature, and humidity defined over an array of space mesh
points or of the amplitudes of an orthogonal function expansion of these
physical fields. The dimensionality of the model phase space is of the
order of 250,000 in some present general circulation models.

The calculational cycle of a numerical model advances the state u(t)
for a small time increment At to the new state u(t+At), and the repeti-
tion of these cycles leads to a sequence of phase points which trace out
a phase path. This process is completely deterministic; starting at the
present from a given point the model generates a definite phase path
into the future. 1If the initial state were known exactly and if the
model exactly simulated the atmosphere, then the computed phase path
would provide an exact forecast. But neither assumption is valid. We
shall be interested first in these lectures in the internal error aris-
ing from the uncertainty in the determination of the initial state. We
shall consider later the additional external error generated by the dis~-
crepancy between the dynamics of the model and that of the real atmo-
sphere arising in part from the limited dimensionality of the model phase
space. For studying internal error growth alone under the assumption
that our model is perfect we assume that there exists a true phase path
for the model that is not known but that we wish to estimate as closely
as possible., Let us consider first the situation at an initial time.

Were we able to make a set of independent observations of a

particular unknown true state up, we know that the errors associated
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with our observational technique would lead in fact to a set of observed
vectors u distributed about ug. Since an observational technique in
this discussion is intended to include an analysis method, the observational
errors include interpolation and aliasing errors as well as instrumental
errors. As the number of observations in the set approached infinity,
the observed phase points would form a cloud of equally likely observa-
tions u about Uge The density distribution of this cloud would give a
probability distribution p(u—uo)-for observational error. We shall
assume that the observations have been corrected for bias and thus that
the mean of the observations u is uge Although the error probability
distribution p(u-ug) might be quite complicated in structure we are
generally restricted to specifying it in terms of its first and second
moments, in which case we cannot distinguish it from a Gaussian or
normal distribution.

The practical situation is quite different from the hypothetical
situation just described. Were we able, in fact, to make a large number
n of independent observations u of a single true state ugp, the average
of the n observations would represent a combined observation whose root-
mean-square error would be smaller than that of individual observations
by a factor n_%. Instead we have, at a given time, a single observa-
tion which should, of course, include all available sources of informa-
tion. The error distribution of this observation must be arrived at
indirectly by a combination of theoretical analysis of the observation
and analysis method and of experience acquired from observations of a
long sequence of different true states. We shall assume that this has
been done, that we know the observational technique to be free of bias,
and that we know the second moments characterizing the error.

We are faced therefore with a situation in which we have been able
to make a single imperfect observation u of the unknown true state ugp.
We can only conclude that the true state ug is likely to be in the
neighborhood of the observed state u with a probability distribution
po(uo-u) obviously related to that of the observational error by
Po(x) = p(-x). We may then reverse the earlier picture and consider

a cloud of possible true states ug distributed about the observed
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state u. If, further, the cloud is distributed with a density given by
the probability distribution po(uo—u), then the points represent

equally likely candidates to be the true state Uy We cannot know

the true state precisely, and the cloud represents the extent of our
knowledge and ignorance given the observation. The mean position of the
cloud is the observation u and represents the best estimate of the true
state in the least-square-error sense. The second central moment is

the covariance matrix for the ensemble of phase points and is the
simplest representation of the size of the cloud and the degree of our
uncertainty. The diagonal elements of the covariance matrix are variances
which provide the usﬁal mean-square measure of error or uncertainty in
single components, but the off-diagonal elements are needed in order to
specify correlations between the errors of pairs of components.

If we imagine each point in the initial cloud to be advanced along
its phase path by the dynamics of the numerical model we see that the
cloud of phase points will move through phase space. We know from pre~
dictability studies, which examine the divergence of pairs of paths in
phase space, that in general the cloud will be distorted and its size
as measured by its covariance matrix will increase with time. We expect
further under an ergodic hypothesis that the cloud will tend, at times
so late that all predictability has been lost, toward a stationary
equilibrium distribution which represents the climate ensemble for the
model. We shall refer, in general to the evolving cloud of phase points

as the forecast ensemble in order to distinguish it from the climate

ensemble toward which it tends,

The climate is, of course, more traditionally defined in terms of
averages over phase points observed at regular time intervals during
a hypothetically infinite evolution time. It is the ergodic hypothesis
that we may equate such time averages to averages computed for a
stationary climate ensemble. An important goal in the development of a
numerical model to simulate the atmosphere is that the model climate
agrees with that of the real atmosphere. This goal has been nearly
reached for many present general circulation models in the sense that

the time average statistical properties of the model agree with the
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corresponding properties of the real atmbsphere even though there may be
differences in detailed eévoliution. For the purposes of this discussion
we shall assume that we are dealing with such a climatologically realis-
tic model with a known stationary climate ensemble. n

So far as the internal dynamics of a model is concerned the evolv-
ing cloud of phase points at any later time continues to represent an
ensemble of equally likely candidates to be the true state, and there-
fore the probability distribution of the forecast ensemble continues to
represent the extent of our knowledge and ignorance. Specifically, the
mean of the forecast ensemble continues to be the estimate of the true
state of the atmosphere that is best in the least-square—error sense,
and the covariance of the forecast ensemble serves as the simpleét
measure of uncertainty or error in that estimate.

- Although the partial differential equations describing the evolu-
tion of the probability distribution in phase space are well known, the
dimensionality of the phase space is—so'great that the direct integra-
tion of these equations is out of the question. It is necessary to make
some approximation, and we may characterize a specific forecasting scheme
in terms of the corresponding approximation. The stochastic dynamic
forecasting scheme (Epstein, 1969) to be discussed in the next section
is based on a moment expansion technique that gives equations for the
evolution of the mean and covariance directly, and the approximation
involved is a moment closure of which several have been tried. The
Monte Carlo forecasting scheme to be discussed in Section 5 is based on
a sampling approximation in which the forecast ensemble mean and co-
variance are estimated from a finite sample of phase points determined
by computing m trajectories in phase space. A conventional single
forecast is obtained by computing the trajectory that starts from the
mean of the initial forecast ensemble and can be considered as an
approximation to the equation for evolution of the mean that is closed
by ignoring the second moment terms. Of course, a conventional forecast
might also be considered as a special case of a Monte Carlo forecast

with sample size m = 1.
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A possibility exists that the true state may in a few particular
cases lie very close to the mean of the initial forecast ensemble.
Should they coincide, the conventional forecast would provide the true
phase path and would therefore remain superior to any other forecasting
scheme. In particular, stochastic dynamic or Monte Carlo forecasts of
the mean of the forecast ensemble cannot attain such chance successes,
but, as we shall see, they also avoid more frequent serious failures
and provide a net improvement in average forecast skill. The value of
those conventional forecasts which do turn out to be superior is limited
somewhat by the fact that we can have no greater a priori confidence
in them. In order to know that they were going to be more accurate, we
should have had to know that their initial states were more accurate, but
all such knowledge has already been used to determine the second moments
of the initial ensemble.

In evaluating the average skill of a particular forecasting techni-
que we shall determine the mean-square discrepancy between the true
state and the forecast estimate. The averaging process involved here is
over an ensemble of initial states which we naturally take to be the
climate ensemble. Thus we are in this case interested in the average
way in which the clouds of uncertainty grow for many repeated uses of
the forecasting scheme. This kind of average growth of uncertainty for
conventional single forecasts was treated by Leith and Kraichnan (1972)
for a two-dimensional turbulence model. It is important to bear in
mind the distinction between this climate average growth of error and the

error growth associated with a particular forecast ensemble.
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3. Stochastic—Dynamic Forecasts

3.1 Quadratically Nonlinear System

In dealing with various forecasting methods it is most useful to
consider an abstract quédratically nonlinear forecast equation of the
form encountered in spectral barotropic models.

encountered in spectral models of the Navier-Stokes

This is also the form

equation and has

been the subject of much study for two- and three-dimensional turbulence

models.

It is the quadfatiéally nonlinear term in the forecast equétion

that causes the common difficulty in all of these systems.

An importént class of turbulence approximations is based on the

construction of stochastic models.

We shall examine the essential

structure 'of such models free of irrelevant kinematic complexity by

considering a simple analog of the wavevector-space form of the Navier-

Stokes equation in two dimensions.

The analog will have two simple

integrals, energy and enstrophy, but one may easily drop the enstrophy

integral to have an analog for three-dimensional turbulence.

Our simple mechanical system will be characterized by a large but

finite set of N real variables uu(t) evolving according to

The real constants va simulate viscous damping when positive and pre-

(d/dt+va)uu(t) =

> A

By

scribed mode instabilities when negative.

for specified external forcing.

characterized by the interaction coefficients A

@BYuB(t}UY<t) + fu(t)

(3.1)

The functions fu(t) provide

The nonlinear nature of the system is

By ~ Says

We shall

assume that the mode indices are elements of an addition group such

We impose four conditions on the interaction

There exists a set of real numbers m s not all equal, such that

that o ¥ a = 0.
coefficients:
I. A&BY =0, ifa+B+v#0
II. A.OLBY =0, if a=0o0r 8=0o0ry
IIT. A + A + A =0
aBy Bya Yo
Iv.
A + m. A + A = 0,
Tafagy T ™8%Bya T MyyoB
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The mode o = 0 is special, and we remove it from the system by setting
fO(t) = (0 and uo(t) = 0 as we may consistently according to Condition II.
Conditions I and II together guarantee that there is no self-interaction,
i.ei, that AQBY = 0 unless o, B and vy all differ. All of these conditions
correspond to known properties of the two-dimensional Navier-Stokes
equation.

3.2 Statistical Properties

We are not so much interested in individual solutions of Eq. (3.1)
as we are in the statistical properties of ensembles of solutions. Thus,
we consider the Ua(t> as random variables whose randomness is induced
either by the initial conditions uu(O) or by the random forcing fa(t)’
or both. 1In the absence of the nonlinear interactions (3.1) reduces to
a linear random equation whose statistical properties are well under-
stood. To study the influence of the nonlinear term alone we consider

the inviscid, force-free equation

du (£)/de = u (£) = %AQBYBB(t)UY(t) , (3.2)
in which trhe randomness of Uu(t) arises only from that of the initial
conditions Ua(0)°

At any time t, including t = 0, the statistical properties of the
ensemble are completely characterized by a probability distribution
P(u,t) defined on the points u of the N-dimensional phase space {) of

the system. In particular, any single-time moment is given by
< o060 s = { see .
uu(t) UB(t) uo(t)) é UuLB uSP(u,t) du

We shall assume that P(u,t) is such that any moment <ua(t)uB(t)°ﬁ°u6(t)>

vanishes if oo + 8 + == + § # 0. By analogy to turbulence statistics

BY)

statistical homogeneity. 1In particular, we then have <um(t)> = 0, but

we call this property (preserved in time by condition I on AOC

Uu(t) ua(t)ua(t) 2 0.
The lack of self-interaction insures, in the phase space ¢,

that
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) Sua/aua = 0 ,
o
that the phase flow is nondivergent, and that a Liouville theorem

holds for the evolution of the probability distribution, namely

3P (u,t) /3t = - ] u 8P (u,t)/du = - 2] Apy gt BB (W€ /3, (3.3)
o By '

In principle the single-time statistical problem is completely solved

by the solution of the linear partial differential equation (3.3);in

practice for large N we must find some computable approximation to (3.3).

3.3 Moment Expansions

A traditional approach to the problem of the evolution of statistical
properties has been to derive equations for the evolution of moments from
the dynamics equation. For first moments we can average the dynamics

equation to find

d<ua>/dt = - vu<uu> + éZ% AaBY<uBuy>. (3.4)

For second moments we find

L] .
<u,u > + <u,u >

By By

it

d<u,u_>/dt

By

—(vB + vy)<uBuY>+-'2: A

<ugu_u > + 2: A . <u,ucu_>
§.¢ Bye S ey §.e v8e B S €

3.5
and, in general, each equation for the rate of change of an nth momené )
will involve an (n+l)-st moment. The central pfoblem of the statistical
mechanics of such quadratically nonlinear systems has been the closure
problem, that is, to find an approximation for (n+l)-st moments in
terms of lower order moments in order to close this otherwise infinite
sequence of equations.

3.4 Properties of the Nonlinear System

Before considering approximations we should list some known pro-

perties of the original Egqs. (3.2) and (3.3) that we may hope to preserve.
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1) P(u,t) 2 0 and f P(u,£) du = 1.
Q

2) The total energy
E(t) = 27 u (t)u (t)
2 o o
o
and the total enstrophy
G(t) = =T mu (Su (t)
2 o . & o o

are integrals of the motion, for, by Condition III,

E = z u u = z; A U u,u
5 oo By aBy o By
and by Condition IV,
é = Z mu u = §: m A U u,u
5 oo By o oBy o By

A third independent condition like III and IV would imply that all

A vanish.

By

3) Eq. (3.3) has stationary multivariate Gaussian solutions,

corresponding to the generalized Boltzmann distribution for two

temperatures 6 and o,

#

P (u) M exp(-E/B6 - G/g)

fl

1 2 1 2
M exp (~ E-g u, /6 - E‘g m U, /o )

Here M is a normalization factor determined by property 1).
4) More general multivariate Gaussian probability distributions
are not stationary nor do they remain Gaussian, but we can compute

exactly the initial change in moments. For the Gaussian distribution

NI

P(u) = M exp <— Z uuz/Ua ) s
a

&

(3.6)
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<u u,u > = 0, and

aB’ o BY

the first four moments are <u > = 0, <u u,> =U_§
o o B o

<uauBuYu6> = Uaﬁ BUY6Y5 + Uu6uYU8686 + U 8 6 B By .

The initial first and second time derivatives of the second moments are

given by
o, = 2 > Bygy<Uoigly” = O
Ea (3.7
U o= 4 A UU +A, UU +A
o 2: BY uBY BY  "Byay o YcﬁvaUB)

It is easy to check that if Ua = (Q—l + mao_l)_l, then ﬁ& = 0 as expected
for the stationary Gaussian solutions (3.4).

5) A property of the system described by Egs. (3.2) and (3.3)
which is not known but which is a matter of conjecture is that after a
long time the system forgets everything but the temperatures 6 and © and
relaxes to the géneralized Boltzmann distribution, that is, that P(u,t)
approaches the stationary Gaussian distribution (3.6). 1In the sense of
uniform convergence of all moments this conjecture is clearly wrong
since Eq. (3.2) is time reversible, but so far as the behavior of low-
order moments is concerned it may be right. 1In the course of time a
nonstationary Gaussian probability distribution P(u,0) develops an
increasingly fine non-Gaussian structure that never vanishes but that
makes decreasing contribution to low-order moments while continuing to
contribute significantly to some increasingly higher order moments. Even
for the relaxation conjecture to be valid for the behavior of low-order
moments, however, the system must be ergodic and mixing on surfaces in
Q with bbth E and G constant. It is easy to find systems with N = 10
that do not relax; a system with N = 5 that does has been found by
Orszag (1970). ' It is observed that even for non-ergodic systems the
final discrepancy of second moments from their Boltzmann values seems
to be of the order of 1/N. This encourages the hope that for increasing
N the relaxation conjecture,vif not exact, becomes increasingly valid

for most physical systemé. The pragmatic value of the conjecture is
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that 1f it were false then the coarse statistical properties of the

system would remember the indefinitely distant past and there would be

very little that could usefully be said about them. We shall be optimistic
and assume that the relaxation conjecture is true and that second moments
approach in time the values that they would have in the stationary
Gaussian distribution (3.6) with values of 6 and ¢ determined by the

total average energy and enstrophy in the system.

3.5 Stochastic Model

A stochastic model for the system evolving according to (3.2) is
another system evolving according to a model equation replacing (3.2)
and inducing an evolution of P(u,t) that, first, agrees as closely as
possible with that described by (3.3) and, second, is computable in
practice. These two requirements tend, of course, to be incompatible.
The principal advantage of a stochastic model is that it guarantees
realizability, that is, that P(u,t) 2 0. This is more difficult to do
with closed moment expansions or with finite difference or truncated
eigenfunction approximations to P(u,t) and Eq. (3.3).

3.6 Stochastic-Dynamic Prediction

We consider the "true' state of the atmosphere to be characterized
by a nonrandom true vector Ga’ Our best estimate of the state of the
atmosphere, however, is characterized by a random known vector uu where
the random differences ua - E& are the result of observation and analysis
errors and inadequacies. An ensemble of independent estimates of the
same Ga would generate a probability distribution foruOc characterized,
in part, by the variance <(ua - <ua>)2>. Hopefully our estimate is
unbiased, <ua> = ﬁa.

In fact, we observe a single u, and try to make a forecast from
this starting vector. In stochastic dynamic prediction an attempt is

made to forecast the probability distribution of finding Gu about u .

=IR

For an unbiased estimate the covariance of Gu - ua is that of ua - U,
and O = <(u_~u u,-U,)>. Our estimates of o at time O must be

aB (oc oc)(B B) af
based on an analysis of errors associated with observation and analysis

tempered by our knowledge of climatology.
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For the quadratically nonlinear system with the equation of motion

u, = 2: Adpoupuc - z Bapup + Ca (3.8)
p,0 p
having the usual conditions on AaBY’vWith BaB hermitian and positive

definite for damping, and with Ca a forcing vector, we can carry out an

expansion through second moments in terms of ua = <ua>,

Oug = S(uy = uy) (ug - uB)>
= < - - - > 3.9
TaBy (u, - 1) (ug uB)(uY uY) (3.9)
and find
Ho © 2: Adpa(upuo + OpU) - z Bapup + Ca
p,o o
o = A +po, +
op pz%, aps Tgpo + Ho%80 * Vo8
H
+ A + + -YB -YB .
Z Bpo(Tocpc upOoao uOOOLp) L opOBp ) chocp
i P - P (3.10)
These equations have an energy integral when Bup = 0, Ca =0
L1 2 _
E = 7)) (1~ +0,) _ (3.11)
o
dEfdt = Tuh +% V&
5 oo 2 5 oo

+ + = 0.
o :‘:0 Aocpc(uocupuc + uacpc + upoocc ucrdocp Topo) 0
> 3

Similarly we may establish the existence when appropriate of an
) ,
. - 1/ .
enstrophy integral G 5 g ma(ua + Gaa)
Epstein (1969) closed by using the third cumulant discard approxi-

mation, Tupc = 0, which preserves energy and enstrophy integrals. Unlike

the fourth cumulant discard approximation the third cumultant discard

approximation is realizable. The associated stochastic model equation is
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du /dt = 2: Aypo Mol F Mgty = Wl + o) (3.12)

which is random linear with nonrandom coefficients based on statistics

as is typical of stochastic models. For the model, setting v, = u, My
u fae = 2 Bypo (Mol + 90
p,0
dvu/dt = upc(upua + up - 2upuc)
p,0
= 2 Ay (Mvg T U
5% opcTp O
= + + .
dGaB/dt EZ% Aqu(UpGBO o0 ) + E: BDG e ucgap> (3.13)

The linear terms, - g Bapupm Cu’ of course, present no problem.
As for the existence of equipartition solutions, we find for this
model that any ensemble with My = 0 and U@B diagonal is stationary.
When applied to homogeneous turbulence the third cumulant discard
approximation also discards nonlinear energy transfer between modes.
Epstein (1969) carrled.outpredlctlon experiments with Lorenz's low
order system, dw/dt = 0, w =V w, of two-dimensional flow periodic in

a rectangular box (2n/k, 2m/%) with the vorticity given by 8 modes
w = Al cos Ly + A3 sin 2y + A2 cos kx + A4 sin kx

+ A. cos kx cos Ry + A

5 cos kx sin Ry

7

+ A8 sin kx cos Ly + A6 sin kx sin Ly (3.14)

reduced even further by setting A3 = A4 = A5 = A7 = A8 = 0 to the set

of dynamics equations

. 1 2. \-1

A= -5 (a(u +1)) Ayh

. _ 1 3.2 .-1

A2 = 5o (a™+1) A1A6

. 2 -1

Ao o= - @-Da™ A, (3.15)
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where o = k/%. This is an example of a quadratically nonlinear three
component system that can be reduced to the canonical form with solu-
tions given by the Jacobi elliptic functions s = sn(t), ¢ = cn(t), d = dn(t)

satisfying the equations

s = cd
¢ = -sd (3.16)
d = —1k2 sc

where k is the modulus.
In these experiments Epstein made comparisons for 6 days of the

results of a deterministic calculation with

duq/dt = g%%'AdeupuO .
stochastic calculations of dua/dt, and dcaB/dt using the third cumulant
discard approximation, and Monte Carlo calculations of an ensemble of
500 members satisfying the deterministic equations.

Fleming (l97la;b) extended these results by keeping third moments,
closing with an eddy-damped quasinormal approximation, and experimented
with a two-level model of 28 degrees of freedom.

Much of Fleming's work was related to the predictability problem.

In the turbulence theory approaches to the predictability problem we
examine the statistics of an ensemble of pairs with the ensemble means
'vanishing but the pairs starting close together. In the stochastic
dynamic approach we examine an ensemble of not two but myriad members
clustered about a nonzero mean, Thus we compute the change in uncertainty
as measured by the covariance for specific initial conditions. The
average of stochastic dynamic results over all initial conditions (dis-
tributed climatologically) should agree with the results of the turbulence

theory approaches.
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4, Theoretical Predictability Studies

Numerical weather prediction can never be exact owing to errors
in the determination of the initial state and to external error sources
arising from discrepancies between the dynamics of the numerical models
and that of the real atmosphere. But in addition to the initial error
and external error sources there is an internal error growth mechanism
which imposes a fundamental limit on the predictability of the atmosphere.
This internal error growth is not an artifact of the numerical model but
is a consequence of the nonlinearity and inherent instability of atmo-
spheric dynamics. Even a hypothetical model that treated all resolved
scales of motion perfectly and for which was given an initial state as
perfect as possible would have its forecast skill limited by the un-
avoidable errors in unresolved scales which would contaminate larger
scales and lead to final destruction of skill in all scales. It is the
internal error growth mechanism that has been the principal object of
predictability studies in recent years.

There are three approaches (Lorenz, 1969a) to the predictability
problem, all of which examine the way in which a pair of atmospheric
evolutions diverge from each other with time when they differ slightly
in their initial states. In one approach (Lorenz, 1969b) a search is
made for close analogs in the historical record of atmospheric states to
serve as an initial pair. Although this is the only method that deals
directly with the real atmosphere, it was, unfortunately, found that
the closest analogs are not very close nor would a longer record have
helped very much. Lorenz's search for analog pairs was in a data base
consisting of values of the heights of the 200-, 500-, and 850-mb
pressure surfaces, twice daily for the 5 years 1963-1967 at a 1003-point
checkerboard subset of the NMC grid. The closeness of analogs was
measured in terms of mean square height differences over the 1003-point
array. The best analogs found were still rather poor so that their
divergence with time only measured the growth of errors which were
initially already relatively large. For each large errors he found a

doubling time of 8 days.
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A simple quadratic law governingverror growth that reflected the
moderating influence of quadratically nonlinear terms forplarge error
growth was found by Lorenz to fit h1s growth results well over the
observed range. When used for extrapolation the quadratlc law gave for
small‘errors an rms doubling time of 2} days. He estimated also that
a data base of 140 winters would be needed in this approach in order to
give a reasonable 1ikelihood of finding analogs close enough to corre-
spond ‘to observational errors. ;

In a second approach the real atmosphere is replaced by any one of
a number of numerlcal models simulating the atmosphere. Although one
must now rely'on thensimilitudekof the model, it is easily possible to
start with initial states differing slightly in arbitrary ways. Early
"perfect model" predictability studies of thisksort, as summarized by
Smagorinsky (1969), found error growthkrates with rms error doubling
times of 5 days. Jastrow and Halem (l970) showed,’however, that a re-
" finement of resolution from an 800 km to a 400 km grid spacingbshortened
the rms error doubling time to about 3 days. This was borme out by
calculatlons with the Natlonal Center for Atmospheric Research (NCAR) 5°
model by Willlamson and Kasahara (1971), which gave IMS error doubllng
times of 2 to 3 days. The dependence of error growth rate on resolu-
tlon seems to be a consequence of the fact that coarser mesh models
1ncorrect1y 1mpede baroclinlc processes, as shown by Miyakoda et al
(1971). Th1s falling dlrectly causes the slow1ng down of a baroclinic
error growth mechanlsm and leads as well to a lower eddy kinetic energy
level in the model with akcorrespondingly,slower barotropic error
growth process.}h | ‘ - | | | ,

; A limltatlon of concern in the numerlcal model approach to the
‘predlctablllty problem 1s the model scale truncation necessary for
feasibility of’computation, Models cannot resolve scales of motlon’
smaller than the grid scale nor,\therefore, their 1nf1uence on error
growth. A third approach to the predlctability problem was descrlbed‘
by Robinson (1967), who suggested that statlstlcal theories of turbu—

. lence might be used to estimate the rate at which nonlinear processes

transferred error from smaller to larger scales.’
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Using inertial range scaling arguments Robinson (1967) suggested
that a particular scale of motion of wavenumber k in the atmosphere could
not be predicted for longer than a characteristic eddy time which,
assuming a -5/3 power spectrum, he took as

]€|—l/3 k—2/3

T, = . (4.1)

k
Such an estimate seems unduly pessimistic since it denies that numerical
models have any skill in describing the detailed nomnlinear interactions
between different wavenumbers. In a more detailed examination of this
problem Lorenz (1969c) concluded that Ty was a better measure of the
time for transfer of error from wavenumber 2k to wavenumber k., Thus
Lorenz imagined an error cascade process in which the predictability
time was the sum of the individual octave transfer times from some

initial ervor in some higher wavenumber. Even for infinitesimal error

in infinitesimal scales at k = © for a -5/3 power law the sum converges.

—1/3k~2/3 2/3 ~-2/3

le] @+2"7+4 + eee)

=
=
B
L[]
~
N
=
-

2.,817k . (4.2)

The predictability time T, of wavenumber k is then only a few times the

k
local eddy time Tko More detailed calculations with the test-field
model of turbulence (Leith and Kraichman, 1973) give for a -5/3 power

law range

]
It

10T
in three dimensions and

Tk = 2,5Tk

in two dimensions. It is, however, clear from atmospheric observations
(Wiin-Nielsen, 1967) that the relevant spectral power law is not ~5/3,
but is more nearly -3, consistent with the ideas of two-dimensional

turbulence theory (Kraichnan, 1967; Leith, 1968). As was pointed out
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by Lorenz (1969c) the situation is quite different for a -3 power law
for in this case

-1/3
Ty n

is independent of k, the predictability time increases by a fixed local
eddy time for each additional octave that the error must cascade, and
the sum diverges for an initial error at k = «. According to this esti-
mate for each factor of two increase in resolution of the determination
n-l/3

of initial conditions there will be gained Ty =

predictability of the atmosphere. This estimate has been born out in

x 1 day in the

test-field model calculations (Leith and Kraichnan, 1972) in which the
energy spectrum was assumed to approach a -3 power range above the
planetary wavenumber 10.

Kraichnan (1970) pointed out that the predictability problem pro-
vided a fundamental test of the realiability of turbulence models.
Although the turbulence models have treated the atmosphere as a simple
two-dimensional fluid, the ease with which the rate of error transfer
between scales can be determined makes such models useful. Predicta-
bility calculations have been carried out with the eddy-damped
Markovian model (Leith, 1971) and with the test-field model (Kraichnan,
1971a, b; Leith and Kraichnan, 1972). These calculations have shown
that scale truncation was not, in fact, a serious limitation of pre-
dictability studies with numerical models. The turbulence models pre-
dict an rms error doubling time of about 2 days, which is only slightly
shorter than that predicted by numerical atmospheric models and by the
analog study.

As a simple step toward studying predictability without the per-
fect model assumption, calculations have been carried out on the
divergence of solutions of two numerical models differing only in their
resolution or truncation properties. Williamson (1973) has done this for
the 5° and 2%° versions of the NCAR model and finds a much more rapid
error growth than under the perfect model assumption. The influence
of truncation differences on predictability has been studied for a

spectral model by Baer and Alyea (1974).
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5, Monte Carlo Forecasts

5.1 Introduction

In the course of the statistical hydrodynamical studies of the pre-
dictability problem, it has become clear that single numerical forecasts
do not provide the best estimate of the true state of the atmosphere in
the classical least mean square sense. The most obvious demonstration
of this statement is given by the fact that at late times mean-—square
numerical forecast errors approach twice the mean-square error of a
forecast based on the climate mean. We shall describe in the next sec—
tion in some detail a method for obtaining the best estimate from the
forecast by using well-known statistical techniques variously referred
to as linear regression or optimal filtering. We shall call such fore-
casts tempered although they might also be called regressed, filtered,
or hedged. Tempered forecasts use climate information and approach the
climate mean at times so late that all predictability is lost. The
mean-square error of such forecasts therefore approaches that of a
climate mean forecast. To provide the information required to predict
the risks of large anomalies it is necessary to supplement such
tempered forecasts with detailed information on mean-square error as
provided by estimates of forecast variance.

Differing in kind from the conventional single forecast is the
stochastic dynamic forecast (Epstein, 1969) in which inhomogeneous
statistical hydrodynamical models are used to forecast directly mean
and variance information. As with homogeneous turbulence models some
closure approximation for the moment equations must be invoked. In
principle, at least, stochastic dynamic forecasts should approach
climate statistics at late times, and they are therefore tempered.
Stochastic dynamic forecast models have been used to study predictability
(Fleming,1971a, b), and the forecast covariance information of such
models has been used in experiments on optimal data assimilation
(Epstein and Pitcher, 1972). Unfortunately, the amount of arithmetic
required to carry out stochastic dynamic forecasts is overwhelming for
systems with a reasonably large number of degrees of freedom N, since

in addition to the expected N equations for evolution of the mean field,
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there are, in general, N(N+1)/2 equations for the evolution of second
moment quantities. Tests so far of stochastic dynamic methods have
been for systems with N of the order of 100 or less; a reasonably
detailed forecast model may require a value of N of the order of 100,000.

It is our principle purpose in this section to examine the
theoretical skill of Monte Carlo approximations to the stochastic dyna-
mic forecasting technique. For a Monte Carlo sample of size m the
amount of arithmetic involved is proportional to mN, and if m = 10 is
sufficient to gain most of the advantages of stochastic dynamic  techni-
quest then we may hope to carry out such calculations with available
computers.

5.2 Optimal Estimation

If, for any particular forecasting scheme, we have determined for
many trials the climate average error statistics, we may determine from
these whether the forecasting procedure leads to the best estimate of
the true state in the least-square sense. If it does not, themn by
linear regression methods we may generate a final best forecast using
the preliminary forecast as a predictor. For Monte Carlo forecasting
schemes we shall see that as the sample size m approaches infinity the
forecast based on the sample mean becomes best, but that for finite m
a final regression step is needed and is of greater value the smaller
the sample size m. The greatest benefit of linear regression is achieved
for m = 1.

We shall represent any state of the model atmosphere by an N-
dimensional state vector u which we shall treat as a column vector in
matrix expressions. In order to simplify statistical expressions we
shall choose the origin of the N-dimensional phase space to be the
mean of the stationary climate ensemble. The components of a general
state vector u will represent, therefore, anomalies from a climate
mean. We shall always denote an average over the climate ensemble
(and no other) by brackets < > so that for the climate random vector

u we shall have <u> = (.



-341-~

Let the true but unknown state of the model atmosphere be represented
by Ug and let 4 represent some estimate of Uge We shall assume that u is
an unbiased estimate of U in the sense that over many estimation trials
<uO - > = 0 and therefore that <u> = <u0> = 0. If u were not unbiased it
could, of course, be made unbiased by adding the mean residual <uO - > to
a.

The climate average error of the estimate U is measured by the co-
variance matrix <(uO - G)(uo* - G*)> where the asterisk denotes in general
a matrix transpose and here the transposed row vector. An estimate is
best in the classical least squares sense 1f the residual (uo - G) is
statistically orthogonal to the estimate G, in the sense that the matrix
<(u0 - G)G*> = 0. If U is not a best estimate of u, we may use 4 as a
predictor and find a regression matrix B such that the vector Bu is a
best estimate. In this case the residual ug - BU should be statistically
orthogonal to the predictor 4 and we would have

<(u, - BU)U*B%*> = 0 ,

0
which is satisfied for

B = <uoa*><aa*>”1 ) (5.1)

Of course, the determination of the regression matrix B requires knowledge
of the climate statistical properties of the estimate u. Note that if 4
is already a best estimate then <uOG*> = <iu*> and B = I, the identity
matrix. In general the covariance of this new best estimate Bu is readily
determined for we have

- BO % — LRRR = > o Gu_*
<(uO Bu)(uo u*Bx)> <uouO > B<uuO >,

which can also be written in a number of other forms.
We shall, henceforth, reserve the caret notation to represent a best
unbiased estimate U of the true state u,. We shall denote the known

0
fixed climate covariance by
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= *
U <u0u0 > (5.2)

. "~
and the error covariance of the estimate u by

~

B o= <y = @)t - %)> . (5.3)

A convenient measure of the knowledge of the true state Uy that is provided

~
by the best estimate u is given by the matrix

W o= <Gu0*> = <Qa*> = U - A, (5.4) .

>

Thus we have divided the total climate covariance into two parts, U =W + 3,
with W measuring our knowledge and A our ignorance. The matrices U, W,
and A are all covariance matrices and thus are positive definite.

5.3 Monte Carlo Forecasting Scheme

The general procedure for carrying out a Monte Carlo forecast involves
the generation of a finite sample of equally likely initial states, the
advancing of each using model equations, and the determination using the
computed sample at any later time of a best estimate of the true state as
well as the uncertainty of this estimate. We shall assume that we are
starting at time t = 0 with a best unbiased estimate G of uO(O). Such
an estimate will be based on an optimal combination of our knowledge of the
climate ensemble, of forecasts from previous times, and of new observations
at time t = 0. The first two of these sources of knowledge are already
combined in a tempered forecast; the optimal addition of new information
from observations has been described in many recent papers (Gandin, 1963;
Jones, 1965; Eddy, 1967; Petersen, 1968; Epstein and Pitcher, 1972;
Rutherford, 1972). We shall also assume that we know the initial decom-
position of U into the covariance matrices A and W. '

In order to generate our initial sample we choose a finite set of
vectors ui(O) = U+ o i=1,2,***,m, with r, being normal random vectors

such ‘that <r,> = 0, <r,u.*> = 0, <r.0*> = 0 and <r,r,*> = AS,,. If the
i i ij ij

i 0
matrix A is in diagonal form the generation of the random vectors r, is~

straightforward; if not then it is probably easiest to transform to a
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representation in which A is diagonal, generate the sample, and transform
back to the original representation.

The statistics of the initial sample are readily computed for we
have <ui> = 0 and <uiuj*> = <QU*> + <r,r.%> = [ + adij’ that is

, ij
<uiuj*> =W+ A=0U1if i=j, and <uiuj*> = W if i#j. We may also compute
the statistical relations between the sample state ui(O) and the true

state uO(O), We have, for each i,

~ N A
<u,un*> = <(u 4+ r)uE> = <gu k> = W,
i°0 ( 1) 0 0

So far as its statistical properties are concerned the unknown state Ug

may be treated as another member of the set of u, with then

<u u. k> = [+ EGQ

g o,B = 0,1,2,°¢o,m , (5.5)

B®
Inasmuch as Ugs Ugps Uys *oe, u are assumed to evolve with the same
dynamics, this statistical equivalence persists for all later times.

The matrix A measures the size of the cloud at time t = 0. We shall
assume that the climate average predictability properties of the model
have been determined in the sense that we know the evolufion of the error
covariance matrix A(t), with initial value A(D) = g, that measures the
climate average cloud size at any later time. Studies of predictability
determine A(t) by examining the statistics of pairs of solutions and

making use of the relation

<[uy (&) - uz(t)][ul*(t) - uk(E)]> = 20 - W(E) = 2A(t) (5.6)
where W(t) = <ul(t)u2*(t)> = <u2(t)ul*(t)>c At late times predictability
becomes completely lost so that we have, as t + oo, A(t) >~ U, W(t) = 0

and a pair of solutions becomes completely uncorrelated. In particular

any single solution becomes uncorrelated with the true state and, as t > ®,
- % - % > .
<Tug(e) u () 1 up*(e) - u,*(e) 1> ~ 2u

It is important here to emphasize that A(t). is a measure of climate
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average cloud size growth; the aim of the Monte Carlo foreééétiﬁg scheme is
to give more detailed information in the form of an estimate of cloud size
growth for each individual forecast ensemble.

We shall refer to the probability distribution of the forecast
ensemble of phase points for a particular forecast period as the fore-
cast probability distribution. 1In the Monte Carlo forecasting scheme we
must estimate this forecast probability distribution aﬁ any time t > 0
from sample statistics of the set ui(t). We shall use an overbar to
indicate sample averages.

The sample mean
m
- 1
s oLy
i=1

is an unbiased estimate of the mean of the forecast probability distri-
bution, i.e., the mean of the cloud of points. It is also an unbiased
estimate of the true state uo(t) since the climate ensemble is stationary

and we have

g

m
<u, - u> = <yg,> - <u,> = 0 .
0 Egi i

The climate average error covariance matrix of u as an estimate of Ug at

any time is given by
b= <(uy - w)(yyk - uk)>

m m
1 ' .
= T3 XX <Cug - u)(agk - u)>
n°  i=1 j=1

1 = ;
=.I;.2. Zz(p-2w+w+Adij)

(1 +ohHa . - | (5.7)

A conventional single forecast takes u as the initial state. Let

us designate the resulting forecast by u(t). This forecast is not
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quite equivalent statistically to a member of the sample since at time
= 0 we have <QU*> = <QU*> = W rather than U. However, as with any
single forecast, at late times the forecast becomes completely uncorrelated
with the true state, thus as t - ® we have <G(t)u0*(t)> + 0, and
<(uO - ﬁ)(uo* - d*)> > 2U., By contrast we have for the error covariance

of u, as t + ® and A - U,

B o= <(uy =@t -a0)>> L+n DU,  (5.8)

which shows that for m > 1 the sample mean U becomes in time a better
estimate than the conventional single forecast U.

The sample covariance matrix

<
it
8

Z: (u - u)(u ko~ %) (5.9)
i=1

is not an unbiased estimate of the forecast distribution covariance of

which the climate mean is A(t). We have, in fact,

<V> =

=
Ms

[<u, JUy > - <u1u*> - <uu1*> + <uu®>]

- —:‘“A(t) , (5.10)

as is to be expected from sampling theory. For an unbiased estimate of the

forecast distribution covariance we should use instead
1 < - -
D = — ; RO NCULIC TR (5.11)

so that <D> = A,
In general the preference for u rather than 4 as an estimate of Uy
arises from the nonlinear nature of the dynamics. The evolution of u

takes into account in Monte Carlo approximation second moment terms,
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such as Reynolds stresses and eddy transports of heat arising from un-
certainty, that are ignored in the evolution of u. These are the terms
that the stochastic dynamic forecasting methods (Epstein, 1969) forecast
explicitly by equations for which a moment closure approximation is made.
In the application of the Monte Carlo forecast covariance matrix D to the
analysis problem we must recognize that although D is an unbiased estimate
there remain sampling errors in the determination of D that can lead to
errors in the relative weighting of forecast information and new observa-
tions. Since these sampling errors tend to decrease with increasing m
the final choice of m should depend on their importance as compared to
other errors in the overall forecast procedure, in particular, that error
arising from external error growth. This aspect to Monte Carlo forecasts
is beyond the scope of the theoretical analysis of this paper and will
best be decided by experiments,

There are a number of basic questions to be answered by such
experiments. The most important has to do with the relative importance
of external and internal error sources. The use of a Monte Carlo sample
of initial conditions indicates only the magnitude of internal errors.
Additional random forcing terms have been used by Pitcher (1974) to
simulate external error sources in stochastic dynamic forecasts, and such
forcing terms are also applicable to Monte Carlo forecasts. If the
external error sources for a given model are large compared to the inter-
nal error sources, then the value of detailed prediction of internal
error growth based on the Monte Carlo sample estimate D is diminished, and
more reliance should be placed on a general regression estimate that
would take into account all error sources. it is to be hoped that experi-
ments can serve to separate the internal and external sources so that
not only can an efficient choice of m be made but also so that an analysis
of purely external errors can lead to model improvement.

Although u is an unbiased estimate of Uy which is, in time, an
improvement over U, it still does not represent a best unbiased estimate

of GO' We have

<(uy - Wuk> W- [W+mTA]

A 4 o, (5.12)
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and thus ug ~ u is not statistically orthogonal to u. We obtain a best

unbiased estimate, U = BE, of Uy by use of the regression matrix
- == 1
B = <u0u*><uu*>

= w@+n Tt = @+t h,  (5.13)

which under our general assumption is a known function of time. A
A
measure of the error of the best estimate u is given by the covariance

matrix

=
]

<(ug - BG)(uO* - UkB®)>

<ugu k> - B<Gu0*>

U - BW . (5.14)

Note that as ¢t —+ o, W~ 0, and A »~ U, we have B -~ 0, 4 + 0, and A - 1.

A Monte Carlo forecast with a final regression step tends toward the clima-
tological forecast, u = 0, at late times even for finite m. Note also that
as m +~ owe have B +~ I, A -+ A, and the final regression step becomes un~
important. The m—+e limit gives, of course, the ideal but unobtainable
forecasting scheme which exactly reflects our state of knowledge and
ignorance by exactly describing the evolution of the cloud of equally
likely states. |

The final regression step can be viewed as an optimal filter. It
will tend in practice to diminish the smaller scale components for which
the relative forecast error is greater.

The test~field turbulence model has been used to test the theoretical
skill of Monte Carlo forecasts (Leith, 1974). Calculations have been made
of the mean-square velocity errors both without regression V(m,t) and with
a final regression step ?(m,t) as a function of sample size m and fore-
cast time t. These are naturally compared to the mean square velocity

error V of a climate mean forecast.
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The relative mean-square velocity errors are shown in Fig. 1. for
V/F (dashed) and V/V (solid) for m=1,2,8, as a function of forecast
time t. For m = ® the function V¢ ,t) and %é”,t)‘are the same and des-
cribe the errors of the ideal forecast scheme. The average error of
traditional single forecasts without regression is essentially given by
'V(l,t) = ZVC”,t). Note that even without the final regression step most
of the benefit of a Monte Carlo forecast for improved accuracy of the mean
is obtained with m = 8. It is clear, however, that regression for m = 1
leads to the largest reduction of error for the smallest cost and that
the use of sample sizes m > 1 will have to be justified on the basis of
the detailed knowledge obtained concerning the errors of a particular
forecast.

The error growth results shown in Fig., 1 are based on an assumed
initial error spectrum that corresponds to an observational accuracy
and resolution that is much higher than is presently available. These
results represent therefore a goal that hopefully may be attained in the
1980s by the use of satellite-based sensors. An indication of present
error levels is shown in Fig. 1 by the plotted points which are based on
reported root-mean-square vector wind errors at 500 mb of 15 and 17 knots
at 12 and 24 hours, respectively, in April 1969 (National Meteorological
Center, 1969) compared to an April rms deviation from the mean of 27
knots computed from climatological results of Oort and Rasmusson (1971).
The forecast errors are computed from the difference of forecasts and
station reports; likewise the climatological estimate of standard devia-
tion is based on station reports, and the influence of smoothing through
an analysis procedure is avoided. It is clear from Fig. 1 that there is
much room for improvement.

The measure of forecast skill used throughout this section has been
mean-square error, but there are serious questions as to whether such
an objective measure corresponds to a subjective evaluation of what makes
a good forecast., It is, of course, difficult to develop a theory of
forecast skill without some objective measure of that skill. A large
body of statistical theory is based on-mean-square measures of error, and

it would be most useful if such a measure could be devised that agreed
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well with subjective evaluations. The mean-square wind error used in
this section approximates somewhat the frequently used Sl score (Teweles
and Wobus, 1954) which is not itself based on mean~square error. There
remains, however, considerable freedom in choosing other basic variables
of the phase space through a linear or nomlinear transformation and thus
in modifying the naturé of the corrésponding mean—square measure.

From a decision theoretical point of view the best measure of skill
is that one which can be used to maximize expected gain or to minimize
expected loss. Since the gain or loss as a function of the actual state
of the atmosphere differs in different applications, thé‘only universally
useful information from forecasts would be a probability distribution of
various outcomes. The best estimate of the mean and variance provides,
of course, the lowest two moments which contribute much to the definition.
of such a probability distribution. '

A subjective objection to’any tempered forecast of fhe best esti-
mate of the mean is that it is smoothed and does not therefore look "real."
Such smoothing has been used to a lesser degree and accepted as necessary
in analysis procedures so that evidently "real" looking weather maps
should have some but not too much smoothing. An interesting possibility
for overcéming this general objection is proviaed by the Monte Carlo fore-
casting procedure in that the forecast results might be displayed as a
set of, say, m = 8 maps each of which looks "real" and is equally likely
to be the true state so that the differences between them give a sub-
jectively judged measure of the forecast uncertainty.

We conclude in general that a Monte Carlo forecasting procedure re-
presents a practical, computable approximation to the stochastic dynamic
forecasts proposed by Epstein (1969). ~Adequate-accuracy.should be ob-
tained for the best mean estimate of the forecast field with sample sizes
as small as 8. Improvement in skill is appreciable for Monte Carlo fore-
casts as compared to conventional single forecasts although much of this
improvement comes from the filtered nature of the forecasts and is ob-
tainable with a linear regression step applied to a single forecast.

The question of what sample size is adequate for the detailed deter-

mination of forecast error needed for optimal data assimilation has not
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been decided by the present theoretical study and will require experiments

with real data applications of the Monte Carlo procedure,
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6. ~Régression Forecasts

6.1 Introduction ="'

The use of pure statistical regression methods for forecasting is
based on the observation that there exist significant time lagged corre-
lations in atmospheric states and that knowledge of a present state can,
from purely empirical considerations, provide information about future
states. This general statistical problem of making a best estimate of an
unobserved quantity on the basis of an observed quantity which is known
to be correlated is of such general importance in analysis as well as in
forecasting that it is worth a careful study.

6.2 Optimum Estimation Methods

Let us consider first the two-component random vector (x,y) for

which is known, a priori, a normal climate ensemble characterized by
2 2

x>=0, <g>=0, Xx>=X>0, <y>=Y >0, <xy> =W, so that the

covariance matrix is

‘X W
S = ( ) > 0 . (6.1)
W Y

When we write for a matrix S > 0 we mean that S is positive definite, i.e.,
that it is square, is symmetric, has real positive eigenvalues, is non-
singular, and is invertible so that S_1 exists with S.-1 > 0.

Now we make an observation that determines y = Yor What is the best
estimate of x given this new knowledge? We shall examine three methods

of arriving at a single answer to this question.

LT method: Let us try to find a linear transformation (LT) that trans-

forms from the random variables (x,y) to random variables (e,y) such that

<g> = 0, <y> = 0, <gy> = 0, <52> = E > 0, <y2> = Y > 0, so that now
the covariance matrix is
E 0
S' = > 0 . (6.2)
0 Y

0f course, y is unchanged and x is replaced by €& through the linear

relation x = by + € or € = x = by. To find b we note that
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0 = <ey> = <xy> =~ b<y2> = W - by

or b = W/Y. We can also readily compute

E = <e%> = X - 2bW + b2y
= X - 2W2/Y + wz/Y = X - W2/Y
2
= X(1 - W°/XY) . (6.3)

Since by the Schwarz inequality W2 S XY, we have X 2 E 2 Our best

0.
estimate of X is evidently x = byo with variance <€2> = E.

LS method: Let us try to find a linear estimating formula X = by that

minimizes the climate ensemble average of
A2
E = <(x=-x)">,. (6.4)
This is the method of least squares (LS). As function of b we have
2 2.2

E(b) = <x"™> - 2b <xy> + b <y“>

X - 2bW + b2y (6.5)

In order to minimize with respect to b we want

0 = dE(b)/db = =2W + 2bY
thus b = W/Y. Furthermore we have
dZE(b)/db2 = 2Y >0

so that we have indeed a true minimum in E at b = W/Y. The value of

E there is

E = X = WZ/Y + w2/Y X - WZ/Y

il

= XL -WYxY) 2 o . (6.6)
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ML method: Let us tfy to find the most likely (ML) value of x given an

observation of y = Yo The inverse of the covariance matrix S is

Y -W
st o= a7t ( ) > 0 (6.7)
-W X
where A = ISI = (XY - WZ) > 0. The climatic joint probability distribution

of (x,y) is if normal

ST - 2y + %y

p(x,y) = (6.8)
where 1 is some normalizing constant., Given y = Yor the conditional
probability distribution of x is

_1 -1 2 2 ‘ B

p(xlyg) = n'e R R (6.9

The most likely value of x is that one x = % which maximizes p(xlyo) or

minimizes
' -1 2 2 '
L(x) = A (x" - Znyo + Xyo ) (6.10)
Thus we want at x = x
o 1
0 = dL(x)/dx = A ~(2¥x - 2Wy0)
whence x = (W/Y)yo. This is a true minimum since

d2L(x)/dx2 = A'l(zY) > 0 .

"~
In terms of x and x we have

AT - o+ (xeehED

p(leo) n

n,e-%YA—l(x - §)2e-%Yw'2§2:

Sy x - 2
n'e A " (x - x) (6.11)
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Note then that the conditional mean of x is also x and its variance is

E =AY = X- WZ/Y = X(1- WZ/XY) 20 . (6.12)

We have found by three methods that after an observation y =y, our
best estimate of x changes from 0 to x = (W/Y)yO with a reduction in
variance from X to X(1 - WZ/XY), The agreement between the three methods
depends on the assumption that the climate ensemble has a normal pro~-
bability distribution.

6.3 Regression Matrix

We shall next examine some generalizations of the LT method. The
simplest generalization is to more than two dimensions. We let x be a
vector to remain unobserved with <x> = 0 and y a vector to be observed
with <y> = 0 before observation. We assume that we know before observa-

tion all second moments

X = <xx*> > (

Y = <yyk> > 0

W = <xy*>

We = <yx¥> , (6.13)

Here x is a column vector and x%, its transpose, is a row vector, each
say with dimension m. In general x%*x is a scalar (an inner product), but
xx* is a mxm matrix. The matrices X = X*, Y = Y* are positive definite.
The dimension of y, say n, need not be the same as that of x. Thus W is
a not necessarily square nxm matrix. The overall covariance matrix is,

of course, the composite (m+n)x(m+n) matrix
X W
5 = < > 0 (6.14)
Wx Y

We wish to find an mxn matrix B that effects a linear transformation

to new random vectors €, y related to x by
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x = ‘By + é' - ; o ' (6.15)
and such that <e> = 0, <ey*> = 0, and <e€e*> = E 2 0. We have then

W = <xy*> = B<yy*> BY (6.16)

thus we have B = WY-l with transpose B#* = Y-lw*.‘ The matrix B is the
regression matrix. : ‘ ‘

We readily determine E by computing

E

<g(x = By)*>

‘= <gxk> - <gyk>B*
= <exk>

= <(x - By)x*>bb

X - BW* = X - WY lyx (6.17)

We may also write

E X - BYB* .

Let us now assume that the correlation between x and y arises from

a known linear relation y = Ax with A a known nx m matrix. Then we have

Y = <Ax(AX)*> = AXA* > 0
W = <x(Ax)*> = XA%*
Wk = AX S (6.18)

and the estimation matrices become

B = wy ! = XA*(AXA*)—l

X - WY-lw* = x,'_‘_,XA*(AxA*)'le . . (6.19)

E

If further A is a nonsingular square matrix so that A_l exists then
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XA*(A*“lx"lA"l) = a7t

[o=]
it

1-1~1

X A )AX = X-X=0. (6.20)

=
il

X - XA*(A%*

. . . , -1 . N
In this case we have a precise determination of x = A y with vanishing
variance and no dependence on X.

Suppose, finally, that the observations are subject to error n such

that, in fact, the correlation between x and y arises from the relation
y = Ax -+ n (6.21)

where we assume that <xn*> = 0 and <IqM*> = N > 0 is known. Now we have

Y = AXA* + N

W = XA*

B = XA%(AXA% + N) T

E = X - XA*(AXA* + 3) TAX (6.22)

For the special case that A is nonsingular we have

- - 1

B = ((AXA% 4 N){A% "X 1))
= (A + IA*_lX_l)_l
E o= X(I - (T +x a4 s h™h (6.23)

which owing to the noise 1 is no longer precise and does depend on X,
-1
Of course, for N = 0, we have B = A ~, E = 0 as before.
To summarize, if the observations y are related to an unknown

vector x by the relation

P T (6.24)

where A and X = <xx*> are known, and the random error of observation
has <n> = 0, <nx*> = 0 and <Nn*> = N known, then the best estimate for
X 1s provided by

x = By + ¢ (6.25)
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where <yg*> = ( and <ege*> = E with

S
[

XA* (AXA* + N)'1

=
]

X - XA*(AXA* + N)'le . ‘ (6.26)

After an observation y = Yos the best estimate of x is x =’By0 with
variance E,

The general expressions for B and E involve the inverse of the
matrix Y = AXA* + N in y-space which is usually of smaller diemsnion

than is x-space. In case x-space has the smaller dimension define

z = X1 + A*N"1A and note that

AN LY = A% 4 asn“laxax = zxas (6.27)
so that

77lasnl - xasyl = . (6.28)

If N is easily inverted (as it is if it's diagonal) then it is better to

use

-1

7 taxn~1

[o=]
]

e ]
Il

X - BYB* . (6.29)

Example: The vector x represents coefficients in an orthogonal function
expansion of a meteorological field. The vector y represents observations
at a set of space points.

Example: The vector x represents a vertical temperature profile as given
by values at 10 mb intervals. The vector y represents a set of observed
radiances at a few different infrared wavenumbers (Strand and Westwater,
1968 a, b; Westwater and Strand, 1968; Rodgers, 1970).

Example: The vector x represents tomorrow's state of the atmosphere.

The vector .y represents today's observed state.
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7. Statistical Assimilation of Observations

7.1 Statistically Optimum Analysis

Gandin's (1963) method of objective analysis makes extensive use of
climate statistics in the form of two space point covariance functions
which for homogeneous statistics depend only on the separation vector r.

.. (T = <u, L(xtr)>
Uy () uy ()u, (x4r)
For isotropic statistics we have the further simplification that Uij(g) =
Uij(g) depends only on the separation distance r = |r|. As in the case

of two time covariance functions for time series here too we have a

Fourier transform relation

]

U,.(r)

| ke ¥ Ey (1o
ij ~ ij~

[ age'®

r
”Pij(k)U(k)

between the spectral function Uij(g) = Pij(g)U(k) and the space covariance
function Uij(r)“ The space covariance function enters into a least squares
method of analysis.

We consider a set of n predictors Vs i=],2,°°+,n, which may be
observations at station locations and a single predictand x which may be
a value of the field at a mesh point location. We deal only with devia-
tion fields so that all climatic means vanish. We wish to find the

N
best linear prediction relation x = biyi in the sense that we minimize

= N2y 2,
E = <(x X)™> = <x"> - Zbi<xyi> + bibj<yiyj> .

= = >
Let Yij <yiyj>, Wi <xy:.L then we have
0 = JE/3b, = =-2W, + 2b.Y.,
i 1 J i3

whence the coefficients bj are given by
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Since 9 E/ab Bb 2Y >0 is p051t1ve deflnlte, bjkis at a true‘ﬁiﬁimum.
For any perturbatlon 6b we would have 6E %(9 E/Bb Bb )6b 6b ? 0. TFor

this bi we have

bW, = b.b.Y,.
i'i i7j713

and thus we may compute E as
E =< x2> - 2b. W, + b.,b,Y,, =< x2> - b,b.Y,, < <x2>
; ‘ i'i o Ti7jT4j b Sy I |
In case of errors of observation which are
1) unbiased with variance 02
2) uncorrelated with observed fields
3) uncorrelated between stations
we replace the covariance matrix Yij of thezfields at the observing
stations with the covariance matrix Yij + 0 dij of the fields with

observational errors. The resulting optimum coefficients become

_ 2_.-1
by = ((¥+0°D) PR

A simple example is that of a best estimate of field values in the
neighborhood of a single observation. Here we have a single predictor y and

the least square method reduces to that described earlier (with an inter-

change in the ‘roles of x and y). For a homogeneous field we have

X = <x2> = <y2> = Y, W = <xy>

WY = <xy>/<y2> = r(x,y)

o
I

where r(x,y) is the correlation (normalized covariance) between x and y. .

We also have

E = X-bX = X(1-W/XY) = X1 -1% < X

A more complex example is that of interpolation between two points

on a line. Consider the random function f(&) with covariance function
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F(p) = <E£(&)f(&+p)> that has been observed at two points & and & + A,

An interpolation formula will give a prediction
fp(E +x) = a(xE(E) + bE)E(E + A)

at any other point x. A simple example is linear interpolation in
which a = (A - x)/A , b = x/\. But optimum interpolation will give in

general a smaller variance

E = q%@+x>—ua+mﬁ>

E(x) <(af (&) + bE(E + A) - £(E + x))%>

a®F(0) + b2F(0) + F(0) + 2abF(A) - 2aF(x) - 2bF(A - x)
As usual we minimize E(x) with respect to a and b by setting

oE/da

2aF(0) + 2bF(A) = 2F(x) = O

1

dE/ 9b 2bF(0) + 2aF(A) - 2F(A - x) = O

to find the pair of linear equations

F(0)a + F(M)b F(x)

i

F(Ma + F(O)b

F(A - %)

with the solution

F(OF(x) = F(MF(A - x)

a(x)
F(0)% - F(A)?

FO)F(A - x) = F(M)F(x)

b(x)
F(0)2 - T2

For this optimum interpolation formula we have

2 2
E(X) - F(O) - F(O>[F(X) + F(X —ZX) ] = gF(X)F(A)F(X - X)
F(O)™ - F(N)
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Note that as expected for observations without errors, we have E(0) = 0
and E(A) = 0.

7.2 Combining Two Independent Estimates

We consider two indepéndent but imperfect observations of a fixed
vector u in a space of dimension N. The estimates being imperfect can
be treated’asbfandom Qectors v, w. The estimates are assumed to be
unbiésedﬁthus'<v> = <w> = u, Wevdefine new random vectors x = V — U,
y = w — u 80 that <x> = <y> = 0, We shall assume that v, w hence also
X, y are Gaussian, and thus the probability distributions are completely
characterized by positive definite second moments X, Y which we assume
to be known. We wish to find a positive definite weighting operator Q
such that the new random vector z = Qx + (I - Q)y will be a best estimate
of 0 in.the sense that the second moment Z will be a minimum. For then
Qv+ (I -Qw=u+ 2z will be a best estimate of u. We also wish to
determine Z. Co v

For N = 1 the problem is well known. The weight Q should be inversely

proportional to the variance ¥, Q = (X--l + Y_”l)“lx_l

-1

, and the variance of
the combined estimate is Z = (X_l + Yul)

We introduce the characteristic function of vectors s

. ‘ . -1
Gx(s) _ <e1(x,s)> _ f ei(x,s)p(x) ix = e 5(Xs, s)
Note that for any linear transformation A

S

]

i i * ~L(XA*g A%
ax C5) etBx,8) _ i(x,A*s) 0 (a%s) = e (XA s,A s)

e—B(AXA*S,S)

and, for x, y independent,

ex+y(s) _ <ei(x+y,s)> - <ei(x,s)ei(y,s)> - <ei(x,s)><ei(y,s)>
= Gx(s)ey(s)
thus for z = <Q<si1,

Qx + (I - Q)y, 0
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8 (s) = HEQH (I- QYA - Q))s,9)

[

Z QXQ + (I - YT - Q)

We assume first that X, Y commute, and thus Q, which is a function
of X and Y, also commutes with X and Y.
We wish Z to be stationary relative to any positive definite

commuting variation dQ in Q.

dz

dQXQ - dQY(I-Q) + QXdQ - (I-Q)YdQ

dQ((X+Y)Q - ¥) + (Q(X+Y) - ¥)dq = 0

This condition will be satisfied for

Q = (V) ty = (X+Y)—1(Yxx°ly'l)Y = (x“lY°l(x+Y))“lx”l
- by vyl
g = &'+ Y“l)"lY“l
z = @ltevyhy &Ly S G N S S y~ iyt
Qg = zxt
I-q = 72yt

We know that Z is not only stationary but a minimum since

d’z = 2dQ(xv)dQ > 0
These expressions correspond to the well known results for N = 1, which
is to be expected since if X, Y commute there is a unitary transformation
that simultaneously diagonalizes all operators. In the diagonalizing
coordinate system components are independent and can be combined one by
one, each pair as for N = 1. The more interesting case then is when X,
Y do not commute.
. Since X is positive definite it has a positive definite square root
5

3 . . - . .
X” with inverse X *, Make a transformation of coordinates
1

-y
2

X "x
1

-’

X %y

fl

<X
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Then L L
6z(s) = JTHE KK Ts8) o Hils,s)
X=1
1‘ -4 'lz
y N L
-1 =L
Y =X %X *

But now X, Y commute, we can minimize Z = (Xml+Y-l)_l by choosing

z = Qx + (I-Q)y
with Q = zx Y = Z. Then
L, L i Ll bo-1. % -1 L -1k L -1
Z = X%ZX?=X*(T +X% X9 X°’= (X (I + X% XX %
= @l+yht
and
S S - -L
z = Xz = X%Qx + (I-Q)y) = x’('zx %o+ X2 HI-QX %
= Qx + (I-Q)y
where now
Lo .l Lo -
Q = XX * = X%X * = 7x L
I-Q = 2yt

so we still get the same answer when we are careful w1th the order of
multlpllcatlon. Q now 1s not necesserlly p031t1ve’def1n1te. There
remains a questlon, however. boes minimizing Z with respect to 6 also
minimize 7 with respect to Q? ‘I rather doubt it, but this seems to be
the only thing to do. The procedure is at least symmetric in X and Y.

A Bayesian might call X the prlor variance, Y the observation
variance, and Z the posterior varlance. A stochasti¢ dynamic forecaster
and analyzer might call X the forecast variance, Y the observation

variance, and Z the analyzed variance.



It has been assumed that X, Y, Z, etc. are positive definite non-

singular, that

all degrees of

should be readily available by a limiting process ihvolving large vari-

ance for undetermined components, although then the noncommuting problem
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is, that each estimate provides at least some measure of

freedom. The case where a measurement is incomplete

would seem to be more serious.

7.3 Assimilation of Observations into Numerical Weather Prediction

Models

Numerical

experiments

Review

Jastrow, 1972

Kasahara, 1972

Primitive equation models

High

Mode

Charney, Halem, Jastrow, 1969

Jastrow, Halem, 1970

Smagorinsky, Miyakoda, Strickler, 1970

Williamson, Kasahara, 1971
Gordon, Umscheid, Miyakoda, 1972
Baumhefner, Julian, 1972
Kasahara, Williamson, 1972
¢Pkland, 1972

Mesinger, 1972

Rutherford, Asselin, 1972
frequency damping with model
Morel, Lefevre, Rabréau, 1971
analysis

Williamson, Dickinson, 1972

Dickinson,  Williamson, 1972

Filtered models

Bengtsson, Gustavsson, 1971
Miyakoda, Talagrand, 1971
Talagrand, Miyakoda, 1971
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_Dynamlcal constralnts“
| Varlatlonal method
kSasakl, 1969 '
Thompson, l96§;
Stéphéﬁs, 1970
Lewis, Grayson, 1972
Algebralc method
Tadjbakhsh, 1969
Phillips, 1971
Statistical methods
Objective analysis
Gandin, 1963
Jones, 1965a, b
Rutherford, 1972
Radiance analysis ‘
Westwater and Strand, 1968 -
Rodgers, 1970
Stochastic dynamic methods
Epstein, 1969
Epstein and Pitcher, 1972
Alternate representations
Empirical orthogonal functions
Craddock and Flood, 1969
Craddock and Flintoff, 1970
Rinne, 1971
Orthogonal polynomials

Dixon, Spackman, Jones, and Francis, 1972
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8. Some Key-Problems for Medium-Range Forecasting

8.1 False Regression

Much of the discussion of regre551on ‘methods is: based on statistical
properties of the whole ensemble. But in practlce we must determlne a
regression formula from a limited sample of available data called the
dependent data set and then apply it to new data fofming an indeoendent
data set. A fundamental limitation to regression methods is imposed by
sampling errors. This has the pfactiéél’consedueneevof limitingbthe
number of predictors that can be used profitably (Lorenz, 1956). A
complete theory of this limitation does not yet seem to have been developed
and the optimum number of predictors is usually dec1ded by experlment.

We shall examine the 51mplest ver51on of this problem 1n whlch ‘the pre-
dictors are uncorrelated with each other or the predictand, so that any
nonzero regression’coefficients detefmined by a sempleAmuet be falSe;

Consider first a two-dimensional random vector (x,p) with <x> =
<p> = 0, <x2> = <p2> =1, and <xp> = 0. The correlation r is zero for
the ensemble, but for finite samples of N vectors the sample correlation

coefficient

;=z(x_x)(p-p)/[z (x, = X Z(p )2

1 n=1

'Ul

will tend to cluster about zero with a probability density distribution

(Cramer, 1946)

m/2
fN(;) = (1/m) (N - 2{/. sin® 2 6 do (1 - ;2)(N-4)/2
0

The use of r as a regression coefficient would lead to an apparent

reduction in variance given on the average by

L e e 1
1-7? f (1 - ) £,(F) dF
-1

n/2 /2
2/m) (N - 2) f inV2 g def sin’ T g do
0

1 - 1/(N-1)

Here A»~ indicates an average taken over many samples.
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There are two ways in which sampling errors enter into this false
regression. In addition to the sample estimate of r differing in general
from zero so also do the sample estimates of the means x and E. On the

basis of a given sample the regression formula would be
X = x+1p-0p
and when applied to the ensemble as a whole the mean square error of

estimation would be

2

E <(x - §)2> = <x2> - 2<xE> + <®°>

x> - 2r<xp> + (% - 25)2 + §2<p2>

i

1+ + G- .

The average of E over samples is

b - [ N

T = 1+732

-2 A
+x - 2rxp + r'p
Since according to sampling theory central second moment quantities such

as r are indépendent of first moment quantities such as % and p, this can

be written as
s [ e ol
E = 1+ 7 +3%°+ ?252

which, for a sample of size N, is given by

Pog?
E

it

I+ 1(N-1) + I/N + 1/(N~1)N = (N+l)/(Nfl)

1

14 2/N+ =e-

Thus instead of the hoped for reduction in variance by a factor 1 - 1/(N~1)
it has been increased by a factor [1 + 1/(N-1)][1 + 1/N]. Note that the
sampling errors in r and in ¥ each contribute error of order 1/N, but the
sampling error in p contributes only in higher order.

We examine now the case of many predictors by considering the unit
normal (ktl)-dimensional random. wvector (x,pl,pz,ees,pk) with the Py
serving as predictors based on sample regression coefficients. If we

ignore the (false) sample correlations between the pi's we may treat pj
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as a predictor of the residual after all earlier predictors P> i< j,
have been used and would estimate a final reduction in variance as
k
[1 - 1(N-1)] = 1-k/N+ cee
Based on a given sample the regression formula would be

X = x+] ;0 -0py
i

so that the estimation error would be

_ L2 . =y ==.2_ ¢z 2
E = <x> -2 Z r<xpp> + x - Z ripi) + Z r. <
1 1 1
-2 - - = .2
= 1+Zri +(x—Zripi) .
1 1

The average of E over samples becomes

N [ 7 T =N ww
A -
E r

™ .=
= 1+ZEi +§—22§Eif: Z 5
1 1 i

1+ k/(N-1) + 1/N + k/(N-1)N

(1 +1/N)[1 +k/(N=1)] =1 + (kt1)/N + eee

The sampling error in X has contributed an error of order 1/N and the
sampling error in the k regression coefficients r, have contributed an
error of order k/N.

The time lag correlations in meteorological time series are such that
the number of effectively independent samples is about N = 16 per season
or about N = 500 in 30 seasons which is roughly the length of relevant
data sets. The number of allowable predictors is therefore of order 10
rather than 100. The limitation imposed on regression methods by the
limited data base is thus far more severe than that imposed by the com-
puter power needed to do the matrix manipulation involved.

Clearly the optimum number of predictors is determined by a balance
between their true value in reducing variance and their contribution to

increased variance through sampling errors and associated false regression.
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8.2 Empirical Linear Modification of a Nonlinear Dynamics Equation

Any numerical prediction model provides a theoretical prescription
for the evolution of a phase path in its phase space of state vectors

(ul,uz,'°°,uN) by giving at each point u a rate of change é. In
hydrodynamic models the advection and pressure terms are quadratically
nonlinear, and we shall consider here only a dynamics equation of the

form

u, = ZAOLBYBY+ZB ug ¥ Cy

The nonlinear interaction coefficients AOCBY are determined from
fundamental principles presumed relevant such as, in barotropic models
of the atmosphere, the conservation of vorticity. If, as in the case of
the atmosphere, a large amount of data is available on the observed
evolution of the dynamical system, then we may determine the coefficients
B&B and Ca empirically. |

In order to do this, let us first distinguish the model from reality
by letting the observed Variable v, correspond to the model variable Uye
We treat the variables w, as forming a stationary multivariate time
series (the climate) for which we have determined by statistical analysis
the mean <wu> = m, and the covariance <[w (t+7) -~ m ][WB(t) - mB]> =V B(T)
as a function of lag time T. We need spec1f1cally for our purposes V \O)
and V,(0) = Vo (0] _o = <v o (B [wg () - mg]>.

For any observed values wu(t) we may also evaluate the nonlinear

term

4, (t) = Z, Aoy Vg (W (£)

and determine its mean <qa> = n_ and cross covariance with wB namely

o

<[qa(t+T) - na][wg(t) - m8]> = T@8<T) which we need specifically at T = 0.
For the empirical determinations of BuB and Ca we first impose the

condition that the mean be stationary. By taking the first moment of the

dynamics equation we have

0 = nOL+éBOLBmB+COL

thus
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Ca = —na —g BOLBmB R
and the dYnamics equation may be rewritten as
u, = I: AGBYUBUY -n, + Z BGB(UB - mB) .

B,y B

In order to evaluate the matrix BaB we next impose the condition
that the zero lag cross covariance of ﬁa and ug be as observed for v and
WB, Thus we substitute LS for uy in the dynamics equation which we then .
multiply by wB - mB and average to get

ay'v8?)

\?aB(O) = Tg® + 1B
Y
or, in matrix form, i = T + BV. GSince the covariance matrix v isvpositivei
definite énd nonsingular we may then solve for B = (i - Z)Y—l in terms
of thevempirically determined matrices v, i, and T,
An alternate derivation of a linear correction térm to the dynamics

equétion can be based on linear regression. Without the linear correction

term'iﬁvolving the matrix B, the dynamics equation is

with
<@ >= <q > - = .
ua qa o, 0

We wish to estimate the difference

W, T Uy = g BGY(WY - mY)

between observed and predicted rate of change using the variable (wY -m )

as a predictor. Note that we have

w -—u>= 0, <w_ -m>= 0
a o Y Y
and
<(wa - ua)(wY - mY)> = VQY - TaY s
<(w_ - ma)(wY - my)> = VaY .
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The regression matrix B is given in the usual way by

1

B = (V-TV

<o

but this is the matrix B already derived by imposing the condition that

-] L]
U u,> = <w w,>,

o B o B

We may also show that the linear correction term involving B

guarantees the stationarity of the second moment

WOLB(t) = <lw () - mu][wB(t) - mB]>
We have
Y;]uﬁ(t) = <€va(t)[w8(t) - m6]> + <[w (e) - mOL]Y:JB(t)>
= < (O [y () = ml> + <[ (£) - m, Jug (£)>
= TaB(O) +§ BOLCSVCSB(O) + TBOL(O) +§ BBCSVCSOL(O) =0 .

An important consequence is that the climate energy spectrum is preservéd
by the model.

8.3 External Error Simulation

Any stochastic~dynamic or Monte Carlo forecasting scheme which is
based on the perfect model assumption will provide an estimate of increas-
ing forecast error variance based solely on the internal growth of initial
errors. Considering the large external errors of present models such
perfect model estimates will be far too small. This would lead in turn
to an unduly heavy weight being given to forecast information relative
to that of new observations.

In order to remedy this situation it would seem useful to seek for
a simulation of external error in terms of a random external forcing intro-—
duced into the forecast model or at least into the equations for the evolu-
tion of variance. Such forcing terms should, of course, be based on an

empirical study of real forecast errors for a model.
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An amusing possibility exists that if a more accurate evolution of
second moment information leads to a more accurate evolution of the mean
in accordance with Epstein's ideas then the introduction of random forcing
would actually improve the mean forecast skill as well as provide better
error growth information. This possibility requires careful experimental
investigation.

If random forcing terms are to be introduced into a forecast model
it will be necessary to adjust the nonrandom damping terms in order to
assure the preservation of climatologically realistic second moments.

8.4 Nonlinear Dispersive Waves

The statistical hydrodynamical treatment of the prediction and
predictability problem discussed in earlier sections has been largely
based on experience with the simpler statistical hydrodynamics of tur-
bulent flows. Much of the present theoretical work in turbulence deals
with statistically homogeneous and isotropic situations, and the under-
lying Navier-Stokes equations involve no linear dispersion., The stochastic
models say little or nothing about the frequently observed intermittent
or local nature of turbulence nor about the possibility of local struc-
ture in the flow.

During

L2}

ecent years there has been an increasing mathematical
interest in nonlinear wave phenomena which are observed and predicted
to occur in simple systems in which both nonlinearity and linear dis-
persion play a role. In such systems can sometimes be found rather

"solitons" in

stable and completely predictable local structures called
which the tendency {cr rinear dispersion is balanced by nonlinear terms.
Rotational waves in the atmosphere are dispersive and the possibility
that "Rossby solitons' might exist in the atmosphere was pointed out by
Long (1964) and by Benney (1966). If they do then the Whole analysis of
the predictability of the atmosphere should be reexamined. Present numeri-
cal models should also be examined for numerical dispersion errors that
might interfere with the required balance. Although there is still a
large gap between the simplicity of systems showing soliton behavior and
the complexity of the atmosphere, some of the qualitative behavior of

the atmosphere is perhaps more naturally described in terms of local

structures than in terms of harmonic components.
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