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1. Introduction

The study of atmospheric predictability has mostly'
been concerned with the uncertainty in the initital state.
Indeed, the typical experiment concerned with an aspect of
the predictability problem consists of varying the initial
state in some manner followed by an investigation of for
how long a time the two integrations stay close to each
other as measured by a suitable statietical measure of the
deviation of one state from another It has been recognized
for some t1me that in addition to the uncertalnty in the
initial state 1t is also necessary to 1ncorporate into the
study of predictability the uncertainty in the external
forcing of the flow either in the prescription of the heating
or the formulation of the various frictional forces (Fleming,

1971).

The roie'of the‘external fercing is natﬁrally also
important for the predictability because the frictional
forces and thereby the dissipation of kinetic energy deter-
mines to a large extent the shape of the kinetic energy
spectrum which in turn has a bearing on the predictability
limit, These factors have been recognized by Lorenz (1969)

and others.

The connection between the predictability problem in
the general area of weather prediction considered as an
initial value problem and the bpredictability of climate and

climate change needs clarification as pointed out in the
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recent plans for the studies of these problems as part of

the Global Atmospheric Research Programme (1974), 1In view

of all the factors mentioned above it is desirable to study
simple representations of atmospheric flow into which we can
incorporate the uncertainities in the initial state and
external forcing. The present paper which deals with the
analysis of such a grossly oversimplified system will show
that at least a simple system can have several well defined
steady states which corresponds to different climatic states.
A steady state, i.e. a solution of the governing non-linear
equations for which the time derivatives vanish, is not
necessarily also an asymptotic state. It may happen that a
theoretically possible steady state cannot be reached by

the systemfrom any initial state because the steady state is
"unstable' in the sense that if the system comes close to the
steady state it will - depending on the forcing of the system -
move away and approach another steady state which may or may
not be stable. In the first case the system will eventually
either approach the steady state asymptotically or at least
remain in the neighbourhood of the "stable" steady state

around which it will oscillate.

Mechanical systemswhich behave in this manner are of
course well known., The most simple example is probably the
behaviour of a rod which can turn around a horizontal axis
in the earth's gravity field. Two steady states are possible

each one characterized by a vertical position of the bar.
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However, the Verticalyposition where the centre of mass

is above the poSition of the horizontal axis(ofirotatien

is of course unStable, while the other is stable. We shall
show that our simple‘enalogue of the atmosphefe behaVes in

an analogous fashion.

Much knowledge about the behaviqur of the atmosphere
has been'gained by studies of greatly simplified models. One
may in this regard refer to the numerous studies of the SO~
called advection equation by Platzman (1954), Phillips (1960)
and many other investigators (see Platzman (1964) and Benton
and Platzman (1972}; The present study is as a matter of
fact to be considered as a generalization of the above studies
to cases which include a simple forcing mechanism. Most of the
studies mentioned above consider either the advection equation
without forcing and dissipation or the so-called Burgers
equation which in addition contains a dissiptation term of the
eddy viscosity type. 1In the present study we shall replace the
eddy viscosity term by the type of term which normally appears
in thekbarotropic vorticity equation when the effects of the
surface skin friction is incorporated. The external forcing
which in a generalized sense must eorrespond to the atmospheric
heating cannot in our simple model be approximated in s physically
realistic fashion. Instead, we shall postulate a Newtonian

type of forcing,‘

The analysis of the simple system considered here can in
view of the severe restrictions be considered as nothing more
than an illustration of the behaviour of a system which in a

limited sense is similar to an atmospheric system.
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We shall start the present analysis by considering

some low-order examples of systems without forcing and

dissipation. In a later section we consider the more general
systems.
2. Low Order Examples of the Advection Equation

We consider the equation

2T __ U
37 + (J 3;‘;0 (2.1)

The general solutioﬁ to the equation has been discussed
extensively by Platzman (1964). We shall first consider the
representation of (2.1) in the spectral domain. Let us consider
an internal 0« x«L and let the boundary conditions be

U= 0 at x = 0 and x = L,
Ifzj(x;t) is represented by the Fourier series
o0
T7T — T7T . ,
(J - Z L/(:W,t)w //Vi/()\)l k:ﬁ/l.! (292)
. =

we get the following general set of spectral equations

Lo

Ui = h N
dfa’ - ZA‘WL (ron) Ulon) U lawar )
- é} Zii {é@’ﬂwﬁ) E][ﬁw} Zj?ég°4w} (2.3)
K S ) Ulow) Ulsmon).

Y = P :
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It can be shown that (2.3) is identical to Platzman's
spectral eqﬁation (Platzman, 1964 ), The equations‘(2.3) can

be non-dimensionalized by introducing‘

U ) ' z (2.4)

llﬂu)==Z5255§E , C= (2&,) kt

where
> 2
= 2 Ulwn) (2.5)
wm=)

twice the kinetic energy, is a conservative quantity for the

system. We get:

.qu)
dv

23
= é: :Z; (gwrfna) b(ﬂw5)£4(aﬂ+w4)

2: ~W)uﬂw)a(zqﬂ) (2.6)

m-

Nb~

E / ) U lane) it (m=an)

*»wm%yﬁkx Con81der1ng first the two component system we find with

= u(l) and y = u(2)

ax _ 1,

dv = 2 %Y
%z_ix'é’-
~ 2 .

(2.7)
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with the relation X2 + y2 = 1 from the conservation of kinetic

energy. Writing the second equation in (2,7) in the form

A , .
—Z[%z-: -5 (/——y) (2.8)

we may integrate directly and obtain

Ko

o, vk, (27) = easd (i)

o
oy am

(2.9)
o Lok (42) - /
An example is shown in figure 1.
Since tamh (37 ) = 1 for T =02 we find that x = 0
and vy = 1 for Y=o . In the plane (x,v) we find thus that
the asymptotic state is (0,-1), or that the final state is
U (x,¢) = — ain (24x) (2.10)

It is clear from (2.7) that the possible steady states
are (0,1) and (0, -1). One may indeed ask why the system
moves to (0,-1) and not to (0,1).- The answer can in this case
be obtained directly from the second equation in (2.7) which
shows that dy/d 7 is negative and that y therefore must decrease

until it reaches the minimum value which is -1, The same
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The trajectory of the system (x,y) from the
initial condition (0.1, 6.6) in a case of no
forcing and no friction. The marks on the

curve indicate elapsed time, measured in days.
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answer can be obtained by investigating the stability of
the steady state (0,1). Using small scale perturbations one
obtains the equation
¢
A %
S~

7 - 4
7 X

4

A (2.11)
where x' = x and y'= y-1, The solution to (2.11) is:
LA
N ‘ 2 ¢ ‘
X' = x' e (2.12)

showing that x' initially will increase exponentially and that

the steady state (0,1) is unstable,

Let us next make an investigation of a three component

system., The equations are:

(2.13)

Rt
1
|

M~
e

B
+
#
N

We note that X2+y2+22 = 1 for all times with the scaling

ere, It is also seen that the only steady states are

used h t is also S 1 1

(0,0,1) and (0,0,-1). Perturbating around anyone of these states

we find the perturbation equations
Ax’ - A - /
A z “s ]

(2.14)

{e

A
A=’

&<

= 0

(’\
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where z_ = +1. It is seen that the time development of x' .

(or y') is governed by the equation..
2
dx' [ 2  fe
.z — 2% x- O

with solutions of the type

/ V’:‘ _V.v i

X = »(, e + Goe ,yz(—z'—z;)z (2.15)

showing that each of the steady states is unstable.

A similar, but more interesting analysis can be carried

out for the four componeht system,

= tlxyrgzazw

The equations are:

Ay
__/-.: -’-(_. z 3
g z X ""2"2*‘2?“/) (2.16)
Az 3 7
7=z (xw-xy)
Aw - _ [.sz-ry")
) A
The steady states are obtained_by setting all the
derivatives to zero. Recalling again that x2+y2+zz+w2 =1
if‘can be demonstrated that the following steady states are
possible
1. X=9=2z=0 w=x|]
/
2. x=y=Ww=0  Z=t[ (2.17)
/ -
3, x=x5/7-x5,z-—;x6/w-xs
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where Xy in the last expressions is X i2/(13)%° The

interesting point in the four component system is that

somewhat more complicated systems can exist. Corresponding

to a steady state (xs,ys,z WS) we have the perturbation

S!
equations
dxl . ;
2 === Xy x| =+ s z'v g +Z W gz

A~
/

d ‘
2 —;F(% = 2«}(5 )(;‘:4- »2)(5'2‘;’*2%)([’%2?5@/1/ -*24/(.{5 y’

(2
ad = . Lo ¢ ‘
255 5 B4 W+ 30K - .,_BXJ%,’,__ 3;3){/
dw' ! . ’ ’
S R X
For the solutions of (2.18) we shall assume
perturbations of the form e%VL; Considering the first steady
state we get:
ax’ ot
27T Wz
242 = qu g
Y2 rd < ?’
dz'
[ B SR, s /
“ dr 3 x
Ay
= O

[
[N

ot

.18)

(2.19)
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The solution for y' is .

W
,3‘,43’._:,_%’ e e o (2.20)

which will increase or decrease depending on the sign of
WS(=i1). However, the solution. for x' and z' are governed

by an equation as follows:

A4
ﬂ(tl

- Zwtxco- , (2.21)
3 X . ,
which has exponential type of solutions of which one will be
increésing with time. This steady state is therefore unstable,

Considering next the:Seéond type of steady states we

find that

c(x’

7
<

~C

= Z (;7 /+=-W>")» :

/

Zs)c

N
AR
-

|~
N

W
]

—~

L4

A w! Y , ;
2 - - " 4z, x , (2.22)

The equation governing x' is

/ ' (2.23)
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which has trigonometric solutions. y' and w' will also have
trigonometric solutions, and it follows that (0,0,+1.0) are

both stable.

Our next consideration is the third type of steady state
where it must be remembered that X, can be either positive or

negative. The perturbation equations are:

ax'

/ ’
d,‘\: = x‘s‘al‘-f" XJKI‘f" X_g Z’ “"EKS-%{‘—%K‘S 1473 “i"-k:ng
{
‘&_, — x4 ‘ ’ o ¢
‘2 v - 2){5 X + ««-ZXSZ - %j X e 2)(5 274 '#‘21{5?
z7 . .
. - p 2 o , £ . .
2 (:J{Z - “‘%XS W +3X$X - :..:;Xsf%/ - 33{5}({
A w’ .
L - ’ . r /
== = X 2" + 2 X5 X 4&? (2.24)
. . W
Introducing the perturbations of the form e we
get a set of four linear homogeneous equations. In order to

obtain non~trivial solutions the determinant must vanish.
Evaluating the determinant and setting}/a =w’i)/xs we find that
in addition to/#-= O,/AL must also satisfy the equation

3 G/

L= Bt + T - T8= p
/ 7 %

o~
0o
N
o]
et

The solutions fO%/A; are:

./L{,/ = ,2 ¢ 4 /- ./‘213 = O /4 * 543 gj ‘ (2.26)



-271-

'Recalling the definition of)/u( we see that for
x > 0 we will have amplifying solutions while xs<:O will lead

to damped solutions,

A similar analysis can be carried out in the last case.
While the'techniqué is the same we find in this case‘replacing

(2.25):

/34- 3/3 + —é,_—//a +718=0 | (2.27)

with the solutions
Pl 2-79/- /fz, s, == 0.11% 5 300 (2.28)

The steady state considered in case 4 is thus unstable

if x <0, but stable, if x>0,

' The main result for the four component system without
forcing and dissipation is that non-trivial steady states can
be found and that the stability of these states depend upon the

sign of x .,
s

3. Low Order Systems with Forcing and Dissipation

The general system to be considered in this section is
described in the equation:

20 .. U S

—-— + U ‘—"—EU+3/U.—Q7) (3.1)

JE X €
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where the term —E[J'represents the frictional dissipation.
We have used this form because it is equivalent to the form
simulating the effects of the surface stress in an equivalent
barotropic model. In Burgers' equation the term would have
the form A)<72C2r where 4) is an eddy viscosity coefficient.
The last term in (3.1)is a forcing term of the Newtonian kind.
No specific physical process is modelled through the expression,
but it is seen that the effect of the term considered in
isolation is to increase U if U< L and decrease U if

U > T;% , thus bringing the values of U toward C%: in all

cases.

(3.1) can be brought into a non-dimensional form by

defining

i

- B
L= T éf,xzkxiﬁf'g

We get:

%*“ﬁ:‘“*f(“f‘“) (3.2)

which means that there is one non-dimensional parameter in the
problem.

Using again the series expansion (2.2) we can replace (3.2)

by an infinite set of equations of the form:

: o=
E%%é;i = ﬁ';E: (ﬁM'TAW) ééKWW) &L ‘Mmfwu)
u-% Z//M“w)u(w)@/fw*/tuj (3.3)

=i
s tne)

ui Zi_@M”M)az@w)w/w”wJ}ww4&J¢/§é@@}«x@%}

1 = P
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where -Lég (m) is the Fourier coefficient of the expansion of

U (x, £) .

The sYstem (3.3)'may be integrated by numerical methods
after a truncation of the series has been adopted. 1In this
section we shall first of all consider the severely truncated

system A/='2 governed by the equations

%‘: ,—%X?'X“"ﬁ(k—xf)'

¢{ S - .
;i% = - FX - t; - /@ é?“éﬁg)
in which x = u(1), y = u(2), Xe =U-(1), 75 = U (2).

If no forcing exists, i.e./g = 0, we find one steady state,

(3.4)

X =0, y =0, and we must therefore expect that the system
starting from an initial stable (xo,yo) will asymptotically
approach (0,0). If we were to neglect the non-linear terms we

would have the solution
X= X, e Y=, ¢ (3.5)
a4

or

s

o - (&

i
r==nc¢ y= (;<Z+72)'2~ (3.6)

The trajectory in the (x,y) plane would thus be a
straight line. When the non-linear terms are present it can be
expected that the trajectory will deviate»considerably from the

straight line. However, we notice from (3.4) that we may form
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the equation

£ /2 :
2 eyt = —2()(+7&)

or
dr® P
e A 4
giving
-2
2 Z
ro= 5 e
or finally
- ¢
re= e

The fact that (3.10) is identical to (3.8) says of

course only that the decay of the total kinetic energy is

not influenced by the advection terms,

however greatly influenced as can be observed in this case

because an analytical solution can be found.

It is required to find the solutions to the system

R

.X_.——
az

Py

when the initial state is (xo,yo) at

P

Lo - x
2” &

The' trajectory is

In spite of

- (3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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the fact that the System is non-linear it turns out that the

time-dependent solutions are

. l;

v (s*=1)°
S ek (Aye ) +aik (A e )

v eed(heT) ¢ Scmfé (4. '31’?}4
Senh(he®) + duts (A, eT)

X= 24, ¢

(3.12)

where
{
/ (, 2 5 z VS
/Q; =z (X% ’“ya) (3.13)
and
4‘XJ'~ 'é?ﬁ; Zéﬁbéj/%’
S = — ‘
) ‘ : i (3.14)
é%%i.'—' t?hc46 /?ﬁ

The details of the solution described by (3.12) to (3.14)

are given in the appendix,

Figure‘é shows the fréjéétéry in the (x,y) ﬁlane when
the initial condition is (10,0), i.e. all the energyﬁis in the
first wave number. In the linear problem the trajectory would be
from (10,0) to (0,0) along the abscissa. The non-linear solution
goes from (10,0) to (0,0) along the curve in Figure 2, 1It is
seen that tﬁé‘energy is traﬁsfefred”from the basis wave number
to the second wave number before the dissipation reduces all

motion to a state of rest. Even in this simple system there is
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o (msec—t)

The trajectory of the system (x,y) from the initial
condition (10,0) including friction, but no forcing
(B = 0 ). The marks on the surve indicate values

6

of T. TFor-e= 3 x 10 sec"1 we find that T = 3

corresponds approximately to t = 11.5 days.
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thus a cascade process from the larger to the smaller scale

before the dissipation reduces the motion,

Let us next consider the more general case in which
we have both forcing and dissipation, The equations are the
system (3.4). In this case there is a possibility for one or
several steady states, defined as those states where
dx [d~ =u%/df = 0. The steady states may be determined by
solving (3.4) under the steady state conditions. Eliminating

y from the equations we get the following equation for x
3 — 2
X + [__4 (Hﬁ) - 2'/3’?:] X — 4ﬁ (/+/?) Xe=0 (3.15)

Three real steady states‘will exist if

(i+p) -3
T%Q? > 2 ‘/3 -t :3 ;2 /8

2

(/*/) | XE (3.16)

u\-

If (3.16) is not satisfied only one steady stéte will
exist. In order to simplify the discussion we shall consider
the case in which X = 0 and Y > 2/3 (I+/3) . . The steady
state values for x are in this case . ‘

| | E
Xsi =0, Xﬂé’;g;';; =T "'/%5‘ -4 //+P)j (3.17)
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The corresponding values of y are

E%’ T en 75 Ysa,5 = 2(/”“/3) (5-18)
The system may not stay close to anyone of the steady
states if disturbed slightly. Since it has not been possible
to obtain an analytical solution in this general case one can
investigate the various possibilities by numerical procedures.
Another possibility is to use perturbation analysis in the
neighbourhood of the steady states, Any steady state will be
characterised by (xs,ys), We consider small deviations, i.e.
®x=x_+ x', y = Vg * y'. Neglecting second order terms as

S

usual we get

f ‘ .
o = E?§ K!'&‘%ng‘/w {/lfﬂ%)}(/

) (3.19)
{ ; .
dyt’ — e }(s )(/ o {/T/S)y (

( .

In order to study the stability of a given steady state

we look for solutions of the type
Vi / A}'(\.' A 6)\4
X = Xo & Y e (3.20)

¢)>'0 indicates that the steady state is unstable.

)
The solutions for A are

I
I | / 2 £ EZ
A= - 5/5 - (/f/;) t 5 (;;75 - 2 X ) (3.21)
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Corresponding to each ef the three steady states we

may determine Y , and we find

.

L(H‘ﬁ) " (‘*F) o B

- z1(’/1‘/3) 1‘}(&#)2-#35] ’2_ (3.22)

X
A

"~ (I-r‘/S)

Cons1der1ng the case where three steady states ex1st
i.e. /375 Z(I-r/B) >0 we find that the upper value of ‘}),
>0, 1nd10at1ng that the flrst steady state is unstable while

a closer 1nspect10n shows thatdj <;0 1ndlcat1ng stablllty°

l

As an example we take x_ = 0, v ={0, B = 2. Ve

£E
have:
20
X.S-'A_—-O) 41$‘,:'_§‘ ) st-s—— ,‘:;/’545 é
giving l
3 _y
NI: sztz =
-3 , -2

the instability found above for the steady state
(O,f37;/(1+/3)) is due to the advection terms. This is easily
seen by disregarding these terms in which case the basic equations

are

ffzr: = - (Hp)X

a‘(T - (f/'_r/g)f‘ + ﬁ?ﬁ—”

el

(3.23)
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These equations have the steady state solution
(0, [:’Mjg/(1+[5)) and the general solution

*(hVG)T

X= X, €

- ()= -ep)T
/7:ya€ ‘t“f%@"_yg (/-—6 )

(3.24)

which for large values will approach the steady state.

There is of course no guarantee a priori that a system
will approach a steady state. Numerical examples presented
later will show that a stable steady state will be reached
asymptotically in many cases. In addition, the system can
approach the stable steady state in several ways. An example
of this can be obtained from (3.22)., As indicated earlier'uz 3

3

will be negative if they are real. On the other hand, if

g9 2
2 (p) - e <o

or
9 (~+/3) " '
‘%fﬂ. > = -C——[g*’ (3.26)
& < /g
%)2 3 will be complex with a negative real part. The steady

state will be stable, but close to the point (XSZ,B’ y52,3) the

solution will contain an oscillating part. Using the same
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numerical example as before we -find that no oscillating modes

will be present if

g/
V< 4e < 2

why they will be present if

,, 8 .

Examples of this behaviour will be shown later.

We shall finally consider the case where only one

steady state exists. It will Have‘the‘coofdinates
(XS y’s (0/ /+/8 ?"—')

and
2ﬂ?£ - < //—r-/%)?<, o, o 8.27)

In this case we find,that'ﬁhe single steady statevisvvlq,
stable as seen from (3.22) which shows that both values of

4& < 0 under these conditons.

The implications of this situation are most interesting,
If we select a value of %E satisfying (3.27) we will have justl"
one steady state which is stable. ’Onxthe other hand, if we
select a slightly different Vélﬁe of XE satiSfying (3.16) with

XE= 0 we will have three steady states, and the steady state

which was stable. for the small value of j&. is now unstable ‘
indicating that the system may go to an entirely different steady
state. The actual behaviour of the system must be determined by

numerical integrations.
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4, Some numerical Examples

We shall first show an example which illustrates the
predictability problem. Let us compute two trajectories in
the (x,y) plane starting from slightly different initial states.
In one case we select X, = 0.1 and Vo T -6.57 and in the other
X, = -0.1 and Vo = -6,57. TFor both calculations we use
M = 0, Yy = 10, /3 = 2, TFigure 3 shows the first trajectory.
The second trajectory is symmetrical to the first around the
y-axis. We find that each of the two trajectories approach
the unstable steady state (0,62) for about 500 timesteps. Each
timestep is approximately one hour for a suitable value of & .
The two trajectories will thus come closer and closer together
for about 20 days. After this time the instability in the
neighbourhood of the steady state (056§) takes effect, and
one of the trajectories bends to the right very slowly as shown
on the figure while the other (not shown) will bend to the
left. Notice that it takes about 30 days to travel a very short
distance in the (x,y) plane where the trajectory has the greatest
curvature., One trajectory will finally end in the stable state
(2,6) while the other trajectory ends in the other stable state
(-2.6), i.e. in two radically different states. The total time
before the stable steady states are reached is about 6000 time-
steps or roughly 250 days. The predictability for this simple

system is of the order of 3 weeks for the selected case.
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Fig.3: The trajectory of the system (x,y) frpm the initial

condition (0.1,-6.57) with x 0, Vg = 10 and B= 2.

EV=
The possible steady states are (0, 6.67) and (2,6)

of which the first is unstable, but the second stable.
The marks on the trajectory are numbers of time steps

'corresponding approximately to elapsed time in hours.
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Figure 4 shows a calculation which illustrates a more
complicated trajectory. The initial state is (0.1,0). We have
selected Xg = 0, Y = 18 and [3 = 2, According to the linear
analysis, see (3.26), we have a case where an oscilléting
behaviour can be expected in the neighbourhood of the stable
steady state (6,6) while the steady state (0,12) is unstable.
We find as in the previous case that the system approaches the
steady state (0,12). However, as it comes close to this point
the instability sets in, and the trajectory curves sharply to
the right and comes eventually to the stable steady state (6,6)

through a number of oscillations,

The next case illustrated in Figure 5 shows a number of
trajectories starting from the initial states: x = 0,1, 0.3,
1.0, 1.5,....., 6.0. while Vo = 0 for all of them. They have
the asymptotic steady state (2,6) using Mg =0, Y= 10 and
(3 = 2., The cases are similar because they have all the energy
in the basic mode (because Vo © 0) initially, but the energy
level varies very much from one case to another. In spite of

this they approach the same steady state (2,6).

As pointed out in connection with (3.22) the steady state
(0,/Au-/(1+/3)) is unstable if
[ 7= { 2

) (ﬁrﬁy
/§Q;ﬂ> 2 /3

and stable if.?% is smaller than this value, The stability of

the steady state depends therefore on the ihtensity of the forcing.
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y (msec=l)
y

129 400

Arrangement as in the previous figure. The initial

condition

is (0.1, 0) and the values of the parameters

are Xp = 0, yp = 18, B = 2, The steady states are
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i i i i |

Fig.5:

} ] i | i i f i I ! !
B Oi‘? 0?3 0_!& 0% 046 07 08 09 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 % (m sec

._])

A family of trajectories starting from the x-axis (y=0)

in the points 0.1, 0.5, 1.0,1.5 ...., 6.0 and going

to the steady state (2,6) . Parameters Xp = 0, Vg = 10,

B= 2.
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Selecting 3= 2 we find that the critical value of YE is 9.
Two calculations, one with YE = 8.9 and the other with YE = 9.1,
but with the same initial state and = 2 for both calculations,
were made in order to illustrate that entirely different "climates"
may be 6btained due to a slight variation in the forcing, the
"heating'". The two calculations are iildstrated in Figure 6
where the common initial state is (0.1, - 6.0 ). The calculation
with the value YE = 9.1 ( three steady states ) approaches first
the unstable state (0,5.93). The system stays for a considerabie
period of time (about 275 days) in the neighbourhood of the
unstable steady state, but eventually it moves to the stable
steady stété (0.63, 6.00) whiqh it reaches after more than a
year's time.

The calculations described in Figure 6 are an example
of the care which may have to be takén in investigating the
sensitivity'of‘the'”climate”_to variations in fhe external
forcing. If the calculations had been interfuptedhafter one
month one would have been tempted to conclude that the effect
of a small variation in the‘external forcing is of smaller
importance although as the calculation shows the actual

asymptotic states are quite different.:

5. Stochastic-dynamic Treatment.

The material covered in the previous sections is based on a
deterministic approach. It is naturally also possible to incorporate
the initial uncertainties into the problem. We shall again
reétrict ourselves to the simple two-component system discussed in

section 3, i.e. the system described by the two equations in (3.4).
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o {063,6)

02 03 04 05 Y3 07 08 % (msec—])

25

Two trajectories both starting from (0.1, -6) with

the parameters Xp = 0 and B = 2. Oﬁe trajectory marked

by circles is computed with Vg = 8.9, while the other
marked by crossmarks is computed fof Vg = 9.1,

The first trajectory has a stable steady state in

the point (0, 5.933), and it arrives there in a

stable steady state in the point (0;63, 6), and it arrives

there after a very long time.
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The first problem is to modify these equations = ihto stochastic-
dynamic equations. For this purpose we introduce the estimated
value E(x) of a variable x given as a probability distribution.

Let us denote

~3Z = ZE?CK) (5.1)
=&

In dealing with the system (3.4) it will be necessary
to calculate such terms as E(xy). Using the definition of the

variance, i.e.

Tlxg) = £[(x-3)ly- ])J (5.2)

we find

E(xy) = X g + Tlxy) O (5.3)
and therefore .

E(x?) = X + d(x?) (5.4)

2

By%) = § + 7ly?)
Assuming that

B (E ) = gE(x) = dx
at dr ~ dr = - - (5.5)

we get from (3.4) by applying the. operator E
L‘*(T’)E = Ly z - ‘(/+.43}'I‘ 4—. 2 A + é— ‘7("7}
74 2 2 -
£ | 2 S ‘ ’ o (5.6)
R N I P

Note that in the derivation of (5.6).we have assumed that X
and Vg are given without any uncertainty. If the system (5.6) is to
be useful we need predictive equations for T(xy) and:r(xz)ﬁ

They are most easily derived from the relation

g(xy) = E (xy) - xv (5.7)
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which by differentiation with respect to T gives

(é (f—()(z)— Ct,(. d‘“ — ;f)(.
4z E(X &t g dt)‘ o aéz T 7 4T (5.8)

3 .
E [gix - (17@) Xy +f3XYE + f xy : (1+/3) Xy +/3xE yJ
+%x<i‘(x}+(1 +('%) Xy —/3xyE
o
b xy -ty a(xy) + (1 HfE) Xy m{tﬁiE

4

i

Upon evaluation we get

AT Cy) = - FCG?) ¢ 1 E S (T T) - 204 8) TO) (5.9)
T !

under the very important assumption that we may neglect the

third moments. These moments will normally appear in equations

for the second moment 97 xz), G”(yg) and (xy) ) due to the fact that
E (xyz) = x5(yz) + y6(xz) + 2G6(xy) + Xyz + T (xyz)

where T (xyz) is the third moment. In this preliminary study which
will serve as an illustration oniy we shall use the very simple
closure approximation that third moments can be disregarded as

presumably small.

equations for T(x ) andrr(yz) and we get

X q(xy) + F6(x2) 5 201+ ) T(x2) (5.10)

frer
it

AT (y%) = -2% 4 (xy) - 2(1+3) 3 (y2) (5.11)
d ! :
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Under our asshﬁptiohs“itﬁis'aﬁhareht that the equations
(5.6),(5.9), (5.10) and (5.11) form a closed system of five -
equations Whieh can bé integfated numefieally However“before
we shall describe such calculatlons we shall as in the prev1ous:
cases determine the possible steady states of the system and
explore the stability of the steady states. It follows without
further remarks that the steady states which exist for the
deterministic system are also steady states for the stochastic-dynamic
system provided.ﬁsz) =if(y2) =46 (xy) = 0. To keep the calculations
simple we sha11~again;cqnsider,the caSe”where xE=,O. .The first‘v“
of the equations (5:6) may then be written in the following steady
state form |

x(J -2 (1+aN+5(xy) =0 (5.12y

We shall first eﬁplore if a solution with y = 2(1+5),
5 (xy) = o exists. It is seen that "’(5'.10)"is satisfied, and that
(5 11) reQuireSf;(yz) = 0. It follows then from (5 9) that T(x )= 0

and we get back to the determlnlstlc solutlon
T,'_:A N ', 2§ ~ . 2. o, .
X = \‘,z(ilg,,g- Q(u—é?.) ] i Q,(lf‘;)) gx= )= tr/‘cf)_ TTéy )= ¢

The other possibility to satisfy (5.12) with s(xy) = 0O is
x = 0.(5. 11) says that J(y ) = O wh11e (5 10) reduces to
LS —2aem ] sty = ¢ 0 (5.13)

(5.9) is automatically satisfied in this case, and it follows

therefore that all steady'state“eqdatiohs’are5satisfied“if

=C ! }7 ) ::“ ’l ( ’f‘ 3 ) ! \r{lil):, ;:: Z,L‘)’\Yé _— 1 (I*' 3)2} ‘L/ ) *r(""' =¢

>

which is a nontrivial solution to the stochastic equations.
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After these preliminary cases we may assume that §f 2(1+/3)°
From (5.11) we find

(L) = — X T (K
.2 P ;E { (Ku )
5 (<9 g~2ﬁfﬂ e

Inserting these expressions in the steady state form of

(5.9) we find after some calculations

L ;7 - 4(H"%)] [ f = (i+3) (f;}; - 'Z(/H’“'@))]

’

= ¢ (5.15)

There are two cases to consgider,

In the first case y = 4(1+/§)o
Substituting in the system (5.6) we find after elementary calculations
that

P £

X = <’Q>>/E"4(if/%)):§: Q )‘~§‘:4(H"fa> (5.16)
2 - 'z L P - . R N

G‘(/x)—r (= ) 6”(43 3* /ZLXL) G(:f(c;):fQ(w,/‘%)G(

which is a steady state solution.

In the second case we have
z

X .
= ~ A 2 ({+ 3
7 wrg.’% +‘}

L]

in order to satisfy (5.15)

®

Inserting again in (5.6) we find another

steady state solution which may be written as follows
\ v

7 &

Z

— ;. . . ®

(Lo -G s v w TR o

§ L ’ ) =N b Falts) (5.17)

R ; 2

3 = T eV = R ;o) oo
| = R ()= 7, ) = —
3 (?“7) + P I R / 0‘{ (%)
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The possible steady state solutions are summarized in the

following table

Case 1 Case 2 Case 3 Case 4 Case 5
x * e ¢ 0 Ry - 4152
. vl 3 oyt :
g 4 (H’@\ (1ef3) R +2(i¢3) 2(ix3) (e Byg 2 (1+3)
5(x*?) & e* ;1(‘.37,; - z(lv,ej"“) c
| -2 4 ' .
£lg") 267 (ix3) R 0 C
. - 7
((1,7) =~ 20«B) G 7 (it58) "R c ¢
¢ ‘ o ‘ ,
v L
. 2 7. ) . 2
G:(;{)’YE- 4(1'1'_5) )l E’: (%‘,375 -(l-r[!») )

If anyone of the first three cases shall be valid it must

be required that
— A Z‘ 4 N )
) ( X \ D :

/

(5.18) leads in case 1 to the condition

2
- {1

g 655

—~~
[8]]
<
Y
o0
~

(5.19)

Case 2 shows that the equality sign in (5,18) applies'ih all

cases, 1.e. the correlation coefficient between X and y is either

1 or -1, TFor Case 3 (5.18) is satisfied in all cases, but it must

naturally be required that

c\ 2
(1+ )
yEJ>2 1

since'f(xz) must be positive,

(5.20)
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The next important question is whether or not the cases
1,2 and 3 represent stable or unstable steady states. The
question can be answered by performing a perturbation analysis
by linearizing the equations (5.6), (5.9), (5.10) and (5.11)
using a steady state as the basis state. Let an arbitrary
steady state be denoted by is, §S,Sé(x2),fé(y2) and&é(xy).
Using the same form of the perturbation quantities as before,
i.e. proportional to exp QQ:) , we find that the following

determinant must vanish in order to obtain non-trivial solutions,

I

i.e. ~ i
i i — _ (. _‘} - j_ - l ¢ c

cz- Y.> t‘?§§ i KS )

% { "?'6 |-y (L 7 {.,
=0(5.21)

L . Lo I - —_ ‘
T{US(}")—) "J‘;(ﬁl> 3 C\;(xj} 3. )”b - f'ﬁ‘“g‘%‘l i 2 - }(5 '2]5 ,’(5
| | A _

3, (ﬁ«g) F(x " Xs Yy m 2+ -y <

- 2al ] C - 2 xg ¢ - 20 3) -y
i ,
Case 3 is so simple that a direct calculation of (5.21)

is straight forward. Substituting the values from Case 3 in (5.21)

and evaluating the determinant one gets

vite dan) o Unge - 1 0e30) =g

giving

nd

N o= L (i) x (g- (i+3)° - .‘%77{) (5.23)
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If Vg is sojlarge that the radicand‘is negative We find avnegative
real part of A', indicating stability. - On the other hand;lif‘

the radicand is positivé'We find that both values of 4’ are negative if

G o[ % c o3 2 ' o
4 (H‘;’J) - %“,)E < { “_‘Z“) (5.24)
leading to
2
((*,%)
U- > 2 -
JE 2

which is the same inequality as (5.20). The result is therefore‘thét the
steady state described by Case 3 is stable whenever it exists, i.e.

when (5.20) is satisfied. Referring to the analysis.carried out in
éection 3 it should be noted that Case 3 and Case 4 are intimately
connected. Case 4 represents a stable steady staté when (5.20)

is not satisfied, i.e. when

- In this case all variances and covariances are zero.

For yg = 2 (1+3)2 371

-1

Case 3 and Case 4 coincide, Finally? when

> 2 (1+{1)2;1 Case 3 will exist and is a stable steady state.

{

g
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In Case 1 and 2 numerical methods have been used to

determine the eigen-values.

was selected.

yE>’27 in Case 1, while Case 2 requires values of Vg > 9 for x

to be real.

For both cases the value 3= 2

According to (5.19) we must consider values of

S

The results of the numerical investigation are that

in all cases one positive eigen-value was found for both of the two

cases.

represent unstable steady states.

The results of the stability investigation

in the following table when we have used/3 = 2 in

We must therefore conclude that both Case 1 and Case 2

are summarized

the numerical

evaluation

Case 1

Case 2

Case 3

Case 4

Case 5°

Exists for

Vg 27

Exists for

Exists for

Exists for

Exists for

Ve 9
i V> 9 all Vg yE>,9
Unstable forn Unstable for Stable for Unstable for | Stable for
Vg > 27 yg> 9 Vg > 9 . Yp> 9 V> 9
Stable for
V< 9

It is seen that for yE<§9 one and only one stable steady state

exists,

It will have vanishing values of’f(xg),';(yz) and 3 (xXy).

For yE;>9 two stable steady states exist of which Case 3 represents a

stochastic-dynamic solution, while Case 5 is a steady state with

vanishing values of'f(xz),rx(yz) and +(xXy).
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6. Energetics of the stochastic-dynamic Model.

The kinetic energy of the first moment is

PR

Ki= 5 (X+%) (6D

\

while the kinetic energy of the second moment may be defined as
v _ _\_'(’d_( 1) 4 (e L)> | k
) X ) , (6.2)

It follows from (5.6) that

=-2K, -v@\uz-x,_;\kg (5 -‘7&-)] *ﬂz\mg,-g.w)] (6.3)

. '
dt i

~while addition of (5.10) and (5.11) followed by a division by 2

leads to dK,=
2 [ ”’K’ I .‘3 (’ — .L
ax “he T TR, T

(6.4)

e

L% Sleg) - 5 gxt))

Recalling that g measures the intensity of the Newtonian forcing

we may write

K vk e Gl - C K, i)
wr (6.5)
L 20K + Gl - (K, K)
where itﬁ;(k;): f%l_z (XE"Q) *’§'(V5- ;)J
G k)= =238k,
Dk ) e 2R
D ()= + 20 (6.6)

C’(kj'K;>:"% E‘u Jix?) - X Jffq\w
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It is seen that D(K1)>O, D(K2)>O, G(K2)<O while the remaining
quantities may have either sign. It is instructive to consider
the energy diagrams for the stable steady states. For yE<9 Q?=2)
we have one such state (Case 4). In this case we have vanishing
variances and covariances and consequently K2=O and G(K2)= D(K2)=C(K1,K2)
= 0. For xp=0, yp=6 we find x =0,y =4, K= 8, G(K;)=16 and

1
D(Kl) = 16 as illustrated in the following diagram

G(Kl) = 16 K, =8 D(Kl) = 16

On the other hand, for yE> 9 (3=2) we have two stable steady
states which are quite different from an energy point of view
( Case 3 and Case 5 ). Let us first consider Case 5, Selecting

1

as illustrated in the following diagram

vg = 18 we find x=6,y =6, K, =36, G(KI) = 72, D(K;) = 72

G(Kl) = 72 K1 = 36 ; D(Kl) = 72
b i AN
E YE = 183"‘:2
|
) - - 2 2 .
Case 3 gives x = 0, y = 6, 5(x7) = 36, s(y7) =i(xy) =0
and therefore K1 = 18, K2 = 18, G(Kl) = 144, D(K1> = 36, C(Kl'KZ) = 108,

G(K?) = -~ 72, D(Kz) = 36 as illustrated in -the following diagram
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G(Ky) = 144 K,= 18 D(Ky) = 36
C(K;,K,) = 108
G(K,) = -72 K,= 18 D(K,) = 36
yg = 18,78 =2

The fact that K1 and K2 are equal in the example above

is due to the choice of Vg = 18. In general we have for this

case as seen from the steady state solution for Case 3 that

2. 77 -1
K Q((-\'"S)J‘

1

indicating that K2 is.large relative to Ki, when Vg is largev

It should however be noted that fhe»totaivenergies for Casé 3

and Case 5 are the same because

Il
Ky + Ky = 1oy

for Case 3, while
Ky Y

for Case 52
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7. Concluding Remarks

The equation studied in this paper cannot be considered
as a model of the atmosphere. It is an equation which contains
time-dependence and non-linear effects similar to those appearing
in the atmospheric models. 1In addition, the equation incorporates

a forcing and a dissipation.

The study of the properties of the equation shows that
the predictability problem can be conveniently illustrated by
numerical integration of the equation. The low order system
derived from the original differential equation may be used to
illustrate the existence of one or several stationary states
depending on the external forcing and the value of the only
non-dimensional parameter in the problem. Due tc the simplicity
cf the low order system it is furthermore possible to study the
stability of the possible stationary states. In this way it is
demonstrated that for small values of the forcing a single
stationary stable state exists. On the other hand, large values
of the forcing leads to the existence of three possible
stationary states of which one is unstable and the remaining two
stable. A critical value of the forcing exists. Numerical
integrations with a slightly subcritical and a slightly suner-
critical value are performed in order to illustrate the

dependence of the stable stationary state on the external forcing.

The low order deterministic system can be generalized
to include the dynamic-stochastic approach. The present system

has a closure approximation of a very simple nature, i.e. the
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neglect of third and higher moments. The existehce and stability
of stationary states are investigated resulting in one stable
stationary state for small values of the external forcing. This
state is characterized by vanishing variances and covariances.,
Numerical experiments indicate that the stationary state will be
reached regardless of the initial conditions in amplitudes and
their uncertainty. On the other hand, for large values of the
external. forcing two stable stationary states exist. Preliminary
numerical studies seem to indicate that from a given initial
state, given by the initial position x, y and initial
uncertainities o(xz),.o(yZ) and o(xy) the system will eventually
arrive in the steady state which is closest to the initial state,:
but further studies are necessary in order to confirm this

preliminary impression.
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Appendix

This appendix contains the details of the analytical

solution of the problem in section 3 in which dissipation,

no forcing is included.

The equations are:

ax f

ZE — 4 xy-x
@ . 4 2
&Y

Multiplying (A.1) by 2x we find

dx?@ x@éymz}

a=

4

while (A.2) can be written in the form

Substitution of (A.4) in (A.3) gives

d'zg (? )if g(;z}a
In (A.5) we introduce the transformation

Bz=y-3, y=3(z+/)

giving

e Sz d@” {‘Bﬁ +4z "*"}“@

but

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)
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which may be written in the form

d‘c‘.‘[.dt‘ rz —22]4-.2[ 2,2-2z] =/ (A.8)
Denoting

Q:%—%zz—zz (.9)
we find

— + 24 = : :
dT @ / (A.10)

which has the solution

(/+ Co C_zr) | (A.11)

The integration constant Co can be determined from fhe
initial conditions. Let x = x_, y = v, at T = 0.

We have then
2 = 3"'(# 3) o  (A.12)

and from (A.2) we find . ‘
(%)a =,'——é— &2"‘. (zoff"/.), (A.13)

The initial value of Q, i.e. Q has therefore the value

o’

Q.,: --zl- (X.z+;,2)+ -é - | (A.14)
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On the other hand, (A.11) gives for T=0O

Q.= £ (i+¢)

Combining (A.14) and (A.15) we find
/ 2
Co=- ) {%; 4=27;?)

Using (A.16) we find that the equation for z is

dz 3 _2 ) —2v
T ~ 2 ~-2z=gtgl e

In order to solve the nonlinear equation (A.17) we

introduce the transformations

o2 L dV
=3 v ar

giving

2 Vv 2%
O;g -2 LA %ﬁ (1+Cce )V-=0

T

which is a linear equation for‘§r° This equation can be further

simplified by introducing

sS= €

2T

giving
4>V dV 3 7/,
A3 TS E R (e5+0) V=

(A,

(A,

(A.

(A,

(A,

15)

16)

17)

18)

19)

(A.20)

(A.

21)
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(A.21) is one of the standard forms of the differential
equation for the Bessel functions. It turns out that the solutions
are functions of the order % with a purely imaginary agreement,

Denoting A = 3(x 2 + yoz)%'we find that
Tl 2o i oot lo et
V:S ('(,M(ﬁas )+I(an=£.(4052)) (A.22)

From (A.22) we can evaluate z from (A.18) and then v
‘using (A.6). Expressed in terms of ¥ , using (A.20), one obtains -

L T
)/ 02,9 " T co,j,(ﬁae )‘I" S&«Ae/ﬁo (A.23)

ik (A7) +Secak (405»# )

where S = Kz/l('

Since y = y_ for 7T =0 we find that following value for

: . :E; // _ :;2;’ ZQQAOZZ /9;
- Ve | S (A.24)
25 — ek o

The solution for » is most easily obtained by noting that

a first integral of (A.1) and (A.2) is:
2 2 =27
Xt+t4y*= 44" e

The final result is

—

=

(1)
Seod (4, e't)-f,aa',l {/%e”'? (a.25)

X=24.e"
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