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1. INTRODUCTION

The purpose of an assimilation scheme is to produce accurately the initial
state of all modes which. are important for forecasting. In an ideal
situation with perfect observations and uniform data distribution this goal
could be easily achieved. However, imperfect and irregularly distributed
observations, together with computational limitations, impose on an analysis
scheme constraints that narrow its spectral width. This study is confined to
the problems of horizontal resolution - the vertical problem has been treated

by Andersen (1983).

Local analysis schemes, like statistical interpolation (0I), view the
atmosphere through a narrow spectral window. For synoptic scale disturbances
local schemes generally respond well. Naturally, the analysis response drops
as the size of the disturbance approaches the data density. The large scale
analysis is a combination of several local estimates of the atmospheric state
and a deterioration is inevitable for low wavenumbers (Cats and Wergen,
1983). This paper will concentrate on the problems of analysing small scale

features, such as developing baroclinic waves, polar lows etc.

In Section 2 the analysis response is quantified as a function of scale and
observation error for a univariate two-dimensional OI scheme, which has a
structure which resembles the ECMWF (EC) system. Important factors such as
data density, the size of the analysis volume and the specified observation
errors are discussed. The impact on analysis resolution of varying the

assumed characteristic scale parameter of the forecast error model is studied
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by idealised experiments and analyses of an intense small scale cyclone using

real data.

The strong damping effect of the exponential correlation function (that is
the Gaussian function) at high wavenumbers has been demonstrated by Julian
and Thiebaux (1975). An alternative representation of the horizontal

forecast error correlation, by a series of Bessel functions, is compared to
the Gaussian correlation function as regards its fit to the observed error
structures and its impact on resolution in a univariate scheme (Section 3).
The real data case of Section 2 is repeated using the Bessel function

correlation model.

The expansion of the OIL operator in terms of eigenvectors and eigenvalues
provides a different method of studying the resolution (Section 4). We find
that the sensitivity to the specified horizontal correlation model is clearly

demonstrated.

Section 5 summarizes the possibilities of improving the resolution of the EC

analysis scheme.

2. AMPLITUDE RESPONSE OF OI

The specification of reasonable statistics for forecast and observation
errors is of central importance in statistical interpolation. Ideally, the
error covariance structures should depend on the situation they are applied
to and should be defined by the data used in the calculations or by the flow
type. In practice, however, the correlation models are fixed and only the
magnitudes of the errors vary in time. If the chosen correlation models are
representative of long-term error statistics, we can expect good analyses in
most situations. Unfortunately, situations of meteorological significance
tend to have error properties that differ from the mean situation. The

implications on the analysis of using non-optimal statistics will now be

discussed.
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2.1 Bnalysis of height

An attempt to determine the horizontal analysis resolution is made by
simulating the EC system two-dimensionally and univariately (for details of
the EC analysis scheme see Lorenc, 1981). Contrary to most local analysis
schemes, the EC system calculates the analysis changes (increments) for a
volume that is of a considerable size, approximately 1300 by 1300 km in the
horizontal and a third of the atmosphere in the vertical. A volume of these
dimensions generally contains at least a hundred data items which all
simultaneously enter the OI equations. The main meteorological advantage of
large analysis volumes in a multivariate OI scheme is the explicit mass and
wind balance that can be imposed on the increments for relatively large

scales.

For these idealised experiments we specify the field to be analysed, or
strictly its departure from a gquess field, by the following function

fobs( y = {%[1 + cos (21r/D)] r < D/2
T r > D/2

(1)
in which r is the distance from the centre of the observation area and D is

the diameter of the feature to be analysed. The "observations" are given on a

regular grid (See Fig. 1) with values defined by (1).

The discussion will be restricted to the effect of the OI "operator" on the
amplitude. The problems of aliasing in the analysis are deferred until

Section 4. The amplitude response is measured by the ratio of the analysis
increment to the observed departure at r=0. This ratio will be given as a

function of two non-dimensional numbers, the normalised expected observation

erroxr
obs
e® = = red (2)
eP
b d .
and a normalised length L = D/b. E00° and gP*® are the observation and

prediction errors; b is the scale length of the Gaussian horizontal forecast

error correlation function
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GRID/OBSERVED FIELD

Fig. 1 The observation distribution in the idealised
analysis experiments and an example of the
"observed" field.
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1 (E2
T(r) =e 2 P (3)

which is used for these calculations. In the EC analysis, b is specified as

600 km in the Northern Hemisphere.

As we use "observations" that represent the truth exactly, our results will
give the upper limit of what we can expect under the most favourable

conditions.

Firstly, the OI response will be established for a reference case. Secondly,
the impact of increased data density and/or reduced matrix size on resolution
will be discussed. Four different cases, characterised by the data density
(0.25b or 0.125 b) and the matrix size (81 or 25 observations) are

considered:-

a) observation density is 0.25b with 81 observations covering an area of 2b

by 2b (See Fig. 1). This case is taken as reference.

b) observation density 0.125b and 81 observations - area is b by b.

c¢) observation density 0.25b but with only a 5 by 5 observation array around

the mid point - the data area is then b by b.

d) observation density 0.125b and 25 observations - area is 0.5b by 0.5b.

Case a represents the situation in data dense areas. A 0.25b observation
density corresponds in the EC system to a 150 km observation spacing. The
data area is equivalent to a 1200 km square. In Fig. 2 (and in all other
similar diagrams) the abscissa is the non-dimensional size of the feature,
L=D/b, and the ordinate is the normalised observation error, e® . A typical

value of the normalised observation error of a surface pressure measurement

in the EC scheme is 0.4. For this value of the expected observation error
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even relatively large systems are damped. Of the original amplitude, 0.70 is
retained for a disturbance with a diameter of 2b (1200 km) and only 0.25 when
its diameter is b. Lower estimated observation errors naturally produce a
better response to the observed values and their inaccuracies. The
sensitivity to the assigned observation error is in general weak. A doubling
of the error, from 0.4 to 0.8, reduces the response for a scale of 2b from
70% to 60%. For scales smaller than 2b the reduction of the amplitude

decreases in absolute terms.

Next, the data density is doubled to 0.125b (75 km in the EC system), but
keeping the matrix size the same (this is case b). The observation area is
then reduced to b by b. Fig. 3 shows that systems of a diameter of 2b are
well analysed (0.85) and about 43% of the amplitude is returned at b. The
gain from the higher data density is about 0.15 units. BAn increase of the
observation error from 0.4 to 0.8 produces a loss of approximately 0.1 units

for scales between b and 2 b.

In case c, we investigate the effect of the matrix size on the analysis. In
Fig. 4 only 25 observations with a spacing of 0.25b contribute to the
analysis at the centre point. This gives a slight improvement over the case
with 81 observations (Fig. 2). The analysed amplitudes are 0.75 for 2b and
0.32 for b, a gain of 0.05 and 0.07, respectively. As we use perfect data we
avoid the problem of drawing to bad observations. Obviously, the damping of
noise weakens as the matrix size decreases. Consequently, we should not try
to extrapolate the improvement in analysis resolution obtained from reducing

the matrix size from 81 to 25 data when perfect data is used.
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In the final case (case d), we study the impact of increased data density
with only 25 observations (Fig. 5). The responses are now 0.87 (2b) and 0.57
(b), an improvement from the reference case of 0.17 and 0.25 units,
respectively. For observation errors larger than 0.5 the analysis becomes
very insensitive to the assumed value of the error. Compared to the large
area high density case (Fig. 3), the improvement depends strongly on scale -
0.02 at 2b and 0.15 at b. The results of the four cases are summarised in

Table 1.

Table 1. The horizontal resolution of OI using a Gaussian structure function
and a normalised observation error of 0.4 for two scales L = 1 and L = 2.

The data density and number of observations is given in the left hand column.

L, Normalised scale of disturbance
1 2
1) Ax = 0.25b 0.25 0.70
81 obs
2) Ax = 0.125b 0.43 0.85
Data 81 obs
network/
selection
3) Ax = 0.25b 0.32 0.75
25 obs
4) Ax = 0.125b 0.57 0.87
25 obs

Now let us‘assume that in a given synoptic situation we know that a smaller b
would be more appropriate than the standard b. How mach could then be gained
in resolution by modifying b before the analysis. Apart from the reduced

value of the scale parameter, all other aspects of the analysis including the

data selection are identical. The effect on the resolution can be derived
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from the results presented above. We can compare the two cases with 81
observations (Figs. 3 and 2) as follows. In the standard b situation we
assume a data density of 0.125 b. In the analysis with reduced scale
parameter we assign b' = 0.5b and thus have a data density of 0.25 b'. Then
one length unit in Fig. 3 corresponds to two units in Fig. 2. For a system

that has a diameter of b = 2b', the response improves from 43% to 70%.

To test this conjecture in a real situation, we ran univariate
three~dimensional height analyses for a case (2.11.81 00 GMT) with a
developing depression over the North Sea. Two values of the horizontal
correlation scale parameter were considered, b = 600 km (Fig. 6) and

b = 300 km (Fig. 7). 1In both runs the surface pressure report of 986.3 mb
from the platform at 59.5°N and 1.5°E was rejected. The deepest accepted
pressure, 990.1 mb (59.9°N and 2.1°E), is approximately 10 mb from the
first-guess. With b = 600 km, 45% of the difference is analysed (Fig. 6) and
for b = 300 km this increases to 55% (Fig. 7). This reduction of analysis
error is less than expected from the above theoretical calculations because
the present structure of the EC analysis scheme is not very favourable for
high resolution analysis. The final analysis increment at a gridpoint is
formed as a weighted mean of several analyses calculated from neighbouring
partly overlapping data sets. In situations of high data density, the data
selection is not extensive enough to cover the whole analysis area and
significant differences between the analysis increments for the same point

may arise.

An overall improvement in the fit of the analysis to the data follows from
the reduced value of b. This agrees with Seaman's (1977) calculations, in
which he found that sub-optimal values of b produced lower analysis errors
than the optimal b for the geopotential. However, he also showed that an
underestimate of b degraded the analysis of the gradient and Laplacian of the

field. Consequently, in a multivariate environment improved horizontal
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resolution can not be achieved by reducing the value of b without seriously

affecting the wind analysis.

2.2 Analysis of wind

Similar amplitude response calculations have been carried out for the wind
analysis using wind data only. The wind "observations" are derived
geostrophically from (1). The measure of response is the vorticity of the
analysed wind as compared to the initial vorticity (the vorticity is
estimated by a second order centered finite difference approximation).

Fig. 8 presents the response of the wind analysis as a function of scale and
observation error. A typical normalised observation error for a radiosonde
wind measurement is approximately 1.0. For systems with a diameter of 2.0 b,
slightly more than half is kept, whereas for scales of the order of b, less

than 10% is returned.

3. COMPARISON OF CORRELATION FUNCTIONS

3.1 Gaussian correlation model

The weaknesses of the Gaussian structure function have been discussed by
Julian and Thiebaux (1975). The energy spectrum of the Gaussian correlation
function is an exponential of the squared wavenumber with only one scaling
parameter, b. The decay rate of the energy spectrum of the exponential
correlation function is faster at high wavenumbers than implied by the
observed spectrum. This results in a poor fit to empirical forecast error
correlations and a strong sensitivity to the range of distance separation of
the correlation data. Figs. 9a and 9b clearly demonstrate the weaknesses of
the exponential to fit observed-minus—-forecast correlations. The empirical
correlations are based on a 12 day sample of departures of North American
radiosonde observations from the corresponding first-guess (6 hour forecast)
values. Correlations of the departures between all station pairs have been
calculated. The correlations are grouped according to separation distance
and averaged in 25 or 50 km intervals. Through these group correlations an

exponential with two free parameters is fitted
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2 'b (4)

in which ¢ is the zero intercept correlation and b is the correlation scale
length. The parameters were determined by a least squares best fit algorithm
for two observation separation ranges, 200 to 1000 km (25 km intervals) and
200 to 2000 km (50 km intervals). The values of b show a stréng dependence
on the separation range. The sharpness of the empirical correlations at

small separations (up to 500 km) can not be resolved by the exponential.

3.2 Bessel function correlation model

Many reasonable candidates for functional representation of the empirical
correlations exist (Julian and Thiebaux, 1975). The Fourier transform pair
of a two-dimensional isotropic correlation function involves Bessel functions
of zero order and of the first kind, Jo. Consequently, a correlation
representaion based on a series of Bessel functions is particularly suitable

(Rutherford, 1972):

N
_ B r
Z(x) = 121 A, T (k; 2) F A (5)

in which ki is the i'th root of JO. The coefficients Ai (i=0,...N) are
determined by a least squares fit to empirical correlations in the domain
(0,R). With several free parameters, a close fit to the data is expected.
The series is truncated at the first negative coefficient which implies
negative power for the corresponding two-dimensional wave (Gandin, 1963 and
Rutherford, 1972). To fit (5) to correlation data is equivalent to
calculating the two-dimensional Fourier transform of the correlations.
Correlation representation (5) has the properties required for the existence

of geostrophic wind correlations (Julian and Thiebaux, 1975).

Function (5) has been fitted to the same data set as the Gaussian with

R=2000 km and N=5. A visual comparison of Figs. 9b and 9c demonstrates the
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superiority of the Bessel functions over the Gaussian in reproducing the
empirical correlations. Obviously, the spectral properties of the two

correlation representations are quite different.

3.3 Amplitude response to Bessel function model

The amplitude response analysis has been repeated for the Bessel functions
using the coefficients returned by the least squares algorithm applied to the
500 mb height correlation data. Again, the results are displayed as a
function of observation error (ordinate) and normalised length scale,

L = D/600 km, (abscissa). Consequently, the figures of Section 2 are
comparable if b= 600 km is assumed for the Gaussian. Fig. 10 shows the case
of data density 0.25b and 81 observations. A considerable improvement in a
univariate height analysis is produced by using the Bessel function model
(compare Figs. 10 and 2). However, an overshoot is evident for scales larger
than 1.8 b implying a possible deteoriation compared with the Gaussian for

large scale analysis.

The damping by the OI "operator" is very weak at scales of the order of 2b
and consequently no improvement can be expected on these scales from
increased data density or reduced matrix size. For systems with a diameter
of b, a considerable benefit in resolution comes from increased data density

(compare Figs. 11 and 10).

The impact on the horizontal resolution of changes in the matrix dimensions
is minor in both the 0.25b case (compare Figs. 12 and 10) and in the 0.125b
case {compare Figs. 13 and 11). This result suggests that we can have a
fairly large data domain without seriously affecting the resolution. Table 2

summarises the analysis responses for the Bessel functions.
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Table 2. As for Table 1 , with Bessel function model.

L, Normalised scale of disturbance
1 2
1) Ax = 0.25b 0.47 0.94
81 obs
2) Ax = 0.125b 0.63 0.97
Data 81 obs
network/
selection
3) Ax = 0.25b 0.53 0.92
25 obs
4) Mx = 0.125b 0.70 0.94
25 obs

An overall gain of approximately 0.2 units can be obtained from the use of
the Bessel function model instead of the Gaussian (see Tables 1 and 2). A
more striking result is the weak dependence of the resolution on the matrix
size for the Bessel functions. Consequently, this correlation model offers
us improved horizontal resolution without relaxation of the mass and wind

balance.

The resolution of the wind analysis improves by using Bessel functions, as
can be seen by comparing Figs. 14 and 8. However, the Bessel function model
may give a poorer analysis of the large scale wind analysis than the Gaussian
model as is suggested by the amplification of the "observed" vorticity at

scales of 2b (Fig. 14).

3.4 Univariate analysis with Bessel function model using real data

The results of the previous sections suggest that at least univariately, the
Bessel functions should improve the small scale analysis. To test this

hypothesis with real data, a univariate height analysis was run with the

Bessel function model for the same case as described in Section 2. The
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improvement over the Gaussian with b = 600 km is very modest, from 45% to 50%
of the observed departure, as can be seen by comparing Figs. 15 and 6. The
failure to capture more of the depth of the depression can be explained by
the structure of the EC scheme as was already discussed in detail in

Section 2.1

4. EIGENVECTOR EXPANSION OF OI

Statistical interpolation can be thought of as a linear operator applied to
data. A powerful method of studying the properties of OI is spectral
decomposition of this linear operator. The method (see Section 6 by
Hollingsworth in Ldnnberg and Hollingsworth, 1983) is derived in Section 4.1.
In 4.2 and 4.3 we apply the technigue to univariate height and wind analyses
and compare the properties of the Gaussian and Bessel function correlation

models.

4.1 Method
The analysis for a point and variable, A, is expressed by

A= ETQ (6)
in which the elements of W are the weights given to the corresponding
observed data D. If the same data set is used for the analysis at several
points, we can combine the weight vectors into a matrix and express (6)

compactly by

I
2*—3

A=W D (7)
If the analysis points coincide with the data points and represent the same

variable, then the weights are given by

=
i
)
+
o
y
L
v

(8)
in which P is the prediction error covariance matrix for all possible
combinations of observations. 0 is the corresponding observation error
covariance matrix.

P (real and symmetric) can be expanded in terms of its eigenvectors and

eigenvalues as follows
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(9)

it
]
i}
=
e

in which E is a matrix of orthonormal eigenvectors and A is a diagonal matrix

of the corresponding eigenvalues.

The observation errors are assumed to be uncorrelated and constant.

Consequently, O can be written as

= g21 = E (021) E=:T (10)

no

The observations D can be written as a linear combination of the
eigenvectors E

D-ET (1)

iz}

where I' is the coefficient vector of the eigenvectors.

By inserting (9) and (10) into (8), the weigﬁts may expressed as follows
W= (A+ 2D A g (12)
The expression for the analysis is obtained by inserting (12) and (11) into
(7) and using the orthogonality of E (EET= I) to give
A =E (A+ o2n)"Ar (13)

The analysed amplitude of mode i is then

A,
1 2
XFZYi (14)

Consequently, the damping of a particular observed mode is

>\i a2
1 - = (15)
ki+02 Ai+c

Positive definiteness of P guarantees that all eigenvalues are positive. It
is readily seen from (15) that when the eigenvalue is small compared to the
observation error variance the mode is heavily damped. Similarly, modes with

large eigenvalues remain almost intact.

The eigenvector analysis is applied in one dimension to univariate height and

wind OI and the results are presented in the following sections.
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4.2 Height analysis

The spectral technique developed in Section 4.1 is applied in one dimension
to 9 evenly spaced observations and gridpoints. In the results that are
presented in this section and the following one, we only show the four
gravest modes as the power of the remaining modes is mostly negligible.
Furthermore, this section provides some answers to questions raised in
Section 2 related to aliasing in the analysis.
In Section 2 it was shown that the exponential correlation function
excessively damped the smallest scale. This becomes more evident from
Fig. 16 in which the four gravest eigenmodes are displayed. The
corresponding eigenvalues are 6.62, 2.02, 0.33 and 0.03. For a typical
normalised observation error of 0.4, the third mode is already heavily damped
4
(67% of the amplitude remains). Consegently, only the mean and a linear
variation through the domain can be analysed satisfactorily. However,
selective damping of different modes causes aliasing that may be harmful for
the large scale analysis. BAs an example we take the analysis of an observed
constant field. Expansion of this in terms of the eigenvectors produces
symmetric modes dominated by modes 1 and 3. The damping by the OI operator
of mode 1 is very weak, but not insignificant for the other modes. As a
result the structure of the analysis will resemble mode 1 that has a local

extreme at the centre of the analysis area.

The improvement in resolution by using Bessel functions is also seen in
Fig. 17. The structure of the first four modes is similar to those of the
exponential correlation, but damping on modes 3 and 4 is significantly

weaker.

4.3 Wind analysis

The geostrophically derived longitudinal wind correl;tion is identical to the
height correlation for the exponential forecast error model. We can then use
the results of Section 4.2, and in particular Fig. 16, to deduce the analysis

response to wind observations. For a typical normalised wind observation
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HEIGHT ANALYSIS

e MODE. 4

GRUSSIAN CORRELATION FUNCTION
9 EQUIDISTANT OBSERYATIONSy DX = 0.25 B
Aj 6.62 2.02 0.33 0.03

Fig. 16 The first four eigenvectors and the corresponding eigenvalues for
a height analysis using the Gaussian structure function.
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HEIGHT ANALYSIS
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SERIES OF BESSEL. FUNCTIONS
9 EQUIDISTANT OBSERVATIONSs DX = 0.25 B
A 6.28 1.61 0.7 0.31

Fig. 17 Same as 16, but with the Bessel function model.
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ANALYSIS OF LONGITUDINAL WIND

s MODE | e MODE 4
-« MODE 2
= - =MODE 3

SERIES OF BESSEL FUNCTIONS
9 EGUIDISTANT OBSERVATIONS» DX = 0.25 B
Aj 4.36 2.67 1.38 0.50

Fig. 18 The first four eigenvectors and corresponding eigenvalues for an
analysis of longitudinal wind using a Bessel function correlation
model.
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ANALTSIS OF TRANSVERSE WIND

wnemn MOE 1 v MODE 1
e w s MODE 2
v e s MODE 3

EARN

& -
u"‘c
3 \

SERIES OF BESSEL FUNCTIONS
9 EQUIDISTANT UBSERVATIONSs DX = 0.25 B
Aj 2.85 2.69 173 1.29

Fig. 19 Same as Fig. 18, but for the transverse wind.
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error of 1, only modes 1 and 2 are well preserved; of mode 3, which has a

half-wavelength of 2 b, only 25% remains.

Fig. 18 presents the eigenvectors and eigenvalues for the longitudinal wind
using the Bessel functions. The sharpness of the correlation (not shown),
derived geostrophically from height, for small separation distances produces
a narrower distribution of the eigenvalues and in particular gives larger
eigenvalues for modes 3 and 4 than the Gaussian. The Bessel function model
thus responds to a wider range of input modes and has a weaker noise damping

than the Gaussian model.

In the direction perpendicular to the flow, the wind correlation decreases
rapidly and becomes negative. The distribution of the eigenvalues is very
sensitive to the observation spacing as is discussed in detail by
Hollingsworth in L&nnberg and Hollingsworth (1983). The results presented
here are for only one observation spacing (0.25 b). For this data density
the Bessel function model produces eigenvalues that cluster around unity
(Fig. 19). Clearly, almost any wind distribution can be analysed with the
Bessel functions and the noise control of the transverse wind is very weak in
the analysis. The Gaussian model produces a wider spread of the eigenvalues
(not shown) than the Bessel functions and is more effective in removing noise

in the data.

5. CONCLUSIONS

The horizontal resolution of the current ECMWF analysis has been established.
It is shown that the Gaussian correlation model severely limits the
resolution of the OI scheme. Increased data density or reduced matrix size
result in improved resolution at the expense of the mass and wind balance.
Futhermore, the exponential correlation function seriously distorts the

observed error spectrum of the six hour forecast.
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An alternative correlation model based on a series of orthogonal Bessel
functions has been studied. It was found that it reproduces the empirical
correlations With satisfactory accuracy. As a consequence of faithful .
representation of the small scale structure of the forecast errors, a
considerable theoreticél improvement in horizontal resolution is achieved
over the Gaussian. The structure of the EC system inhibits full exploitation
of these properties and thé benefit was modest in a case study with real
data. The geostrophically derived transverse wind correlations created a

noisy wind'énalysis due to their sharpness.

Aliasing of large scale modes was explained by means of spectral
decomposition of the OI operator. The problem is enhanced by sharper

structure functions.

The small amplitude of the changes produced by the initialiéation in fhe EC
system is a result of the geostrophic constraint imposed by the multivariate
OI scheme on the mass and wind increments for large analysis volumes. The
horizontal resolution of statistical interpolation with a Gaussian forecast
error model depends strongly on the matrix size. This dependence is
significantly weakened if the forecast errors are modelled by a series of
Bessel functions. It was also shown that fine scale information in high
resolution data is less strongly damped by the Bessel function model than by

the Gaussian.
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