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1. INTRODUCTION

When charged with the task of presenting a summary of the adiabatic formulation
of the operational ECMWF forecast model, it is appropriate at this particular
point in time to discuss not one formulation, but two. Since August 1979,
operational forecasting has been carried out at ECMWF using a second-order
accurate finite-difference model with a regular latitude-longitude grid and
resolution of 1.8750, a sigma-coordinate and 15-level resolution in the vertical,
and a semi-implicit time scheme which allows a time step of 15 minutes in most
cases. During this first operational period, one aspect of the Centre's research
work has been directed towards the development and testing of alternative
adiabatic formulations, and this has led to a new formulation which will shortly
replace the current scheme. The new model is based on a spectral technique for
the horizontal, a more general terrain-following vertical cocordinate than the
usual sigma-coordinate, and a semi-implicit time scheme that treats implicitly
not only linearized gravity-wave terms, but also the linearized zonal advection
of vorticity and moisture. In outlining the two different formulations, an
account is thus given both of the model used to produce the results discussed in
other contributions to these proceedings, and of the model which will be oper-
ational, or very close to becoming operational, by the time these proceedings are
published. Mention will be made of differences which may influence the

statistical interpretation of the model outputs.

The following section sets out the primitive equations for a moist atmosphere asg
adopted in both formulations, using a general vertical coordinate. Section 3
then discusses the horizontal discretization, with a summary both of the grid-
point and spectral techniques and of the results of the comparisons between these
techniques carried out at ECMWF. Aspects of the vertical and temporal discret~
izations are discussed in Sections 4 and 5. Finally, the incorporation of

horizontal diffusion and the treatment of orography are described in Section 6.

2. THE PRIMITIVE EQUATIONS

We consider a general, terrain-following vertical coordinate, a monotonic

function of pressure p and dependent on its surface values Pg:

n=n (p,ps) ’

where n (O,ps) = 0 and n (ps,ps) =1, The usual sigma coordinate
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(Phillips, 1957) adopted for the adiabatic formulation of ECMWF's original

operational model is a special case of this coordinate, with
n =0 =p/p,-

Kasahara (1974) has given the form of the primitive equations. for a dry atmosphere
using various coordinate systems. The n-coordinate form for .a moist atmosphere

is set down in this section. Prognostic variables are the horizontal wind
componehts u and v, the temperature T, the specific humidity q and the surface

pPressure P - They are governed by the following equations.
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Here t is time, and Ty denotes the material derivative, which in n coordinates

takes the form
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vV is the horizontal velocity vector, v = (u,v,0), and V is the two-dimensional

gradient operator on a surface of constant n. £ is the Coriolis parameter, E
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the unit vertical vector, ¢ the geopotential, R_ the gas constant for dry air,

d

and Kk = Rd/cpd' where C__ is the specific heat of dry air at constant pressure.

pd
P and Kx denote the rates of change of variable x Yesulting respectively from
X

parameterized processes (the subject of a separate contribution to these pro-

ceedings) and from horizontal diffusion.

An equation for the surface pressure, P is obtained by integrating Egq. (4) from

n =0 to n= 1, using the boundary conditions 11 = 0 at n = 0 and n = 1:

1
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where szis known in terms of P from the definition of n.

Moisture effects appear in the momentum, thermodynamic and hydrostatic equations

through the virtual temperature, Tv’ which is given by

R
- v
Tt U - e T

where Rv is the gas constant of water vapour. An additional term (1+(8-1)q),
where § is the ratio of the specific heats at constant pressure of water vapour
and dry air, is written in the thermodynamic equation. This term was neglected
in the adiabatic formulation of the grid-point model, but as it is of the same
order as the ratio of temperature and virtual temperature, it is included in the
new model. Further detail will be given in the documentation manual of this

model .

Equations (1) to (8) may readily be cast into thejir more familiar form for sigma
coordinates by replacing 3p/3n by P and g% by 055%- The pressure-gradient

term R Tv V&np becomes equal to R Tv Vlnps at all levels. 1In general, the

d da
term has the latter value at the surface, and decreases to zero in the case in
which coordinate surfaces become surfaces of constant pressure at upper levels.

In this case n is independent of p_ for all pressures less than a certain value.
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3. THE HORIZONTAL DISCRETIZATIONS
3.1 The grid-point model

A discussion of the-adiabatic formulation of the finite-difference model has
been given in a series of lectures by Burridge in the 1979 ECMWF Seminar and
details will not be repeated here. The model uses a second-order accurate
difference scheme based on the staggered grid of variables shown in Fig. 1, the
grid known as the C-grid (Arakawa and Lamb, 1977). Choice of this grid was

made mainly because of its low computational noise and the ease of implementation
of a semi-implicit time scheme. Operationally, a grid interval of 1.875° in
latitude and longitude is used, and this resolution is réferred to as N48, there
being 48 grid intervals between equator and pole. Following the work of
Arakawa (1966) and Sadourny (1975) the finite-difference scheme was designed to
conserve, among other quantities, the potential enstrophy during vorticity
advection by the horizontal flow. Further detail has been.given by Burridge

and Haseler (1977) and Burridge (1979).

3.2 The spectral model

A more detailed description of the spectral model will be given, although it
largely follows the adiabatic‘formulation‘described by Baede et al. (1979) in
an ECMWF Technical Report. bThe basic prognostic variébleé of the model are

£, D, T, g and gnps, wbere £t and D are the.vorticity and divergence computed on

surfaces of constant n:

= 1 v

" acos@ {ax - 56-(ucose)}
- 1 Ju 3

= 2cost {SX‘+ 35 (veoso)}

where a is the radius of the earth, ) is longitude and § is latitude. Variables

are represented in the horiozntal by truncated series of spherical harmonics:

. M N {m) m o j . . ,
Xt =] T ;0 e et | (9)
. =M n=|m| ® n

where X is any variable and i is sin 9. The P:(u)kare the Associated Legendre.

Functions, defined here by

- —— m/9 _n+m S ‘
Pl = Y(2n+1) (n-m) - 1 (1-p?%) 8 w2-n® , m>o0, (10)
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and the normalization is such that

1
1 m r .
= - {11)
2 flpn W Ps (W) an smr 6ns

m
The Xn are the complex-valued spectral coefficients of the field X. Since X is

real,

- m *
x M= (x®
n

where ( )* denotes the complex conjugate. The model thus deals explicitly only

with the X for m > 0.

The Fourier coefficients of X, Xm(u,n,t), are defined by

N (m)

= m m ' (12)
X, W, n,t) = Z X, () P
n=|m
with
M L) ;
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Derivatives are given analytically by
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where the derivative of the Legendre Function is given by the recurrence
relation:
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As in the first ECMWF spectral model (Baede et al., 1979) the model is programmed
to allow for a flexible pentagonal truncation, depicted in Fig. 2. This trun-
cation is completely defined by the three parameters J, K and M illustrated in

the Figure. The common truncations are special cases of the pentagonal one:

Triangular M=J=K
Rhomboidal K=J+M
Trapezoidal K=J, K>M

The spectral calculation utilizes the transform technique pioneered by Eliasen
et al. (1970) and Orszag (1970). It follows that of the early multi-level
spectral models described by Bourke (1974) and Hoskins and Simmons (1974), and
the ECMWF spectral model reported by Baede et al. (1979), although it differs
in its use of an advective rather than a flux form for the temperature and
moisture equations. The objective of the calculation is to compute spectral

X m

. d
tendencies (EE)n

computed using the time differencing discussed in Section 5. The orthogonality

for each prognostic variable, from which new values may be

of the spherical harmonics is such that these spectral tendencies are related
to grid-point tendencies by
imh

pum _ 1 2T ax o - (17)
G, = ;l;_[l £ (2 B (W e a dap

An outline of the model's computation of spectral tendencies can now be given.
First, a grid of points covering the sphere is defined. Using the basic defin-
ition of the spectral expansions (9) and the linear equations relating wind
components with vorticity and divergence, values of £, D, u,v,T,q and lnps are
calculated at the grid points, as also are the required derivatives

0T 9T 3g 3 HRnp dB!an

OO e Tea ;e Ty

s using (12) - (15). The resulting grid-point

values are sufficient to calculate the required grid-point contributions to
adiabatic tendencies, and also the parameterized tendencies since prognostic
surface fields associated with the parameterization are defined and updated
on the same grid. The jinteqrands ©of the prognostic equations of form (17) are
thus known at each grid-point, and approximate spectral tendencies are calculated
by numerical quadrature. Integration by parts is used to avoid computation of
some derivatives:
m
dA

fl o 1 dPn
~— P du = - —_—
21 0 n ..‘,.'1 A Em dp

m
where Eﬁ}n is known from (16).
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The grid on which the calculations are performed is in fact determined to

give an exact (given the spectral truncation of the fields, and within round-off
error) contribution to spectral tendencies from quadratic non-linear terms. The
integrals with respect to A involve the product of three trigonometric functions,
and as shown by Machenhauer and Rasmussen (1972) they may be evaluated exactly
using a regularly-spaced grid of at least 3M+1 points. For the latitudinal
integrals, Eliasen et al. (1970) showed that quadratic non-linear terms lead to
integrands which are polynomials in U of a certain order. They may thus be
computed exactly using Gaussian guadrature with points located at the (approx-
imately equally-spaced) latitudes which satisfy PE(U) = 0, for a sufficiently
large integer NG. These latitudes form what are referred to as the "Gaussian

latitudes". For triangular truncation, the minimum value of NG is (3M+1)/2.

It is likely that triangular truncation with M = 63 will be adopted for the

first operational version of the spectral model. The associated grid of 192
longitude points and 96 latitude points is a very close équivalent of the regular
N48 grid used by the operational grid-point model. Detail in addition to that

given here will be found in the documentation manual for the new forecast model.

3.3 The guasi-operational comparison of grid-point and spectral
techniques

The primary factor influencing the decision to change operationally to the
spectral technique was the better performance of the technique in an extended
experiment comparing forecasts performed once per week for a complete year
(Girard and Jarraud, 1982). 1In this experiment, the operational grid-point

model forecasts were compared with spectral forecasts using triangular truncation
at total wavenumber 63 (T63). The two models used identical parameterization
schemes, and required a similar amount of computing resources. Although the
models often gave a very similar forecast, some clear differences in overall
performance were found. An indication of this is given by Fig. 3, while Fig. 4
presents one example (out of by no means few) of a markedly better local forecast

by the spectral model.

A question central to the theme of this particular seminar is to what extent
will the change to the spectral model influence statistical forecasts of local
weather made using the MOS technique with statistics derived from earlier grid-
point forecasts. Insofar as the two models give generally similar large-scale
forecasts, with substantial differences found mainly in the medium range in
places and cases where the grid-point model is subject to a significant error in
its prediction of the synoptic scale, the use of spectral forecasts in conjunc-

tion with statistiecs produced using the grid-point model output should not cause
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Fig. 3 The difference in predictability (measured by the length of the

forecast period for which the anomaly correlation of the 1000 mb
height over the extratropical Northern Hemisphere remains above
60%) between spectral (T63) and grid-point (N48) models. Results
are expressed in terms of the percentage of cases for which one or
other model gave better results.
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Fig. 4 The analyzed 500 mb height for 10 April, 1981 (upper) and 5-day
forecasts for this date by the T63 spectral model (lower left) and
the N48 grid-point model (lower right).
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particular problems, with the statistical forecasts benefiting from the improved
model prediction of the large-scale flow. Two points should, however, be borne

in mind.

The first concerns some systematic differences in phase speed found between the
two models. Statistics presented in Table 1 from the quasi-operational comparison
show phase speeds to be generally better represented by the spectral model, at
least in the short range (for which an unambiguous identification of analyzed

and forecast lows was possible). In view of such differences, use of model
predictors at times shifted from the forecast time of interest in order to
compensate for systematic phase errors in synoptic-scale systems should evidently

be treated with caution.

Table 1 Errors in the displacement (in degrees longitude)
of surface lows between day 1 and day 2 of the
forecasts for spectral (T63) and grid-point (N48)
model  forecasts.

Error (Degrees)

Displacement (D) Cases T63 N48
D < 5° 64 + .6 +1.0
5° < p < 10° 39 + .3 + .2
o)
10° < p 89 -1.8 -2.6
(o] . '
15° < D 44 -1.8 -3.3
O
20° < D 16 -2.9 -4.5
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The second point concerns the use of model surface and near-surface parameters.
If the parameter in guestion is particularly sensitive to the nature of the
model surface (whether it be land or sea, its height, etc.), then caution is
again called for, since the different location of grid-points in the new model
may give rise to differences in surface and near surface parameters interpolated

from neighbouring grid-points in the vicinity of coastlines and steep orography.

4, THE VERTICAL DISCRETIZATION

The vertical variation of the dependent variables is represented by dividing
the atmosphere into a number (NLEV) of layers as illustrated in Fig. 5. 1In
general these layers are defined by the pressure of the interfaces between
them (the "half-levels"). Prognostic variables are defined at intermediate
levels (the "full-levels"). The precise location of these full levels is not
required by the adiabatic formulation (apart from the topmost level) since 1t
generally uses only half-level pressures. Full-level pressures need to be
specified, however, for the initial analysis of data and for use in the

parameterization schemes.

In the operational grid-point model a sigma coordinate is used, with half

levels

Pk+12 = Gk+l§ ps + k=0,1,2,...NLEV, (18)

and full levels

(19)
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15 levels are used, and the sigma values are given for both half and full levels

by

3 4
O = .75 Sk + 1.75 Sk - 1.5 Sk (20)
where Sk = (k-%)/15. Full-level pressures are given in the left-hand column
of Table 2.

In the new model, a more general specification of half-level pressures is

adopted:
Pt = Byt B Py (21)

with full-level values given by

== ;
Necessary values are

A, =B =0 , 1

L T By T Agrevay ByrEves =

The sigma-coordinate form is reproduced by setting all the A to zero, while

kot

zero upper-level values of B imply that the vertical coordinate is locally

k+3s
a pressure coordinate. Advantages of a hybrid coordinate which transforms
smoothly from a sigma coordinate at low levels to a pressure coordinate at
upper levels have been discussed by Simmons and Burridge (1981), and Simmons

and Striifing (1981).

Final details of the operational implementation of the new coordinate remain to
be finalized, but a radical change in the number or location of levels is
unlikely. In particular, the stratospheric resolution over the sea will be
essentially unchanged in the first instance, although the topmost one or two
levels will be constant-pressure levels if final testing proves satisfactory.
Once the system is established operationally. testing of alternative resolutions
coincident with the resolution of the stratospheric pressure-level analysis, a
possibility which is a potential advantage of the new formulation, will take

place.

A minor change in resolution may occur, however, and a possible distribution of
16 full-level pressures is given in Table 2. Above the planetary boundary
layer, levels differ little from those of the operational grid-point model, the
extra level being used to give a less rapid variation in vertical resolution
close to the ground.
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Table 2 Full-level pressures (mb) for the original operational
model and possible alternatives for the new operational
model. Values are for a surface pressure of 1000 mb.

LEVEL PRESSURE (mb)
Original Operational Model New Operational Model

1 25 25
2 77 75
3 132 128
4 193 185
5 260 250
6 334 324
7 415 406
8 500 496
9 589 589
10 678 » 681
11 765 769
12 845 - 846
13 914 909
14 967 955
15 996 982
i6 996
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The motivation behind the proposed change is to give an unambiguous treatment
of the lowest model level. The form of the function (20) defining both full
and half-level sigma values is such that the lowest full-level is defined to

have a value of sigma approximately equal to

1= bag/a

where Acg is the difference in 0 between the ground ( 1) and the next

15 O15 ~
level (014%). In particular, this value is used to define the height of the
lowest full level in the boundary layer parameterization. Conversely, the
vertical finite-difference scheme for the adiabatic model effectively assumes

the lowest level to be at

g =1- A(Jls/z

There is thus an ambiguity in the treatment of the lowest model level, and
this can only be removed by adding an additional level if the resolution is
constrained to be essentially unaltered in the free atmosphere and to give
an unchanged height of the lowest model level in the boundary-layer scheme.
The impact of this possible change on the large-scale forecast is unlikely
to be large, although it remains to be seen whether near-surface model fields

exhibit an improved behaviour.

The vertical finite-difference scheme for the first operational model has also
been described in detail in an earlier seminax (Burridg%,ml979), and details
3

term in (2) is

will not be repeated here. The representation of the
such that the change in potential energy associated with it balances the

change in kinetic energy due to the term v.(V$ + R T, Vinp) that arises in

d
the kinetic energy equation derived from (1). In addition, energy conservation
is preserved by the formulation of the vertical advection terms: the

. 0X . .
representation of nE% for any variable X is such that

N?EV NLEV 5

. Ap, and X Ap

R " L

are not changed due to finite-difference errors in the treatment of this term.

Here %,  denotes the value of X at level k, and Apk

K T Prasy T Py

The vertical finite-difference scheme used in the new formulation (21) is a
straightforward extension of the sigma-coordinate scheme, and has been discussed
by Simmons and Burridge (1981) and Simmons and Strlifing (1981). The only point

of difference lies in the choice of a representation of the V¢ + R Tv Vinp

d
term in (1) which ensures no spurious generation or dissipation of angular

momentum due to vertical truncation error., The impact of this change on sigma

75



coordinate forecasts has been found to be extremely small, but idealized
calculations of pressure-gradient error over sloping ground for a temperature
field dependent only on pressure have indicated that this error is reduced for
a hybrid coordinate by choosing the angular-momentum conserving scheme rather
than simpler alternative finite-difference approximations (Simmons and

Stxlfing, 1981).

Simmons and Strlifing (loc. cit.) have also reported on forecast tests using
the new vertical scheme. Overall, new and old schemes gave a very similar
performance, although the differences that were found generally favoured the
new system. The new scheme was not tested in data assimilations, where a

further small benefit might be anticipated.

5. TIME SCHEMES

Burridge (1979) has also discussed the semi-implicit time-stepping scheme
adtoped for the operational grid-point model, and only the barest outline
of the scheme, which derives from the work of Robert et al. (1972), will be

given here. If X is a model variable satisfying the equation

= X

s

the time-scheme for adiabatic terms is formally written

X(t+At) = X(t-At) + 20t {X(t) + % [ X (t+At) + X (t-At) - 2% (£)]}
g g g (23)

with

X(t) = x(t) + alx(t+At) + X(t-At) - 2x(t)} (24)

In Eq. (23), Xg represents that component of X associated with linear gravity
wave motion about a resting basic state with temperature Tr(c), and the
implicit treatment of Xg terms ens?res that the time-step criterion is not
determined by the rapid (= 300 ms ~) phase speed of the model's fastest gravity
wave. Eq.(24) describes the time filteér analyzed by Asselin (1972), which

acts to inhibit the growth of the spurious computational mode associated with

the leap-frog scheme.
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Operationally, an isothermal reference temperature, with Tr = 300 K, is used:

a choice governed by the computational stability properties of the semi-implicit
technique (Simmons et al., 1978). The value of the time-filtering parameter o

is 0.05. A timestep At of 15 minutes is generally used with the model, although
very strong winds in the polar-night jet of the Southern Hemisphere stratosphere

have necessitated a reduction to 12 minutes in September both in 1981 and in 1982.

The extension of the semi-implicit method to the hybrid vertical coordinate
discussed in the preceding section has been described by Simmons and Burridge
(1981) and Simmons and Strlifing (1981), who also discuss how additional care

must be taken in the choice of reference state for this coordinate. Alsoc in the
context of the new operational model, an extension of the semi-implicit technigue
will be introduced. Following results obtained by Robert (1981), who showed

that in a semi~implicit shallow-water equation model the time-step limit was
determined by the explicit treatment of the vorticity equation, an implicit
treatment of the linearized zonal advection of vorticity and moisture will be

included. The time~step to be used remains a matter for experimentation.

6. HORIZONTAL DIFFUSION AND THE PRESCRIPTION OF OROGRAPHY

Ideally, the horizontal diffusion that is represented by the KX terms on the
right-~hand sides of Egs. (1)-(3) would be regarded as representing the influence
of unresolved scales of motion on the explicitly forecast scales and treated

with a physically based parameterization scheme. In practice, since the smallest
scales in a model are inevitably subject to numerical misrepresentation, it is
common to chose empirically a computationally convenient form for horizontal
diffusion and adjust it to ensure that fields of interest do not become
excessively noisy. Such an approach has been adopted at ECMWF, and some results
may be found in Technical Memoranda by Jarraud and Cubasch (1979) and Strlifing
(1982).

The diffusion scheme used operationally since March 1980 may be written in the
form

_ 4
Kx—kD x+cx (25)

The operator D4 is given for the grid-point model by

t 4
DT == {8y + &) (26)
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where 1
6 X =57 {X(x + Ax/2) - X(x - Ax/2)}

‘and the diffusion coefficient k has the value 4.5 x 1015 m4s—1 in the operational
forecasts, a valué twice as large being used in data assimilation cycles. The
operator 6; is computed on values at time-step t-At, while 6; is applied on the
value for t+At using Fourier analysis and synthesis. This implicit treatment
enables the model to be integrated without any additional spatial filtering to
counteract the influence of the convergence of meridians on the time~step

criterion.

The term CX in (25) represents a correction connected with the forecasting of’
precipitation in mountainous areas. vAfter the introduction of a new steeper oro-
graphy in April 1981, the uncorrected scheme was found to elad to highly unrealistic
precipitation patterns and amounts near mountains. Since the diffusion scheme
mixed temperatures on model sigma surfaces, it tended to warm spuriously the

mountain tops, and this leads to spurious convection and precipitation.

The ideal way of preventing this happening would be to apply the diffusion on the
quasi-horizontal surfaces of constant pressure, but this would not be straight-
forward to implement, and would be computationally expensive. As a compromise,

the following correction operators on temperature and humidity were introduced

operationally:
9T 4
Cp = (Bﬂnc) P ans
q ] 4
“q q, oo s £np

where qs denotes the saturation specific humidity. This appears to have largely
solved the problem, although it is evident that forecast precipitation must be

treated with particular caution in mountainous areas.

Horizontal diffusion in the spectral model also is in the form (25), but with

p"* now representing the V* operator. Thus in the absence of a correction,

K =-%k v x
X
and
m_ k.2 2 .m
(Kx)n = ;Z~n (n+1) Xn
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It is also applied at time-step t+At. The diffusion coefficient used for most
past experimentation is smaller than that used in the grid-point model:

k =7 x 101" p*s 71, 7This lessens the liklihood of spuricus precipitation near
mountains, and this problem may also be lessened by use of the hybrid vertical
coordinate (Simmons and Strlifing, 1981). If necessary, a correction of the

type used in the grid-point model may be applied operationally, but details remain

to be finalized.

A further remark about the prescription of the orography is also appropriate.

A study by Wallace et al. (1983) has indicated that a significant part of the
systematic error in the operational forecasts of the extratropical height field
may be due to inadequate orographic forcing of the large-scale flow, and has
shown use of a higher "envelope" orography to result in significant improvements
in the medium-range forecasts for a mid-winter period. It thus appears likely
that another change in the prescription of orography will take place when further
research has been completed. This should be noted when using model ontput

statistics for mountainous areas.
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