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ABSTRACT

A unified analysis-initialization technique is introduced and
tested in the framework of the shallow water equations. It
consists of iterating multivariate optimal interpolation and
nonlinear normal mode initialization. For extropical regions
it is shown that such a technique produces an analysis
consistent with observational errors and in nonlinear balance.
The linear errors of optimal interpolation associated with

geostrophically related covariances are eliminated.
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1. Introduction

There is mounting evidence that the specification of the initial
atmospheric state is as much to blame for errors in numerical weather
forecasts as the mathematical formulation of the model or the parameteri-
zation of physical processes. The complete forecast system is comprised
of four components--observations, analysis, initialization, and numerical
model--with three corresponding interfaces. Analysis schemes produce an
estimate of atmospheric state variables distributed uniformly in space and
time from the irregular and incomplete set of observations. Initializa-
tion schemes modify the analyses to make them acceptable as initial states
for models so that the model forecasts do not contain spurious waves which
obscure or even interfere with the development of meteorologically impor-
tant features.

To a large extent, these four components have been developed inde-
pendently by specialists in each area with limited but not complete under-
standing of the principles involved in all the others. However, there are
notable instances of collaboration among specialists in problems related
to the interface between observations and analysis, and the interface
between initialization and models. For example, statistical objective
analysis or optimal interpolation takes into account the error charac-
teristics and distribution of various observing systems and first guess to
produce an estimate of the analysis error. Dynamic initialization and
nonlinear normal mode initialization both use the forecast model itself as
a basis of determining the necessary changes to the analysis to make it
acceptable to that model. The interface between analysis and initiali-

zation has received less attention. Although four-dimensional data
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assimilation is an attempt to bridge this gap, a unified approach is still
lacking.

Because of a mismatch between the analysis and numerical forecast
models, forecasts produced by the models from the original analyses often
exhibit high frequency noise. Nonlinear normal mode initialization suc-
cessfully eliminates these spurious high frequency oscillations from the
forecasts (Daley, 1979; Williamson and Temperton, 1981) but, in doing so,
it often produces modifications to the analyses which exceed the expected
analysis error even over data-rich regions such as the continental United
States., As we will show below with a more concrete example, these changes
are in part due to shortcomings of both aspects (analysis and initiali-
zation) of the system. The analysis has errors due to, for example,
adopting a linear geostrophic assumption while the model (and atmosphere)
actually satisfies a more complicated nonlinear gradient relationship.

The unconstrained nonlinear normal model initialization does not recognize
the specific nature of this analysis error and thus does not eliminate it.

Williamson et al. (1981) showed that multivariate optimal interpola-
tion introduces an analysis error by the use of the geostrophic relation-
ship to obtain height-wind covariances from height-height covariances.
Such covariances produce analysi’s increments that satisfy the linear
geostrophic relationship, but the atmosphere is actually closer to non-
linear gradient wind balance. Nonlinear normal mode initialization modi-
fies the analysis to satisfy gradient balance, and therefore in regions of
large curvature where the difference between geostrophic and gradient is
greatest it can make substantial changes. This effect was observed in

their tests with good quality, complete height and wind observations over

209



a reasonably dense network. In this case the initialization still made
30 m changes in the height field in trough regions. The problem is more
serious given just height data or just wind data, and, as we will show
later, the better the observations are relative to the first guess, the
more serious the problem.

For example, with height observations only, the analysis procedure
draws for the heights and produces corresponding geostrophic wind incre-
ments. In regions of large curvature, this geostrophic increment will be
in error since the atmosphere is more in gradient balance. However, ex-—
cept for the largest scales, the nonlinear normal mode initialization
modifies the originally correct height analysis to be in nonlinear balance
with the erroneous geostrophic wind (Daley, 1978, 1980), producing a rela-
tively large and, in this case, incorrect change in the height analysis.

In the complementary case of wind observations only, the analysis
draws to the winds and produces a corresponding geostrophic height incre-
ment. For the largest scales, the initialization modifies the correct
wind field to match the erroneous height field. For smaller scales, the
initialization modifies the height field to be in nonlinear balance with
the correct wind field. In this case, the change made to the smaller
scales by the initialization is appropriate and desirable.

In both cases, however, the meed for such changes is not indicated by
the expected analysis error. This inconsistency arises because the ex-
pected analysis error is determined directly from the specified error
covariances assuming they are correct. Thus, these expected errors assume
the geostrophic relation is correct and do not recognize the error of this

relation.
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The variational approach coupled to nonlinear normal mode initializa-
tion was introduced by Daley (1978) and extended by Tribbia (1982) as a
means of obtaining a balanced initial state faithful to the analysis,
faithful meaning that the changes made to the analysis by the procedure
are not inconsistent with the analysis errors. The definition of weights
for the fidelity measure in this procedure which reflect the degree of
confidence in the analysis at each point is not as straightforward as sim-
ply using the expected analysis error since, as pointed out above, this
expected error does not reflect the error in the analysis incurred by not
recognizing the nonlinear nature of the relationship between heights and
winds,

This variational approach is also computationally a very large prob-
lem especially if the weighting functions vary with all dimensions.
Daley’s (1978) weight functions varied arbitrarily in the north-south di-
rection, but because of the computational constraints, the longitudinal
variation was treated in a perturbative manner. Tribbia (1982) extended
the approach to allow complete variation of the weight functions in the
horizontal directions and demonstrated the effectiveness of this approach
with a spectral shallow-water model of about rhomboidal 20 resolution.
With current computers, it would be difficult to deal with much finer
resolution or to include nonseparable vertical variations. Therefore,
even if the problem of the specification of the weight functions can be
solved, this approach lends itself more to the large-scale global motions
than to the smaller, more local aspects discussed above.

As an alternative to variational methods, Phillips (1982) suggested

an approach in which only the linear slow mode fields are analyzed via
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optimal interpolation. The covariance structure functions are based on
relationships derived from the structure of the linear slow modes only.
Thus, the nonlinear gradient error should not affect the anlysis. The
nonlinear component of the field is obtained from the slow modes via
Baer-Tribbia (1977) nonlinear modal initialization. His approach has a
few restrictive assumptions that make it impossible to apply in practice
as formally proposed. For example, all observations must be used in the
analysis of each gridpoint variable. Because of the large number of atmo-
spheric observations, this is impractical with optimal interpolation.
Simplifying assumptions must be introduced into Phillips’ approach to make
it operationally feasible. His approach has not been tested in any prac-
tical situation.

Both the variational technique and the proposal of Phillips (1982)
are essentially global procedures. Because of their global nature they
require the inversion of gigantic, full matrices, an almost impossible
task on present-day computers. Our following proposed iterative approach
essentially handles the global problem in two steps. The part requiring
matrix inversion is done locally with much smaller matrices. The other
part is done globally, but it only deals with matrix multiplications,
rather than inverses, which can be done on present-day computers. There-
fore, our proposed iterative approach is feasible today. This will be

explained more fully after the iterative approach is described.

More details on this subject can be seen in Williamson and Daley (1983).
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2. Proposed iterative approach

The variationmal approach of Daley (1978) and Tribbia (1982) minimizes
the difference between the balanced initial state and an analysis. A more
desirable approach might be to minimize the difference between the balanc-
ed initial state and the observations themselves rather than an analysis
of these observations. In principal, one can do this using the normal
mode approach of Flattery’s (1970) analysis scheme, but incorporating the
ideas of nonlinear normal mode balance. Difficulties arise in such an ap-
proach, however, because the'very convenient and desirable orthogonality
properties of Hough functions are lost when dealing with an arbitrary ob-
servational network. In addition, the formalisms of optimal interpolation
which determine the}relative weights for observations of differing quality
is also lost.

Optimal interpolation canm be looked at as a minimizational fit to the
observations. In fact, Kimeldorf and Wahba (1970) show that for every
covariance structure function in optimal interpolation, there is a vari-
ational problem that will give the same solution and vice versa. There-
fore, in Tribbia‘s (1982) variational iterative approach, it seems
reasonable to replace his variational minimization step with multivariate
optimal interpolation. In other words, one could perform multivariate
optimal interpolation followed by nonlinear normal mode initialization
followed by multivariate optimal interpolation (using the first ini-
tialized analysis for the first guess or trial field), followed by ini-
tialization, etc., until, hopefully, the initialization and the analysis
both make negligible changes indicating convergence. Of course, sequen-—

tial optimal interpolation would offer no improvement over the first
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analysis if nothing was done in between, since no new information is added
and the first optimal interpolation would minimize the expected analysis
error within that formalism. However, the slow component of the analysis
generally has a smaller error than the first trial field and therefore the
subsequent geostrophic analysis increments will be smaller in the next
optimal interpolation, resulting in smaller error from the geostrophic
approximation. 1In such an iterative approach on successive iterations one
could also introduce local variations in the structure functions which are
gerived from the previous iterate. We will not pursue that possibility
further here, but rather concentrate on the geostrophic error.

As was mentioned above, in our proposed iterative techniques the
essentially local optimal interpolation (as applied in practice) is
separated from the global initialization aspect. The matrix inversion
occurs in the optimal interpolation step. Because of the local nature of
this ‘operation in practice the matrices involved are reasonably small and
are readily invertible. On the other hand, the global initialization
requires the manipulation of very large matrices but these manipulations
are basically matrix multiplications which can be handled readily on
present-day computers.

Following Tribbia’s (1982) examples (especially his Fig. 5) the
iterative procedure introduced above can be interpreted geometrically
using the slow manifold diagram introduced by Leith (1980) and further
elaborated by Daley (1980). Figure 1 illustrates the procedure for an
idealized case., The abscissa R is the Rossby manifold, the ordinate G the

gravity manifold, the curve S is the slow manifold, and the lines D are
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data manifolds for a particular type of data. For the purpose of illus-
tration, we take D to consist of height observations with no errors and
further assume that the optimal interpolation scheme draws to the data
exactly so the height analysis has no error. This, of course, is improb-
able in reality and we will illustrate how errors affect the procedure
later.

Optimal interpolation requires a first guess or total field which is
modified according to the observations. In our iterative approach there
is a sequence of trial fields. The first trial field for the iterative
procedure would normally be provided by a model forecast as is generally
done in operational practice today and thus lies on {(or can be made to lie
on) the slow manifold and is denoted S, in Fig. 1. The optimal inter-
polation with geostrophically related covariances modifies the Rossby
modes without significantly altering the gravity modes of the first total
field to produce the first analysis A; in Fig. 1, which under the above
assumptions lies on the height data manifold D. The analysis procedure
itself is then represented by a horizontal line denoted in the figure.
Nonlinear normal mode initialization modifies the gravity waves of the
analysis A; to produce its slow component S; lying on the slow manifold.
The inititialization procedure is represented by a vertical line in Fig. 1
and denoted by NMI. A second analysis is then performed based on S) for
the (second) total field to produce the second analysis Ay after which its
slow component S; is calculated. The procedure is continued with the slow
componenet of the nth analysis serving as the total field for the (n+l)th
analysis. Convergence is indicated by insignificant changes being made by

both the analysis and the initialization. Figure 1 indicates that for
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cyclonic flows the error of the slow component height field changes sign
with each analysis since it lies on the opposite side of the data manifold
than the previous one, but for anticyclonic flows the error of the slow
component height field always has the same sign as the error of the first
trial field while its magnitude decreases.

The above example illustrates the procedure for an idealized case
which will never exist in reality. Observations are not error-free and
they are not collocated with analysis points so the analysis Qili have ad-
ditional errors other than the geostrophic one which might affect the con-
vergence properties of our proposed iterative approach. We have tested
this approach in a more practical situation with a few simplifications to
isolate the properties of this iterative approach from other problems
associated with nonlinear normal mode initialization itself. We describe

our experimental design in the next section
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3. Experimental approach

a. Reference atmosphere

Our experimental approach follows that of Williamson et al. (1981)
and we only review it here. We define a "reference atmosphere" or control
to be an observed atmospheric state which has been balanced with respect
to a particular prediction model. "The model used is the spectral nonlin-
ear shallow-water model of Bourke (1972), hemispheric with a rhomboidal 31
truncation and 2 km equivalent depth. The reference state is obtained
from the 500 mb wind and geopotential NMC Northern Hemisphere Flattery-
Hough analysis of 0000 GMT 29 January 1977 initialized for the model using
Machenhauer‘s (1977) unconstrained nonlinear normal mode initialization
technique with five nonlinear iterations. This reference state defines
the atmosphere we want to analyze. It is defined as spherical harmonic
coefficients so that "error-free observations" may be generated for any
desired observational network configuration and errors with specified
characteristics may be added. These observations serve as input to the

iterative analysis—initialization scheme.

b. Slow and fast components

The slow component of the analysis consists of the Rossby modes plus
the balanced portion of the gravity modes (i.e. the slowly varying com-
ponent). The balanced portion of the gravity modes is obtained with one
iteration of Machenhauer’s unconstrained nonlinear normal mode initiali-
zation technique using the shallow-water spectral model. Thus, we have a

perfect forecast model and the initialization technique is capable of
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reproducing the balance of our reference atmosphere. The convergence
properties of the iterative analysis initialization procedure are examined
without the additional errors that would be present in actual practice
from an imperfect forecast model.

The analysis error for any iterate is obtained exactly by comparing
it to the reference atmosphere. Similarly the slow component error is
calculated as the slow component of the analysis minus the reference
atmosphere. The fast component of the analysis is the difference between

the analysis and its slow compomnent.

c. Optimal interpolation

The optimal interpolation procedure used for the following tests was
developed and described by Schlatter (1975) and Schlatter et al. (1976).
We summarize its salient features here. Poleward of 20° latitude, the
analysis is trivariate in geopotential height (h) and the horizontal wind
components (u, v). The height-wind covariances are obtained from the
height-height covariances via the geostrophic relationship. Each trial
field error standard deviations are calculated by comparing the actual
trial field to the reference atmosphere. The zonal averages of these
calculated values are input to the analysis program. The observational
error standard deviations are specified in the program corresponding to
the actual cbservational errors. The cbservational network and errors

will be described shortly. The scheme uses all data from the ten closest

219




abservation locations with a maximum search radius of 1500 km beyond which
observations are not accepted.

Equatorward of 20° the analysis is bivariate in u and v and uni-
variate in h. We do not examine the analysis in this region as we are
concerned with eliminating the particular error arising from the geo-
strophically related covariances in mid latitudes. The analysis is per-
formed on a uniform hemispheric grid with 96 points in longitude and 35 in
latitude, giving grid intervals of 3.75%nd 2.56°% respectively.

The observational points are chosen at random on the hemisphere with
a mean specified spacing D as follows. The hemisphere is first covered
with uniform boxes with sides as close to D in length as possible in the
manner of the Kurihara (1965) grid. One observation point is then located
randomly in each box from a rectangular distribution. Examples of such
networks are shown in Williamson et al. (1981) for D = 250 km, 500 km, and
1000 km. Both height and wind are computed from the reference atmo-
sphere. Random errors are added to these observations with a normal
distribution and a specified standard deviatiom.

The first trial field needed to start the iterative analysis-
initialization procedure is obtained from a 12 hr forecast from the
initialized Flattery'analysis 12 hr previous to that used to define the
reference atmosphere. This forecast, which is balanced initially, remains
in balance. The hemispheric rms differences between this trial field and
the reference state are 24.44 m in the geopotential and 6.10 m sec™’ in
the wind field.

As mentioned before, after each iteration the analysis error can be

calculated by comparing it to the reference atmosphere and can be divided
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into its slow and fast components. These errors provide measures of the
convergence of the technique. The goal is to obtain an analysis with a
negligible fast component and with minimum error in its slow component.

We have tested the iterative approach on several examples from purely
hypothetical extremes of error-free observations of one type (heights or winds
only) to more realistic configurations corresponding to dense radiosonde

observations.
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4. Conclusions

A unified analysis-initialization technique consist{ng of iterating
multivariable optimal interpolation and nonlinear normal mode initializa-
tion is introduced. Arguments based on manifold diagrams are presented to
illustrate in simple cases the nature of the convergence properties of the
technique. The scheme is tested for more practical situations in a
shallow water model framework. Several examples are considered from
purely hypothetical extremes of error-free observations of one variable
(heights or winds) to more realistic configurations corresponding to dense
radiosonde observations.

With either error~free height observations or error-free wind obser-
vations the procedure converges to an analysis with very small error and
minimal fast component. The linear geostrophic error is eliminated. 1In
the case of height observations only, for cyclonic flow the error in the
slow component of the height field changes sign with each iteration as it
approaches zero while for anticyclonic flow the error retains the same
sign as it decreases. In the case of wind observations only, the error
in the slow component of the height field is primarily of large scale and
decreases with successive iterates. These slow component errors are the
relevant measures of the quality of the analysis as initial conditiomns for
a forecast because they are the components which affect the time evolution
of the forecast.

Tests with realistic observational error standard deviations show

that overall the iterative procedure converges more rapidly in these cases
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than in the preceding error-free cases. The faster convergence occurs
because with larger observational errors the analysis procedure gives less
weight to the observations and more to the trial field resulting in
smaller geostrophic analysis increments. The convergent analysis is an
optimal combinatién of the trial field and observations based on the
observational error and the first.trial field error. The geostrophic
error is eliminated by the iterative procedure.

Thé-iterative optimal interpolation--nonlinear normal mode initiali-
zation--provides an analysis consistent with the observational errors and
in nonlinear balance. The errors associated with geostrophically related
covariances are eliminated. This occurs because the slow component of
each successive analysis is a better approximation to the atmospheric
state than the first guess used for that analysis. Thus, when the slow
component is used as the first guess for the next analysis, the analyzed
geostrophic increments are smaller and thus the geostrophic component of
the analysis is smaller until eventually it is negligible,

The iterative approach need not be prohibitively expensive as succes-
sive analyses need only be performed in regibns which are not in balance,
rather than over the whole domain. The fast component of the analysis
provides a local and global measure of convergence. In regions where it
is small, the procedure has converged and the analysis need not be
repeated. It is only in regions with a relatively large fast component
that further analyses will be beneficial. Given height data only, these
regions are limited to areas of large curvature which generally cover only

a small fraction of the globe.
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Our tests were all performed in the context of a reference atmosphere
equivalent to the shallow water equations for which we have a perfect
forecast model and a nonlinear normal mode initialization procedure which

.provide exactly the slow manifold component. We showed that the procedure
produces an analysis satisfying horizontal nonlinear gradient flow. How-
ever, in reality, the flow in the baroclinic atmosphere is more compli-
cated than simple horizontal gradient flow, our forecast models are not
perfect and nonlinear normal mode initialization does not always converge
when diabatic processes are present. The extent to which the iterative
analysis-initialization procedure will produce an analysis with the
general nonlinear balances of the atmosphere will depend on what extent we
can get on the slow manifold of the atmosphere. In addition, the linear
constraints in the analysis procedure should be at least partially
descriptive of the atmosphere so that the multivariate aspect of the
procedure will provide information over a univariate analysis. The multi-
variate aspect is a key in providing an analysis whose slow component is
better than the trial field on successive iterations. As each component
(analysis, model and initialization) is improved, the iterative analysis-
initialization approach will become more successful in the operational

environment.
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