PRACTICAL CONCERNS IN MULTITASKING
ON THE CRAY X-MP
John L. Larson

Cray Research, Inc.
Chippewa Falls, WL

Summary: Multitasking and vectorization are both optimizations which
exploit program and machine parallelism. Many of the goals for obtaining
increased performance through multitasking are identical to those for
vectorization, only the terminology ard underlying structures are changed.
High performance on the CRAY X-MP is achieved by addressing familiar
concerns in a new setting. Practical objectives in programming as well as

limitations in performance are described for a multitasking environment.

1. INTRODUCTION

The exploitation of parallelism for increased performance is commonplacc.
Architectural features such as multibanked memory, instruction execution
overlap, multiple functional units, and asynchronous I/0 are but a few
examples of techniques which use parallelism to decrease program execution
time. The CRAY-1, with its segmented functional units, exploits pipeline
parallelism to increase performance through vectorization, Johnson(1978).
The factors which influence vector performance have been studied in detail.
Relationships between performance and quantities such as percentage of time
vectorized, vector length, and balanced resource utilization seem well

understood. See, for example, Hockney and Jesshope(1981).

With the introduction of the vector multiprocessor CRAY X-MP (2 processors
in 1982, 4 processors in 1984) simultanecus exploitation of vectorization
and multitasking became possible, Hwang and Briggs(1984). At first

92

glance, many of the concerns for increased performance through multitasking
seem new. However, closer inspection reveals that the goals in
multitasking are identical to those in vectorization, only the terminology
and underlying structures are different. This paper investigates the
issues in obtaining optimal performance in a multitasking environment and

relates them to familiar concerns in vectorization optimization.

2. CRAY-X-MP/48 Hardware Overview

Figures 1 and 2 illustrate, respectively, the overall system organization
and typical data flow of the CRAY X-MP/48. The mainframe consists of 4 |
identical processors which share 8 miilion 64-bit words of ECL bipolar
memory. The clock cycle time is 9.5 nanoseconds, and the memory barnk cycle
time is 38 nanoseconds. Processors may be configured to operate
independently on separate jobs, or assigned in any combination to operate
jointly on a single job. For a multitasked job, the processors may use a
shared set (cluster) of additionmal registers for synchronization and

communication.

The computational capabilities of the mainframe are complimented by the I/0
capabilities of the DD-49 disk, the I/0 Subsystem (IOS) and the Solid-state
Storage Device (SSD). The DD-49 disk has a capacity of 1200 megabytes, a
10 megabytes/second transfer rate, and an access time of 20 milliseconds.
The IOS contains up to 8 million words of buffer memory, and is connected to
the mainframe and SSD by several 40 megabytes/second channels. The SSD
provides up to 128 megawords of secondary storage, and is connected to the
mainframe by 2 very high speed channels with an aggregate transfer rate of
2000 megabytes/seconds. The rates given here represent act;ual, rather

than peak performance.

23

FRONT

108 CENTRAL MEMORY END
5 1 SYSTEM
) I
! INTER—CPU I
1 COMMUNICATION i
a v |
~I~_CONTROL - H
$SD crPuof| !> “1CPU B[[108
! - AR ! TAPES
RS e ST
RN CPU 1 v 4
DISK
{STORAGE
CPU 110

——DATA PATH
-~~~~CONTROL PATH

Figure 1. CRAY X-MP-4 System Organization

DISK STRIPING

10 MB/sec.

MAINFRAME
4 CPUs
1000 MB/sec
SSD
I10S 40 MB/sec.
\ - '/\'
FRONT (F ¥ 2
E . —— 4
SYSTEM - 7 .
128 MW
8 MW 40 MB/sec.
1000 MB/sec.
8 MW
TAPES

Figure 2. CRAY X-MP-4 Data Flow

94

Data flow for a typical job moves input data files from disk to central
memory or SSD. Disk transfers may use the parallel disk striping
capabilities of the IOS to enhance the disk transfer rate. Temporary files
may be created and repetitively manipulated on the SSD during program
execution. Output data files are migrated from central memory or SSD to

disk at the end of the job.

3. CRAY X-MP/48 SOFTWARE OVERVIEW

Software support for multitasking programming on the CRAY X-MP/48 is
available at the FORTRAN level, where basic multitasking operations are
implemented as user callable subroutines. Table 1 contains the key
multitasking subroutines in the multitasking library. The capability of
starting an asynchronous task. to be executed on another processor is
provided by the TSKSTART routine. Synchronization, commmnication and
mutual exclusion functions are provided by the other routines using various

programming styles. See Larson(1984), and CRAY(1985) for more details.

Category Subroutine Function

TASK CONTROL CALL TSKSTART(TASKID, Creates a task with identification
SUBNAME, ARGS) TASKID and entry point SUBNAME.
CALL TSKWAIT(TASKID) Susperds the calling task until the
task with identification TASKID
has completed.
EVENT CONTROL CALI, EVPOST(EVENT) Changes EVENT to ‘posted’'.
CALL EVWAIT(EVENT) Suspends the calling task until the
status of EVENT is 'posted'.
CALL, EVCLEAR(EVENT) Changes EVENT to 'cleared'.

IOCK CONTROL CALL LOCKON(ILOCK) Suspends calling task until IOCK is
'unlocked', then changes LOCK to
'locked'.
CALL LOCKOFF (LOCK) Changes LOCK to 'unlocked'.

Table 1. Key multitasking subroutines

The FORTRAN multitasking environment is also supported by enhancements in

95

other system software. Code reentrancy is provided by CFT, the FORTRAN
compiler, through the generation of stack-based object code and a compatible
calling sequence. The operating system, 00S, allows a job to create new
tasks belonging to the job, and handles tasks as the fundamental unit of
schedulable work. The multitasking library also performs task scheduling at

the user level.

4. MULTITASKING PERFORMANCE ISSUES

In this section we investigate several concerns pertaining to multitasking
performance. Upper limits of achievable speedup and lower limits of
applicability are studied. Programming techniques are given to maximize
load balance and minimize memory contention. Finally, the distinction

between time and work is clarified.

4.1 Theoretical Speedup and Amdahl's Law

Multitasking is an 6ptimization which changes the apparent execution time of
code segments to which it is applied. The result of having two different
execution speeds is that the overall execution time of a multitasked program
behaves according to Amdahl's Law based on the percentage of time which is

miltitasked, Amdahl(1967).

Let T1 be the execution time of a non-multitasked program. If multitasking
is applied to a fraction, £, of the original execution time, then the
theoretical execution time (assuming no overhead or delays) is the time to
do the sequential portion, Ts, plus the time to perform the multitasked
part, Tm. These quantities are a function of the original execution time,

the number of processors (p), and £.

96

Tl = original execution time

f = fraction of T1 multitasked

p = nunber of processors

= wall clock time of multitasked execution
Ts = (1-£)*T1 = wall clock time of sequential part
Tm = (£/p)*T1 = wall clock time of multitasked part

The theoretical speedup attainable with p processors, S(p,£f), is a ratio of
the original execution time to the total execution time of the multitasked

program.

Tl T1 ; ' Tl
S(P:f) = —-—= =
- Tp Ts + Tm TL * ((1-f) + (£/p))

For a given, fixed number of processors, a plot of speedup versus f

produces the familiar Amdahl's Law curve in figure 3.

o]

*
*
—_——— e e e e e W —

*

Speedup
S(p, £)

*

%k
*ekkk
dekdkedokdodokkdodokdedeok kkk

[
e e o o e e e st e e e e e e e

(@)

.5

[
.

f = fraction multitasked

Figure 3. Amdahl's Law

97

It is interesting to look at the theoretical speedup for different values of
pand £. See Table 2. Several important cbservations can be made from this
table. The small entries in the lower part of the table show that
significant speedups are not possible unless significant portions of the
program are multitasked. For example, if 50 percent of the time in a code is
multitasked on 4 processors, it should be no surprise that the actual
speedup attained is, say, "only 1.5". The best possible speedup which could
have been achieved is 1.6. The tendency to think that with p processors,

speedups should always be p, is a myth.

fraction

of time

multitasked nunber of processors
f | pl p2 p4 p8 p=16 p=32 p=64 p=infinity

1.00 | 1.00 2.00 4.00 8.00 16.00 32.00 64.00 infinity
.99 | 1.00 1.98 3.88 7.48 13.91 24.43 39.26 100.00
.98 | 1.00 1.9 3.77 7.02 12.31 19.75 28.32 50.00
.97 | 1.00 1.94 3.67 6.61 11.03 16.58 22.14 33.33
.9 | 1.00 1.92 3.57 6.25 10.00 14.29 18.18 25.00
.95 | 1.00 1.90 3.48 5.93 9.14 12.55 15.42 20.00
.94 | 1.00 1.89 3.39 5.63 8.42 11.19 13.39 16.67
.93 | 1.00 1.87 3.31 5.37 7.80 10.09 11.83 14.28
.92 | 1.00 1.85 3.23 5.13 7.27 9.19 10.60 12.50
.91 | 1.00 1.83 3.15 4.91 6.81 8.44 9.59 11.11
.90 | 1.00 1.82 3.08 4.71 6.40 7.80 8.77 10.00
.75 | 1.00 1.60 2.28 2.91 3.37 3.66 3.82 4.00
.50 | 1.00 1.33 1.60 1.78 1.88 1.94 1.97 2.00
.25 | 1.00 1.14 1.23 1.28 1.31 1.32 1.33 1.33
.10 | 1.00 1.05 1.08 1.09 1.10 1.11 1.11 1.11
.00 | 1.00 1.00 1.00 1.00 1.00 1.00 . 1.00 1.00

Table 2. Theoretical speedup

Another message contained in the table comes from the upper rows. For a
fixed percentage of multitasked execution time, the speedup does not
increase as fast as the number of processors. Indeed, the speedup converges
to a finite limit for p=infinity. The cause of this phenomenon is the

percentage of time not multitasked. For a large number of processors, the

98

execution wall clock time is dominated by the non-multitasked code.
Speedups approaching the number of processors are possible, but for larger
number of processors, much more of the code must be multitasked. This
encourages future application development to sdirive, using a top-down

approach, for high level parallelism.

The use of Arrxiahl's law in explaining general speedup limitations for
vectorization is commonplace. In this environment f represents the fraction
of the original sequential execution time which is vectorizable, and p
denotes the ratio of wvector to scalar speed. An alternative formulation
would relate (1-f) to the ratio of vector startup time to total vector

execution time, and p would represent the number of pipeline stages.

Multitasking speedup performance is often compared to the "obvious" speedup
maximum (the number of processors), although the correct comparison should
be against the theoretical speedup given by Amdahl's ILaw. Ironically,
actual vectorization speedup performance is seldom compared in the same way

against any theoretical maximum.

4.2 Granularity and Overhead

At one end, Amdahl's Law limits the maximum performance possible for a
multitasked program. At another extreme, the overhead incurred in
multitasking limits the smallest granularity which can be profitably
exploited. By granularity we mean the length of time to execute a
multitaskable segment of the original program on a single CPU. Granularity
is measured in t‘ime units, rather than floating point operations, since the
amount of work that canv be done in a given time depends on whether the

computation is in scalar or vector mode.

9%

On the CRAY X~-MP, a granularity of one millisecond is considered large.
For this granularity size, the overhead of the FORTRAN multitasking calls
is often negligible. Very small granularity (on the order of microseconds)
can also be profitably exploited through assembly language coding for
synchronization which directly accesses the hardware supporting

multitasking. See Chen, Dongarra, and Hsiung(1984).

The effect of overhead on performance can be modeled in a simple way. ILet
Tl = X be the time to execute a multitaskable program segment on one
processor. Then for a given overhead, OH, the time to execute the code on
p CPUs will be Tp = CH + X/p. The ratio T1/Tp gives the speedup, Sp, of the
multitasked code over the original program. Figure 4 shows the

relationship of speedup to granularity for a fixed overhead.

*

—1 %

X

Figure 4. Speedup vs. granularity for fixed overhead

By simple manipulation of the formula for speedup, one obtains a
relationship for the minimum granularity required to obtain a given speedup

in the presence of overhead.

X=(Sp * p * OH) / (p-Sp)

100

For a given OH on p processors, a speedup Sp can be cbtained only if the

granularity is at least X.

The curve in figure 4 is identical to one produced in vectorization
analysis. For this environment, granularity is measured in terms of vector
length, (VL), and the overhead is denoted as vector startup time. As
Kuck(1978) describes, a scalar computation may take time Tl = k‘(VL) where k
is the clock time for the operation. For a pipelined computation using a
functional unit with k stages, the vector time is Tk = (k-1) + VL, where the
overhead of filling the pipe is (k-1). The speedup curve of Sk = T1/Tk vé.
VL shows the minimum vector length required for profitable vectorization
speedups.

4.3 Ipad Balancing

Multitasking is most often applied to parallél work found in the
independent iterations of DO loops. If the loop has N iterations, we call
N the extent of the parallelism of the loop. Load balancing is the
technique of mapping N onto p processors or tasks so that each task has the

same amount of work to do. See figure 5.

There are two major cases to consider: static and dynamic partitioning.
Static partitioning is used when the time for each iteration of the loop is
approximately the same. This technique assigns a fixed subset of
jiterations to each task. The iterations which a task is to perform can be
computed from the task, or processor number. One strategy assigns a subset
of contiguous iterations to each processor. The jth processor computes
iterations (j*N)/p+l to ((j+1)*N)/p. Another static strategy assigns the
jterations in an interleaved fashion. The jth processor computes every pth
iteration from j+l1 to N. See figure 6.

101

I l
? parallel IiT

_N——

|

I
Do |
loop}
I

I

N = extent of parallelism

|
I
l l I |
malln taTkl taTkz parallel tas]lc(p—l)
I
|

multitasked code on p processors
Figure 5. Mapping parallelism to processors

Processor Assigned iterations

0 I= 1, N/4 I=1,N,P

pl I = N/4+l, 2*N/4 or I=2, NP

p2 I = 2*N/4+1, 3*N/4 I=3N,P

p3 ‘ I = 3*N/4+1, 4*N/4 I=4,N,7P
=4

Figure 6. Static partitioning with p

If the time for an iteration of the loop varies significantly then a
dynamic partitioning of work will tend to balance the load on each
processor. This technique maintains a shared counter which indicates the
next unprocessed iteration. Each processor accesses and updates the
counter to commit itself to one or more iterations. Those processors which
commit to short iterations will return more often to find more work, while
processors committed to long iterations will look for new work less
frequently. This technique incurs an overhead to protect the counter
during the update process. If the average granularity of the iterations is
large compared to this overhead, then the iterations may be distributed one

at a time. If the average granularity of the iterations is small compared

102

to the overhead of protecting the iteration counter, then the iterations
can be distributed to processors in chunks. Each chunk contains K
iterations. See figure 7, where I, K, and N are shared, ard L is private to

each task.

COMMON /TASKS/ I, K, N
I=1

Each processor executes

10 CONTINUE
L=1T
I=L+K
CALL IOCKOFF (LOCKI)
IF (L.GT.N) GO TO 20
compute interations L through min(I+K-1,N)
GO TO 10
20 CONTINUE

Figure 7. Dynamic partitioning for large (K=1) or
small (K>1) dgranularity iterations

Heuristics can be devised for choosing the chunking factor, K. On the one
hand, too small a value of K will not allow the lock overhead to be
amortized over enough iterations. Also, too large a value of K will not

produce enough churks to allow load balancing to take place. See figure 8.

| %* *

| * *

| * *
wall | * *
clock| * *
time | *kk

|

|

| too no

much load

|overhead balancing
I K
K

opt
Figure 8. Choosing the optimal chunking factor

To reduce the relative overhead, K should be at least Kmin. To facilitate

103

load balancing, K should be less than Kmax. The value of K should be

chosen in the range (Kmin, Kmax), where

(lock overhead)

Kmin = smallest K such that < .01
K*(ave.iter.time)
N

Kmax = largest K such that -—— > 10*p
K

The balancing of computational work on several processors in multitasking
has the same goal as overlapping asynchronous I/O with computation in a
uniprocessing environment, namely, to maximize the simultaneous

utilization of available resources.

4.4 Minimizing Memory Contention

One of the factors influencing performance in a shared memory architecture
is memory contention. Memory references made with the three computational
ports of each processor may result in resource conflicts. These conflicts
are resolved by having some references wait until the required resource
becomes available. This waiting can cause a computation on a single CPU to
take longer in a system with all processors busy, than in an otherwise

quiet environment.

The user has control over the intensity of memory references as reflected
in the programming style. The intensity of vector memory references can be
measured in units of memory references per floating point operation
(memrefs/flop). Also important is the layout of the memory references

across the interleaved memory banks.

Programming styles which reduce the memory contention produce an increased

performance both in vector uniprocessing and multitasking environments.

104

The following is a list of program optimizations which reduce the memory
contention for the current compiler. A complete description can be found

in CRAY(1985).

1. Vertical Inner Loop Unrolling
2. Horizontal Inner Loop Unrolling
3. Vertical Outer Loop Unrolling
~ 4. Horizontal Outer Loop Unrolling
For example, (Dongarra(1984)),
DO 40 J = 1, 4*M+1 3 MEMREFS / 2 FLOPS
D4I=1,N
40 Y(I) = ¥Y(1) + X(J) * M(1,J)
DO 41 J =1, 4*M+1, 4 6 MEMREFS / 8 FIOPS

DOD41I=1, N

41 Y(I) = (((Y(I) +X(T) * M(I,T))
$ + X(J+1) * M(I,J+1))
$ + X(J+2) * M(1,J+2))
S + X(J+3) * M(I,J+3)

5. Dimensioning of Arrays
For exanple,
DIMENSION X(64,100), XX(65,100)
DOS0I=1, 64 X(I,*) IN 1 BANK
DO 50 J = 1, 100
50 X(1,J) = X(1,J) + 1.0
DO 511I=1, 64 XX(I,*) IN 64 BANKS
DO 51 J =1, 100
51 XX(1,J) = XX(1,J) + 1.0
6. Loop Interchange
7. Padding Between Common Block Arrays

105

These techniques are commonly considered vectorization optimizations since
they enhance vector performance in a uniprocessing environment. However,
they are also multitasking optimizations which minimize inter-CPU memory

contention by minimizing the intra-CPU conflicts.

4.5 Measuring Time and Work

For a single CPU system used in a dedicated mode, measuring work is often
done with CPU charges in time units. For computational jobs, the CPU time
and the wall clock time are frequently quite close. No distinction between
time ard work is necessary. The ability of several CPUs to perform work at
the same‘ time creates a distinction between work and the time to complete
the work. In a multitasked job, several CPUs may perform more work in less
real time than an equivalent program executed on a single processor. The
presence of multitasking overhead raises the question of what work is to be

credited and measured.

Kuck(1978) defines some basic quantities which clarify the situation. See
figure 9. From an extermal viewpoint, we observe the work (CPU charges),
01, and the wall clock time, Tl, for a single processor execution of the
program. Often these quantities are defined to be equal. We also record the
wall clock time, Tp, for the execution on a p processor system. The ratio of
Tl to Tp gives the speedup, Sp. A comparison of Sp to p quantifies the
efficiency, Ep. This is an equitable comparison only when the theoretical

speedup is p (the program is 100% multitaskable).

From an internal viewpoint, we observe the work (CPU charges), Op, and the
wall clock time, Tp, of the multitasked job. Naturally, Tp has the same
value as was recorded externally. However, additional work may be done in

the parallel execution. Such work may include charges for multitasking

106

calls, synchronization delays, and memory contention. The redundancy, Rp,
measures the extra work performed by the multitasked program. The internal
speedup, "Sp", gives credit for all the work performed. Finally, the

utilization, Up, shows how busy the system really is.

i i
<N
<§ 1 CPU p CPU p CPU

’ '
ol Rp = Op/Ol Op
T1 = Ol
(1/Ep) O1/p = Tp = (1/Up) op/p
Sp = T1/Tp = (Ep)p "Sp" = Op/Tp = (Up)p
Ep = Sp/p = 1/(p-f(p-1)) Up = "Sp"/p = RpEp

Figure 9. Measuring time and work

Some algebraic manipulation shows that the two viewpoints define similar
quantities within a factor of Rp. The redundancy factor Rp is the link

which relates and separates the two perspectives.

The situation is illustrated by an example code. A lattice gauge program,
which is 100% multitaskable, requires 3.28 hours on a single X-MP-4
processor. When executed on four CPUs, the CPU charges are 3.45 hours, ard
the run completes in 0.87 hours. We have Ol = Tl = 3.28, Op = 3.45, and Tp =
0.87. From these quantities all others may be computed. The realized
speedup is Sp = 3.77 with an efficiency Ep = 0.94. Internally, the system
speedup is "Sp" = 3.96 and utilization is 0.99, where more work (Rp = 1.05)
was performed than was in the original program.

107

One way to interpret these results is in the spirit of a backward error
analysis for assessing roundoff error. Here we relate the performance of
the multitasked job with overhead to a hypothetical multitasked job with no
overhead, but with a smaller fraction of time multitasked. By doing this,
all of the overhead can be accounted for in a single, simple way. From the
formula, Ep = 1/(p-£(p-1)), we can see that our 100% multitaskable job with
overhead gave the same performance as an equivalent program with no
overhead, but which was 98% multitaskable. Amdahl's Law shows that for p=4
and £=0.98 the theoretical speedup with no overhead is Sp=3.77, which was

the speedup recorded for our actual program.

The quantities presented here can be defined in a vectorization
environment. For example, the value of p may be taken as the vector speed to
scalar speed ratio. The vectorized work, Op, may account for vector set up
or for redundant operations such as those which occur in masked operations.
Efficiency, Ep, may take into account the fraction of time which was

vectorized in computing the theoretical speedup possible.

5. APPLICATICN PERFORMANCE

Multitasking is utilized as a performance optimization for a variety of
application codes on the CRAY X-MP. The results are summarized in table 3.
Comparisons are made against runs executed on the same system, but
employing only one processor. The percent multitaskable column shows the
fraction of single processor execution time which was multitasked. This
percentage limited the theoretical speedup, based on Amdshl's Law, which
could be obtained. These multitasking percentage values are greater than
typical vectorization percentages, illustrating the common presense of
extensive high level parallelism in many application areas. The nearness of
the actual speedups to the theoretical speedups shows the high efficiency

delivered by the CRAY X-MP.
108

(4 CPUs)

percent theoretical actual

multitaskable speedup speedup

1. Particle-in Cell 97 % 3.67 3.48

2. Weather Forecast 98 % 3.77 3.55

3. Seismic Migration 98.7% 3.85 3.45

4. Monte Carlo 922 % 3.88 3.75

5. ILattice Gauge 100 % 4.00 3.77
6. Seismic Forward

Modelling 98.2% 3.80 3.50

7. Aerodynamics 98.8% 3.86 3.22

8. Chess variable n/a 3.15%

* CPU time divided by wall clock time

Table 3. Application performance

6. CONCLUSION

In a sense, multitasking is not new. It is only the exploitation of
parallelism along a different dimension than vectorization. Multitasking
urges us to open our eyes wider, beyond the imnermost loop, to see
parallelism at a higher level, where often a natural independence exists
along geometric or other problem attributes. Even at this higher level,
however, the concerns in the exploitation of multitasking parallelism are
basically the same as for vectorization, only the details are different.
Additionally, multitasking offers an optimization alternative, often being
applicable when vectorization is not possible. When applied on top of

vectorization, multitasking gives the performance benefits of both worlds.

7. REFERENCES

Amdahl, G., 1967: The Validity of the Single Processor Approach to
Achieving 1Iarge Scale Computing Capabilities. AFIPS Conference
Proceedings, SJCC, 3, pp. 483-485.

Chen, Steven S., Jack J. Dongarra, and Christopher C. Hsiung, 1984:
Multitasking Linear Algebra Algorithms on the CRAY X-MP-2: Experiences with
Small Granularity. Journal of Parallel and Distributed Computing, 1, pp.
22-31.

Cray Research, Inc., 1985: Multitasking User Guide. CRI internal technical
note, SN-0222, second printing.

109

Dongarra, Jack J., and Stanley C. Eisenstat, 1984: Squeezing the Most Out
of an Algorithm in CRAY FORTRAN. ACM TOMS, 10, pp. 221-230.

Hockney, R. W., and C. R. Jesshope, 198l: Parallel Computers. Adam Hilger
Ltd., Bristol, England, pm. 47-95.

Hwang, Kai, and Faye A. Briggs, 1984: Computer Architecture and Parallel
Processing. McGraw-Hill, New York, pp. 714-728.

Johnson, Paul M., 1978: An Introduction to Vector Processing. Computer
Design, 17, pp. 89-97.

Ruck, David J., 1978: The Structure of Computers and Computations. John
Wiley and Sons, New York, pp. 100 ard 255.

Larson, John L., 1984: Multitasking on the CRAY X-MP-2 Multiprocessor. IEEE
Computer, 17, pp. 62-69.

