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Summary: Semi-geostrophic solutions for flow over a long mountain barrier
are presented. They exhibit upstream blocking, a "weir' effect with a |
rapid downslope wind, a Fohn effect and pressure drag. The solutions
agree qualitatively with many observations. They are difficult to
represent accurately in fine mesh primitive equation models which tend to

exhibit an excessive mountain wave response.

Te INTRODUCTICN

This paper is concerned with accurate simulation by forecast models of
flows over orography of a large enough scale for geostrophic control to be
important and for the mountain shape to be reasonably represented by grid-
poiﬁt values. We use semi-geostrophic theory to increase our theoretical
understanding of such flows and then relate this understanding to the
design of forecast models.

The first sections of the paper present an extension of conventional semi-
geostrophic theory. This theory has been used to derive analytic
solutions for two dimensional flow over orography, for instance by Bannon
(1984) and Pierrehumbert (1985). These solutions predict infinite
ageostrophic velocities at the ridge crest when thé mountain reaches a
certain height. This typically happens for a height of fL/N, where N is
the Brunt-Vaisala frequency, L the half width and f the Coriolis
parameter. It is then usual to assume that the theory has broken down

and is of no further use. Cullen (1983) proposed that, for frontal
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flows, the Lagrangian form of semi-geostrophic theory still gives useful
information even when there is a local breakdown of the solution. Cullen,
Chynoweth and Purser (1986) make the same proposal for orographic flows.
They showed that solutions obtained this way contain mountain drag, rapid
downslope winds and a Fohn effect. We discuss the properties and physical
validity of these extended solutions in sections 2 to 5 of this paper.
The justification is less obvious than it is for fronts. While it is
reasonable to argue that Lagrangian equations do not see a frontal
discontinuity because the front marks an air mass boundary; it is not so
reasonable to say that Lagrangian equations do not see a mountain if there
is any cross mountain flow. If, however, the flow is blocked upstream of
the crest for a distance of 6rder NH/f , air above the mountain crest flowé
over undisturbed and air below it is deflected around the barrier; then it
can be argued that no air.éctually-undergoes a large acceleration which
would invalidate semi—geostrophic theory. In praqtice some air does rise
over the creét, and the validity of the solution depends on how much this
happense. |
The latter sections then discuss implications for forgcast‘models.

Two areas are examined. There is evidence that standard fine mesh
primitive equation models do not produce sufficient flow separation round
the Alps, but produce mountain wave activity on the scale of the whole
Alpine ridge instead. The model evidently sees nothing wrong with a
quasi-steady wave solution on this scale, such solutions can be produced
by two dimensional finite difference models. It does not converge to an
" alternative quasi-steady separated solution presumably because of the near
discontinuity then required in the verticai. |

. The second aspect to be examined is the accuracy of sigma coordinates.

A severe test of this is to model a "semi-geostrophic" flow over an
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equatorial ridge. The correct solution of the equations for this case
gives indefinite blocking of the flow below the mountain top, and
undisturbed horizontal flow above. While this is not an adequate model of
real equatorial flow, it provides an extreme case to test a sigma
coordinate formulation. It performs better than might be expected;

suggesting that it should perform reasonably well on more realistic flows.

2e LAGRANGIAN SEMIGEOSTROPHIC THEORY

We set out this theory in its simplest form using the % coordinate which
is a function of pressure, introduced by Hoskins and Bretherton (1972), and
the form of Boussinesq approximation employed by them. Assume also that

the Coriolis parameter is a constant. Then the equations take the form

Dayg 4 flumv) =0 (2.1)

Dt T

> flag=w) = o (2.2)
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% = 0 (2.4)
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W =0t 9= k(x,a), H (2.7)

The Boussinesq approximation is contained in equation (2.4) where < is the
specific volume of the fluid in (33 3 ). Equation (2.4) would be exact if
the vertical coordinate were pressure. The lower boundary condition has
been simplified to specify it at a fixed value of 3 rather than of
physical height. The rest of the notation is standard, following Hoskins
and Bretherton. a, is a reference value of potential temperature.

Equations (2.1) to (2.7) define (u,v,w) implicitly.

They can be solved analytically using the geostrophic coordinate
transformation, e.g. Blumen (1981), Bannon (1984), Pierrehumbert (1985).
Solutions can also be obtained by conformal mapping techniques, Gill (1981).
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This method clearly gives unphysical results when a discontinuity forms
since the solution is multivalued when transformed back to physical space.
In the case of mountain flows, the breakdown is manifested as a singularity
in the transformation back from a streamfunction coordinate to the physical
coordinates (Pierrehumbert, 1985).

Cullen and Purser (1984) proved that the Lagrangian equations (2.1) to
(2.7) can be solved as they stand. The solution is found by treating u
as a volume preserving rearrangement of the fluid. Values of Uﬁ' Vo and
® are predicted for each fluid element by sol&ing (2.1) to (2.3) along

trajectories. Absolute momentum quantities

M

N h (2.8)
N = —\;.a+ &3 ‘
are then calculated. The dependence of (2.1) to (2.3) on u can now be
characterised as a rearrangement of fluid elements conserving M,N and Q9
since the Coriolis terms are accounted for by the terms in x and y in (2.8).
The rearrangement is volume preserving because of (2.4). It can then be
proved that there is a unique way to arrange the fluid in physical space
so that the geostrophic and hydrostatic relations (2.6) are satisfied, with
M,N and O equal to their known values on each fluid element; and so that
the fluid is statically, inertially and symmetrically stable.
Cullen et al. (1986) then proved that this rearrangement can be
characterised as an energy minimisation, so that the solution minimises
j';_(ug+vg\ -3@3/6:, dV
with respect to fluid rearrangements conserving M,N and & . This
characterisation also applies when the Coriolis parameter is allowed to
vary and the Boussinesq approximation is not made, Shutts and Cullen (1986) .
When there are mountains presenf the rearrangement is not unique. This

is because air trapped in mountain valleys can be exchanged independently

of the rest of the dynamics. There is still, however, a solution which
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minimises the global energy. Extra information must be used to construct

solutions in this case.

(0)

(b)

(0

Figure. 1. Two fluid model of upstream blocking without rotation.

The most physically plausible method of constructing a solution is shown
in Fig. 1. For simplicity, we set the Coriolis parameter to zero so that
all interfaces between fluid of different densities have to be flat. The
atmosphere is represented as two fluids, with fluid 1 denser than fluid 2.
A mountain barrier is then "translated" across the region, which has rigid
lateral boundaries. The initial data is specified as shown in Fig. 1(a).
There is a pressure difference across the barrier, but equation (2.6) is
still satisfied because there are no pressure gradients within the fluid.
However, any other arrangement of the fluid with a horizontal interface

would also be a possible solution.
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As the barrier is translated, we state that there is no flow of fluid 1
across it until the interface reaches the top. After this point,
Fig. 1(b), the barrier acts as a "weir". This simple physical
presdription obviously provides a unique solution to the problem as an
initial-value problem.

The energy in the solution increases continuously from the configuration
in Fig. 1(a) to that in Fig. 1(b). It then decreases again. A graph is

shown in Fig. 2.

Fig.2 Graph of work done by the drag force (E) and the model energy (é) during the passage of air over a barrier.

The initial rate of increase of energy is equal to the work done against
the pressure gradient in moving the barrier from right to left. The
" subsequent decrease occurs becauée the energy which would appear-as kinetic
energy of flow over the barrier and then as waves and turbulence downstream
has been deleted from the problem,-so.providing an extremely crude

parametrization of turbulent dissipation.
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Figure 3. Upstream blocking of air in the presence of rotation.

When rotation is present the same principles are used (Fig. 3). In the
initial state we assume that there is no geostrophic wind and that the
diagram represents an (x,z\ cross~section; this time unbounded laterally.
A geostrophic cross mountain wind \J is switched on, with associated

pressure gradient

L (2.9)
"
Equation (2.2) becomes
™ D .
- Z “hx) = U

The slope of the interface between fluids 1 and 2 must satisfy thermal wind

balance, and so is given by Margules formula :

Slope petvl et (2.11)
5 Lo 5 Cel

where the square brackets indicate the difference across the interface.
Fluid 2 is blocked by the mountain in Fig. 3(a). It cannot therefore

respond to the pressure gradient by increasing its value of x and therefore
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increases its value of vﬁ. In fluid 1 there can be translation to the
right at speed U so that g can remain zero. Thus a gradient of vy is
set up across the interface, causing it to slope (Fig. 3(b)). Eventually
the interface reaches the top (Fig. 3(c)) releasing the trapped air as if
over a weir. During this period a positive value of Vy will have
developed according to equation (2.10). This is in agreement with
observations of barrier winds, e.g. Parish (1982). The total energy in
the cross section increases because it can draw on the resevoir of energy
implied by the basic state pressure gradient. After fluid 2 reaches the
top of the barrier the energy starts to decrease again because of the
implied dissipation of the transient unbalanced cross mountain wind.

In a three dimensional flow with a barrier of finite length, it is clear
that the solution in Fig. 3 will tend to produce flow around the barrier,
fed by the flow along it upstream. This is frequently observed in the

Alpine region, e.g. Buzzi and Tibaldi (1978).

3. EXAMPLES OF LAGRANGIAN SOLUTIONS FOR SIMPLE DATA

The solutions of equations (2.1) to (2.7) described in the previous section
can be illustrated by calculating them explicitly for piecewise constant
data. The calculation is easiest performed in the configuration shown in
Fig. 1; using a container with rigid boundaries and translating the
mountain through it. The initial data is defined as the finite fluid
elements shown in Fig. L(a). Fach element has a constant value of Q@ and
M. The slope of inter-element boundaries is determined by Margules'
formula (3%.11). Elements 1 to 3 represent stratospheric air. Elements
L to 10, 11 to 17, 18 to 2k, 25 to 32 and 33 to 37 have the same values of
potential temperature, The total length of the cross-section is 1000 km,
with the mountain represented by a rectangular block 100 km wide and 2 km

high. The mountain is translated at a uniform speed of 10 ms™e The

198




configuration is shown after 6 hours in Fig. 4(b) and 12 hours in Fig. 4(ec).

Fig. 4(a) Initial data

17

2

22
25
26 23 %
27
28 l 2A
32 a3 29 30 31
34 J 35 l 3% 7 B

Fig. 4(b) After 6 hours
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Fig. 4(c) After 12 hours

Figure 4 Flow of stratified rotating fluid over barrier.
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After 6 hours, element 30 has

36 is blocked behind it.  There

than element 29. Element 29 is

2% has descended on the lee side

completely crossed the barrier and element
is now a drag because element 36 is denser
flowing across as if over a weir, element

giving a Fohn effect. After 12 hours

element 36 has started flowing across the mountain, while element 28 has

descended almost to the surface on the lee side.

amounts to 8 pascals.

The drag at this time

Element 28 has descended by about 1 km to the lee

of the barrier, implying a 10°C adiabatic warminge

[ P

Fig. 5(a)

Initial data

Fig. 5(b)

Figure 5

12 hours later

Plots of velocity parallel to ridge.
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The along-ridge component of geostrophic wind corresponding to these
solutions is shown in Fig. 5 Fig. 5(a) shows the initial data and Fig.5(b)
the solution 12 hours later. A very strong jet reaching 4ows' is generated
ahead of the barrier, with little effect at upper levels. This rather
excessive value arises from the idealised two dimensional nature of the
problem. The effect on the cross mountain wind is illustrated in Fig. 6.
There is marked deceleration of the flow below the mountain top, with a

2ws™' deceleration extending 200 km upstream.

Figure 6. Horizontal cros mountain wind component after 6 hours.

A rapid acceleration of the flow in a shallow layer over the mountain top
is shown which is not, however, properly described by this method. This
solution is described more fully in Cullen, Ch&noweth and Purser (1986).
The next experiment uses a smooth mountain profile and a two-fluid
system. This can be described using much higher horizontal resolution,
allowing a more realistic representation of the flow. The results are
shown in Fig. 7, using 39 elements to represent the interface. The
mountain has a height of 2 km and a half width of 50 km. The témperature
difference across the interface is 50K Fig. 7 also shows the profile of
v. in the cold air, it is zero in the warm air. The'diagrams show the

?

configuration at approximately 12 hour intervals, assuming a cross mountain
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flow of 5.5L

Initially the cold air is trapped against the mountain with

a southerly wind at the warm front upstream.
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Figure 7.

(e) ' (£)

L sequence of model states for flow over a bell shaped
mountain at intervals of Lx10%s . Element boundaries
are not indicated. Graphs of V_ corresponding to the
fluid below are inset. €
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The air rises to the top of the mountain, and the first air to cross falls
rapidly to the foot of the lee slope. Conservation of M results in it
acquiring a northerly wind component, while a southerly jet is developing
in the trapped air to windward. At later times the dome of cold air on
the lee side simultanecusly extends further up the mountain and further
downstream. However, at all times the depth of cold air is greater on the
windward side than the lee side, implying a pressure force on the mountain.
As the supply of cold air crossing the mountain diminishes, so it becomes
more difficult to support the cold air in its passage. A steep interface
slope is needed implying a strong southerly jet, about ZOwAJ, along the
ridge. Finally, when all the air has crossed the mountain, the cold air
dome has the same shape as before it encountered the mountain. However,
work has been done by the basic state pressure gradient parallel to the
ridge with a considerable net flow of air down the pressure gradient.
This solution is described in more detail by Shutts (1986).

This type of solutién can be calculated analytically in the special case
of a steady flow across a ridge with the interface between the two fluids

asymptoting to a height h_ - The configuration is illustrated in Fig. 8.

S

Ly .

Figure 8. Steady sclution for two fluid flow over a bell shaped
mountain. A graph of Vg for the lower fluid is inset.
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If the interface has height h(x), then the geostrophic wind parallel to

the ridge in the lower fluid is given by

508 on
V. = ? o (3.1)
s fo, O
and the potential vorticity of the lower fluid by
. IRELIN
S, = 5+ g 06 (9.5 g;lﬁlk (3.2)

If the solution is to be steady, conservation of 4 implies that % mast be

uniform in x and equal to {/h, . This implies
' _M_,-‘alt\
If\.(‘—/kc = S— + 3 ((‘)u-ﬁ) 3;1-

The upstream configuration, with cold air just reaching the top of the

(3.3)

barrier of héightli, is given by
ho= by +(H = he Jop (SocJlgdo 6" ) ) (3.4)
To find the downstream configuration, we use the equality of the values of
M at the mountain top and in the rear edge of the downstream cold air.
M is easily calculated from (3.1) and we find that the downstream solution
is
hGx) = hg = wpli=hy=(x AR 5000,87))  (3.5)
with X, satisfying
he -_-u?(H-— he = §xq /J'(;,Ae LQQ!L—l)) (%.6)
In this configuration, the pressure drag on the mountain is equal to
i
§o S %
at x =0 . Using continuity of the pressure at i =, x =0 gives

fo pegbe (H-3)dy

= :i?crb \E] HlL (3~7)
The rate of working of the geostrophic pressure field is given by
' d : 4 e

Since —}Wb = .?l_o— i}*a (%p) _
C s _ o -l ¢hy Rl Pk
this is equal to %?"“5 [ 3.‘%% a&@ i T * o+ S% SI 866 h - xl
. _ 6 -\ w 1
fogng 0 [ L3032, + L8010 ]
5 peyy DO W (3.9)
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which is the rate of work of the mountain drag (2.7).

b, FINITE DIFFERENCE SOLUTIONS FOR SEMI-GEOSTROPHIC FLOW OVER A BARRIER

In this section we illustrate solutions of equations (2.1) to (2.7)
obtained by finite difference methods. The solution shown was for a two
dimensional version of the problem written in sigma coordinates and

standard notation :

(% +5x) = U (4.1)
DI I (4.2)
D N
gi z ﬁi + mé& + d‘i} (4.3)

‘gi: s 3 ()t £ () = O (1)
Bov g lap) = gy, (4.5)
lef_‘ + @_“: = 0 | (4.6)
T =0(fp) « =RI¢ (4.7)
¢ =Qat o= 01| (4.8)
w =Uat x = -, L (4.9)

Equations (4.1) to (4.8) determine & and ¢ implicitly. They are
approximated by second order finite differences on a staggered mesh as
shown in Fig. 9. This gives a block tridiagonal system of implicit

equations.

i D
s
W =0 Ww=0

Figure 9. Arrangement of variables on fhe vertical cross section grid.
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The method of solution is as follows :
(a) Choose initial p, ,Q with.RpA:]n(L)z o
(b) Solve (4.5) and (4.6) for v -
(¢) Initially set « = p,U/p. so =0
(d) Solve equations (4.1) and (4.2) for Vs and @ using an
implicit time differencing scheme of the form
0Lk +0E) = 0k) = ={li-«)(w V&)+ « (8. Vo)a b (470

with %<4 ¢ 1 ( 4 was chosen as 0.7 in the integrations

e

illustrated); and u-V = ul +¢
LA

o

oy

(e) Calculate the residual in equation (4.5) at time & +0kt; write
it as R.
(f) Recalculate wli+bb), ol +0k) to eliminate R, by solving the

coupled system.

A+ Bw VO + w.V(A8) = O (4.11)
Qu, + BTy + w Tv) +{0u = 0 (k.12)
8pa+ éé‘-*(p, A+ w B, ) +3%_(‘>,/5& +30p,) =0 (L.13)
=0 at «=0,1 (4.14)
M= 0 at x= -L,L (4.15)
N A +KAT§_,‘\W' - fvy = -R (4.16)
§%§+ @%; =0 (4o17)

Elimination of O using (4.13), 04 using (4.17) and 07 using a
differentiated form of (4.7) reduces this system to a block tridiagonal
system with 3N x 3N blocks where the model has N levels. The unknowns
are N values of ﬁvb, N-1 values of AG , 1 value ofAf“and N values of

A for each value of x. The system can then be written in the form

¢ +Aw +Bw o= F (4.18)

ntd

w .
PR AN

where C, A, B are 32N x 3N matrices, w is a 3N column vector and F is a
3N column vector. This system can be solved by standard technigques.

Cullen and Purser (1984) prove that u and ¢ are uniquely determined by
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this system in the absence of orography provided that the solution is
required to be statically, inertially and symmetrically stable  so that the
potential vorticity is non-negative. In the presence of a mountain ridge,
Cullen et al. (1986) show that the solution is still uniquely determined as
long as all fluid is required to reach the top of the ridge before passing
over it. The solution contains large horizontal jumps in the position of
fluid parcels, as described in section 3. This causes similar numerical
difficulties to the presence of static instability in the vertical. An
adjustment is therefore incorporated in the model to remove inertial
instability and replace negative gradients of (v%+§u) in x with small
positive ones. This acts as a parametrization of the rapid downslope

wind which is in any case not realistically represented by the semi-

geostrophic equations.

Pig. 10(a) Potential temperature.

Figure 10. Initial data for simulation of flow over ridge.
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A solution is shown in Figs. 10 and 11.

the initial data for © and~% .

BRIl
)

|
|
A\

N~/

b7 S\

WY

Fig. 10(b). Velocity parallel to ridge.

cross mountain flow was 10ms'e A 20 x 10 grid was used.

The mountain ridge is 1800 m

high, the channel length 1000 km and the mountain width 200 km.

Fig. 11 shows the solution after 12 hours.

318,
AT =30+

we—_
/IIU.N

Fig. 11(a) Potential temperature.

Figure 11. Flow fields after 4 x 10's.
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The & field (Fig. 11(a)) illustrates upstream blocking with some cold air
beginning to flow down the lee side.  The v% field illustrates the "start"
vortex at low levels which results from the use of initial data varying
smoothly across the mountain top. The u field shows the upstream
blocking and very concentrated rapid flow at low levels over the top of the
ridge, with little disturbance above. It does not show the downslope
wind because it is represented by a parametrization. The total wind
would have to be calculated by adding the mass transport implicit in the
inertial adjustment. The drag on the mountain at this time was 0.47 N,
This finite difference solution is not entirely satisfactory. There is
considerable noise downstream which appears incorrect from the simple
structure of the solutioﬁé described in section 3. It is caused by the
difficulty of handling thé répid downslope current satisfactorily, even

. when it is parametrized.

S5e PHYSICAL RELEVANCE OF SEMI-GEOSTROPHIC SOLUTIONS

The three preceding sections have described a class of highly singular
separated flow solutions for flow over a barrier. If these solutions
approximate real atmospheric behaviéur, then it is clear that they may not
be well represented in conventional forecast models. In this section we
briefly make a gualitative comparison between these solutions and
observations.

The existence of intense low-level jet streams running parallel to
mountain ridges has been documented by Schwerdtfeger (1975) and Parish
(1982), both being related to the damming of cold air. Parish found winds
of 15 - BOlnf'along the Sierra Nevada mountains at levels below 2.7 km,
particularly in association with the apprbach of cold fronts. These jets
were typically of 100 km horizontal extent and compare well with the semi-~

geostrophic solutions described here. Unfortunately, lee-side
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cbservations were not available to confirm the existence of a weir.

Conversely, Reed (1981) and Mass and Albright (1985) describe lee-side
windstorms in association with cold air dammed against the eastern side of
the Cascade Mountains (Washington State, USA), though do not mention barrier
jetstreams explicitly. Nevertheless, the potential temperature cross-
sections they present are highly reminiscent of the cold air distribution
found in the semi-geostrophic model., Cold air extends up the windward
side of the Cascade mountains forming a very stable layer near the mountain
ridge crest. ©Potentially warm air exists on the lee~side above a
'bora-like' downslope current of great intensity. There is also a hint of
a cold air dome 100 km downstream of the ridge in Reed's study, though it
is insufficiently resolved to justify comparison with the model. Large
pressure differences across the mountain ridge were present in both cases
with values up to 17mb. Many other observational studies have found large
pressure forces to act on mountain ridges (e.g. Davies and Phillips, 1985
and Smith, 1978). Hoinka (1985) noted a large discrepancy between the
synoptic-scale pressure force acting on the Alps (1.6-7 Nm™) in a south
Féhn event and the mid-tropospherié vertical momentum flux measured from
an aircraft (0.3 Nm™ ) suggesting that much of the energy dissipation/
wave radiation was taking place in the lower troposphere. The semi-
geostrophic model strongly suggests that this synoptié scale drag force is
predominately associated with cold air damming and local energy dissipation
rather than vertically radiating gravity waves. Although in our two-
dimensional model the cold air escapes over the mountain, in reality the
release may also take place around mountain ridges with similar effect.

A further interesting finding from the ALPEX project is the existence of
very intense wind shears at the levél of the mountain tops and upstream of
the Alps during orographic blocking episodes. A pronounced (Af900)

veering of the wind is often observed to occur in a layer little more than
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100 m deep accompanied by a marked inversion (Pierrehumbert and Wyman,
1985). These phenomena have their direct counterparts in the model since
the wind speed and direction and the potential temperature are all
discontinuous at the dome interface. The directional shear is
particularly noticeable close to the ridge where the barrier jet (almost
parallel to the ridge) . gives way to the uniform geostrophic basic state
current in the warm air above.

411 these studies suggest that the semi-geostrophic solution is at
least a useful qualitative model of blocked and separated flows. The
total mass transport and drag is predicted by the model and is entirely
determined by the large scale balanced flow. The details of flow across
the mountain are not described and a more complete dynamical description is
needed. In a forecast model, however, the resolution is not usually
sufficient to justify attempting to predict any more than the quantities

determined by semi-geostrophic theory.

6. IMPLICATIONS FOR FORECAST MODELS

The previous sections have shown semi-geostrophic solutions which appear
to be physically important and should be predicted by forecasf modeis. It
would be natural to hope that a primitive equation model would be able to
generate any solution predicted by semi-geostrophic theory, as well as
other solutions. However, in integrating the primitive equations it is
necessary to enforce smoothness. We will illustrate that this prevents
accurate simuiation of the discontinuous semi-geostrophic solutions
because a smooth but unbalanced sclution is found instead.

The forecast shown is from data for 12 GMT on 2 March 1984, The EObmb
and PMSL charts are shown in Figs. 12(a) and 12(b). There was a strong
north-westerly flow over the Alps in association with a deep vortex over

the North Sea and a large trough over the eastern Mediterranean.
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Fig. 12(a) 500 mb height.

Fig. 12(b) PMSL.

Figure 12 Initial data for fine mesh integration.

150
KT N

18 hour forecasts are shown using a %0 x grid in the Meteorological
Office fine mesh model (Gilchrist and White, 1982). The orography is
shown in Fig. 13. The maximum height resolved is 2500 m and the general
ridge height is about 1800 m.

The forecast wind at ¢ = 0.87 is shown in Fig. 1k. Similar results
are obtained at the level below and above ( o= 0.94 and « = 0.79). The
vortex has transferred into Germany and a lee cyclone'has developed over
Northern Italy.
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Figure 13.
Orography field for fine

mesh integration.

m

Ny
[

.
VY WO
TV Y
WYY
Y

e e e
S e R

\V

ZEsaaens s

Figure 14. 18 hour forecast : \§§<
K

velocity field at o = 0.87 tﬁtr
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N

There is no obvious sign of flow separation or distortion by the Alps at
this level or the adjacent levels in the model, in particular the
discontinuities in wind direction observed during ALPEX do not seem to be
present.

Vertical cross sections along tﬁe line AB in Fig. 13 are shown in
Fig. 15. The potential temperature cross-section (Fig. 15(a)) shows a
well marked tropospheric frontal zone and potentially colder air near the
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surface to the north of the Alps.
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However, it also shows what appears to be considerable mountain wave
activity. The wave slopes upstream with height and causes the isentropes
to overturn in the lower stratosphere. The horizontal and vertical
velocity cross-sections, Figs. 15(b) and (c), also indiéate a wave. The
structure of the wave and the vertical amplitude agree with observed
mountain waves-(Hoinka (1985), Klemp and Lilly (1978))and with the
computations in the latter paper. However, their horizontal sc¢ale
appears unrealistically large.While observations are not available to
conclusively state that the model is behaving incorrectly, it appears to be
_ producing a response appropriate to a smaller scale where the Coriolis
effect is unimportant, instead of producing a vertically discontinuous
solution of the type suggested by semi-geostrophic theory. This case is
discussed at greater length by Cullen and Parrett (1986). It is not at
all clear how the solution can be altered, although the wave can be
smoothed out, smaller and realistic mountain waves would then be removed as
well.

It is often claimed, e.g. Mesinger (1984), that the use of sigma
coordinates results in spurious pressure gradients and therefore possibly
spurious mountain waves. We therefore illustrate a calculation which is
a severe test of sigma coordinates to estimate the size of the likely
errors. The problem solved in section 4 is now repeated with the Coriolis
term set to zero and periodic boundary conditions used. The absence of
geostrophic balance requires all the isentropes to be horizontal and the
flow to be completely blocked below the mountain top. The horizontal
velocity on the lower sigma layers therefore has to jump discontinuously
from zero to the free stream value of 10 as”' over the mountain.' The
result is shown in Fig. 16. The mountain is 800 m high and the lowest
model level .is about 1000 m deep. The expected solution is for a free

stream velocity of 10 3! expect in the lowest layer away from the
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mountain where the value should be about 2«s'. The isentropes should
remain horizontal across the mountain. The solution reproduces the
correct behaviour away from the mountaim but there are local errors in the
region of steepest orographic slope. This illustrates that a sigma

coordinate model can represent the configuration gquite accurately.
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Figure 16. Finite difference solution of orographic blocking without

rotation.
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7o DISCUSSION

This paéer has presented a class of semi-geostrophic solutions for mountain
flow which exhibit many realistic features. They are discontinuous in
space and are thus difficulf to maintain in primitive equation. models.
Evidence is present to suggest that a smooth unbalanced solution is -
obtained instead. The semi-geostrOphic solution predicts large and
realistic values for mountain drag which are fully predictable given the
large scale balanced flow and the mountain shape, particularly the barrier
height. This drag must be accurately represented in forecast models. It
is not clear how well it is treated at present. The rapid downslope
currents may require parametrization in primitive equation models or
inertial instability could be generated. The solution thus provides a
severe and important test;

We have been entirely concerned with fine mesh models where the shape of
the orography is adequately represented. It is clear that the semi-~
geostrophic soclution is critically dependent on the barrier height, so that
a low resolution model which underestimates it will give a poor solution.
The onset of flow separation at the breakdown point of the geostrophic
coordinate transformation takes place for a critical curvature of the
mountain; as discussed by Shutts (1986). If the mountain is represented
too smoothly in a low resolution model then the‘radius of curvature will
not fall to the critical value and no separation will occur. The guestion
of parametrization of sub grid-scale orography is discussed by other papers
in this volume. It is not clear whether there is any real substitute for

adequate resolution of the mountain shape.
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