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Abstract

A brief review of current knowledge concerning aerodynamic drag in
turbulent flow over orography is presented. It is suggested that this
drag is best represented in terms of the roughness length z and

recommendations for estimating z  are given.

Introduction

'The transfer of momentum between the atmosphere and the solid earth
occurs on a wide range of scales. These extend from the microscopic to
the planetary scale and involve a range of physical processes. On small
scales and over smooth surfaces the coupling. may be due to simple
"tangential" viscous forces. More usually, on scales ranging from mm to
about 10km, the coupling is due to "aerodynamic" drag. This drag occurs
mainly as "normal" pressure forces; it would not occur in inviscid flow
~but arises from the viscous dissipation occurring in the flows past
surface roughness features. The limited concern of this note is the
representation of the momentum coupling due to the roughness elements on
scales up to perhaps 10km. Such drag forms an essential part of the
driving forces in the planetary boundary layer and the influence upon the
larger scale flow depends on a correct descfiption of the whole boundary

layer structure
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On larger scales there are additional processes leading to momentum
coupling, Orcgraphy with scales between perhaps 3km and 100km may
generate gravity wave drag due to internal gravity waves. This mechanism
leads to viscous dissipation other than that occurring in the boundary
layer. It is believed to be an important process but is rather separate
from the subject considered here. On greater planetary scales there are
further mechanisms such as the radiation of Rossby waves but the actual
viscous dissipation wusually proceeds through the smaller scale processes
involving either the boundary layer, convection-or gravity waves.

Since the purpose of this note relates to the inclusion of orographic
drag in large scale numerical weather prediction models it is useful to
make a few points concerning this precise requirement. We can suppose
that the large scale model will explicitly deal with scales greater than

perhaps a few mesh spacings. The large scale orographic forcing should

thus be derived by filtering the real orography of all smaller scales and
the model representations of the boundary layer shoﬁld include any
appropriate influence of scales smaller than the mesh. On scales
comparable with the mesh a statistical approach will not be valid and
owing to the limitation of the finite difference representation there will
be errors. The influence of the smaller scales will be complex. Part of
the influence will be a mean uplift (corresponding to the zero plane
displacement D noted below) arising through the failure of small scale
flow simply to follow the shape of the orography. Another part will be
the "aerodynamic" drag and the new boundary layer structure. Further
complications might be the gravity wave generation or the rather separate
way in which orography has an influence on rainfall. Rainfall is
particularly complex as it can be influenced by the peak extent of any

local orographic uplift.
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In what follows we begin by considering the basic ideas and a few
experimental facts., We then consider the ofographic parametrization
problem and various theoretical ideas. The practical rules suggested are
compared with previous rules and the few available direct observations.

Finally a summary and recomméndations are presented.

Basic ideas and experimental data

A key feature of steady turbulent boundary layers over uniform
terrain is the existence of a region in which the mean flow speed
increases in proportion to the logarithm of distance from the surface.
The .existence of this logarithmic region is pivotal in our representation
of turbulent boundary Ilayers. The logarithmic region arises in the
asymptotic 1limit of heights much less than the total boundary layer depth
yet much greater than the scales involved in direct viscous or pressure
forces with the surface. Within the logarithmic region the only relevant
geometric scale is distance from the surface. For flow over a smooth wall

the mean flow at a distance z from the wall is given by
U = (ug/k) ( log(ug z/v) + A ) -1

where u, =1 /¢ is the square root of the surface stress
divided by density, k is Von-Karman's constant (0.4 is the most widely-
accepted value), v is the kinematic molecular viscosity and A a constant

with a value about 2,3, If the surface is rough then it has been found

(eg.Clauser 1956) that
U = (ug/k) ( log(ug z/v) + A - C(h ug/v)) -2

where C is a function of hu,/ v and h is a height scale of the

roughness features. When the Reynolds number h u,/ v is greater than
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about 50 the flow is found to be independent of it and
€C = log(hu, /v) +8B -3

For such so called fully rough flows the combination of 1 and 2 is usually

written as

U = (u/l) log(z/z,) 4

Where 2z, absorbs the constants A and B. In practise z, is deduced
either by measurement of the velocity profile or by measurement of stress
and flow at a partiéular height in the logarithmic region. In cases with
dense arrays of surface features the height of the origin for 2z, is

uncertain and the relation

u = (ug/k) log( ( z -D )/ z ) -5

must be considered. Here D is called the displacement height and is again
determined by a fit to the velocity profile. The engineering data
concerning flow over rough surfaces are extensive and range from the early
work of Nikuradse (1933) to more recent studies (eg. Perry et al. 1969)
There are many aspects of these results which have a bearing on the
meteorological problem of flow over orography. For flow past arrays of
individual bluff bodies (called "k" type where k is used to denote the
object height) the values of z, vary in proportion to the height scale of
the bodies. Flows past regular arrays of ribs or grooves (called "d" type
where d denotes the pipe or channel width) are more complex and z, then
depends on the boundary layer depth. The motions over the ribs involve a
coherent flow, on the scale of the boundary layer, into and out of the
spaces between the ribs. Such motions are not represented in theoretical
models of flow over ribs and are unlikely in natural orography unless the
orography is very even in structure. This class of motion will not be

considered further here.
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The observations of flow past fairly dense arrays of bluff "k" type
roughness elements find that the value of z, relative to the size of the
object depends upon the exact shape of the roughness elements. Extreme
ratios of Zo/ h where h is the mean object height are about 0.2 to 0.04,
and 0.1 is the value often duoted. Experiments (eg. Clauser 1956) with
the fraction of surface covered by bluff roughness elements varying
between about 10% and 50% show little variation in z, - This near
independence of z, upon the density of roughness elements arises when
each body lies in the wakes of other bodies. For densities greater than
50%Z (the precise density depends on the object shape eg. Kolseus and
Davidian 1966) thé value of z reduces and the displacement height D

becomes comparable with the object height. The small amounts of data on

sparse roughness elements have usually been dealt with by assuming that

the net forces are proportional to the concentration and and length scale
of the roughness elements (Wooding et al.1973). When the elements are
sparse it 1is also possibie to consider the actual forces on individual
elements.

There are many sources of information on the drag past isolated
bodies in a free stream (eg. Batchelor 1967 for a text discussion). The
drag on bluff bodies depends upon the Reynolds number of the flow. Only
when the flow is fully turbulent at a Reynolds number J~ 107 is the drag
coefficient independent of Reynolds number. In meteorology this usually
applies to object scales greater than a few metres. On smaller scales a
Reynolds number dependence is expected. For Reynolds numbers between
about 103 and 1()5 the drag coefficients are about twice those occurring
at high ()-107 ) Reynolds number values. Here the flow immediately around
the body is laminar but the wake is turbulent. At low (<110a') Reynolds

numbers there is a distinct Reynolds number dependence. In meteorology we
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have relatively good empirical data on the small scale roughness elements
which may exhibit a Reynolds number dependence. Indeed many of these
roughness elements are flexible plants and this flexibility gives further
dependence of the roughness length on wind speed.

At the highest Reynolds numbers (10”7 ) the values of Cd’ the drag
coefficient (ie. force = (§/2) U* A Cd where U the free stream
speed and A the frontal area) vary with object shape. For bluff objects
Cd varies between about 0.8 for rectangular objects to 0.2 for a sphere.
More slender bodies show much smaller values of Cd . When bodies are not
in the free stream but mounted on the surface the force on the body
remains well known but there is uncertainty in the change of the
frictional drag over the surrounding surface. There is evidence that the
increased turbulent mixing which occurs in the wake may give an increase
in the frictional drag. This seems especially likely for skew bodies

which may generate powerful trailing vortices. !

Determination of drag in flow over orography

The aerodynamic drag between the atmosphere and the underlying
surface involves scales extending from of order mm to 10km. The influence
of the smaller scale features such as vegetation can be formally
represented in terms of a value of z, and many texts summarise our
empirical knowledge of the values of 2z ‘for a variety of terrain types.
Current models of the planetary boundary layer usually use a value of z
to describe the surface characteristics and there is a considerable
practical advantage in trying to extend this description to larger scales.
On these larger scales comparable with the depth of the boundary layer
there is no formal justification for the existence of a logarithmic region
and a representation in terms of z, - There 1is however, some evidence

that it may be a reasonable approach.
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Meteorological observations in. complex terrain (eg. Kustas and
Brutsaert  1985) have shown a surprisingly extensive region of
"logarithmic" velocity profile. With more quantitative significance are
engineering observations (Perry et al. 1969 and Buckles et al. 1984) for
objects with scale comparéble with -the boundary 1layer depth. These
observations show a logarithmic velocity profile and, more important, the
characteristics of the profile, z and u, match the independently
measured values of drag. Recent numerical simulations of flow over ridges

(Newley 1985) also shows a similar result.

Forming area averages

Before embarking on a discussion of how to estimate z, in real
terrain it is wuseful to note the problems in averaging the surface
speéification over the whole of a mesh spacing in the model. The only
quantity which can be correctly averaged is the surface stress. This is
not generally the result of the whole boundary layer being in equilibrium
with the 1local value of Z,« A horizontal length scale of perhaps 50 to
100km is needed to establish a reasonable "equilibrium" stress in relation
to the geostrophic wind, ie. to establish a true geostrophic drag
coefficient. After a change in z, the flow is only in equilibrium with
the surface up to a height of order 1enJ L k uy/U where L 4is the
upstream extent of the surface type (exact model studies suggest

le'v L /100 to L /200 depending on conditions, Rao et al. 1974). At
heights greater than ~ le the flow can be expected to be independent of
horizontal position whilst for heights 1less than 1e the flow can be
expected to be in local (vertical) equilibrium with the surface. A rough

rule of thumb would be to assume that both of these regimes are
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Table 1.
Comparison of effective values of z, arising from combining areas of
different Ze The domain length Lp is 103 and the two values of z 1.5

and 0.015m. In equation 6 1e has taken the value 2.5m.

zo/m
Fraction of domain Numerical result [Equation Equilibrium
with z  large. - Nash (1980) 6
0.3 | 0.50 . 0.54 0.15
0.5 0.82 ~ 0.86 0.35
0.7 - 1.20 1.14 0.69

Table 11,
Comparison of effective values of z, arising from combining two
values of z, on different length scales., The fraction of the domain with

each value of z, is 0.5 and the values are 1.5 and 0.015m. In equation 6

1 is Lp /400.

e
zo/m
Length of domain Numerical result Equation Equilibrium
Lp /m Nash (1980) 6
10°  0.82 0.86 0.35
10* 0.63 ~ 0.58 0.35
10° 0.43 0441 0.35
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approximately true at a height lév L /200 . It then follows that the
average of the stress is given by a average of the drag coefficients based

on this height, ie.

1 = . f f
1 + 2

(Log(1 /2 )" (Log(1_/z))" (log(1,/2,))* -6

where z is the required value corresponding to the average surface
stress, and z4 and z, are roughness lengths occupying fractional areas,

f1 and f2 , 1e is calculated from the characteristic scale of
variations in 21 and Zy . The consequence of this adjustment is a
tendency for the effective mean value of z, to be higher than it would be
in a flow alﬁays in equilibrium. In reélity there is no height at which
the.flow is both in equilibrium with the surface and also independent of
horizontal position. The height scale 1e is only the characteristic
scale at which the transition from equilibrium to independence on
horizontal position occurs. The exact value of 1e is not too critical
within say a factor of two and the important point is have le the correct
magnitude. It follows that although the spirit of this reasoning should

be correct the value of 1, wused in equation 6 is rather loosely defined

and should be checked by a more rigorous approach.

Such an approach is a numerical simulation of the flow over changing
roughness lengths. Such simulations do not seem too sensitive to the
turbulence closure and can be viewed with>some confidence. Tables I and
IT show a comparison of the results of equation (6) with values obtained
in a numerical simulation using a high order closure model (Nash 1980).
The simulation is of flow in a periodic domain of length LP containing a
fraction b with roughness length one hundred times that in the rest of

the domain. A value of z, has been calculated from the mean surface
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Table III,
Values of 1log (zo/zl)/log(zz/zl) arising when equation 6 with
1, = Lp /400 is used to derive z, from different areas of roughness z;

and z, (with zo = 100 z; )

Fraction with
z, 0.01 0.03 0.1 0.3
length Lp/m
10 | 0.49 0.62 0.75 0.87
102 | 0.38 0.55 0.71 0.86
103 0.12 0.29 0.54 0.79
10* 0.04 0.13  0.32 0.65
100 0.03 0.08 0.23 . 0.55
equilibrium 0.02 0.04 0.17 0.44
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stress in the numerical integration and canb be considered the correct
answer, The value of z, deduced by assuming that the boundary layer was
locally in equilibrium with the surface is also given. The equilibrium
result (the average of the geostrophic drag coefficients) is significantly
in error on scales up to of order 10km. In contrast equation (6) with
L~ LP /400 ( note LP/4OO is intended to be equivalent to L/200 ) appears
to give the correct bias towards the large values of z, - This bias is
even more important on short scales and Table III shows results from
equation (6) for a range of values of Lp and b . For variations on
scales greater than 100km the average of the geostrophic drag coefficients
provides an accurate value to the effective z . Although it differs in
detail and considers a wider range of horizontal scales the approach

advocated here agrees in spirit with the proceedure advocated by Weiringa

(1986).

Dense arrays of roughness elements with steep slopes

When the surface is covered with many bluff obstacles whose slopes
exceed  45° and which occupy at least 10% of the area, the best guide is
to assume that éo is about 0.1 h where h 1is the mean height of the
roughness elements. This rule has been verified in city and dense urban
environments. The e&idence from the engineering data is that it should
also apply for appropriate large scale roughness elements. In practice
there seem to be few mountainous areas with sustained slopes of 45°. 1In
the few very extreme cases, such as regions of the Alps, it may be
appropriate to use z, = 0.1 h. Here we shall argue that the methods of
estimating z which are given below should be considered first and 0.1 h

should be used as an upper bound to Zg
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Dense arrays of roughness elements with moderate slopes

This category of terrain is intended to include most hilly and
mountainous areas. When the slopes of the terrain are less than about 45°
the effective values of z, can be expected to be less than 0.1 h and
there is a need for a refined estimate. Taylor and Gent (1974) considered
a numerical model of turbulent flow over undulating terrain and used a
mixing length turbulence closure. Their study was limited to slopes (for
slope we shall consider values of tangent) of terrain up to about 0.2.
For a range of hill Ilengths and values of basic roughness length the
increase in drag due to a single gaussian shaped hill was found to be
~ 40 - 60 u,*@h where uy’ is the undisturbed stress, h the hill height
and @ the peak hill slope. Sykes (1980) developed an asymptotic
analytic theory with a full 2nd order turbulence closure and suggested
that in consequence of the mixing length assumption Taylor and Gent's
drags were a factor of seven too large. Recently, Newley (1985) has used
a full 2nd order turbulence closure in a finite difference model. This
overcomes the asymptotic limitation of Sykes' theory and for realistic
parameters finds drag forces only a factor of two less than those obtained

by Taylor and Gent ie. for a periodic sine wave the extra force F per

wavelength is
F ~ 20 w0 n -7

where h is the peak-trough height and ¢ the peak slope. Alghough
Newley's results are very different from those of Sykes, Newley's results
show the coefficient in equation 7 slowly decreases with decreasing z

and it is possible that in Sykes' 1limit zo,'f> 0 there might be
agreement. Newley's results find confirmation in comparisons with
laboratory experiments (Zilker and Hanratty 1979, Buckles et al., 1984).

Newley's model also provides estimates of drag at greater slopes. To
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translate these results into values of z  we need to use Rossby number

similarity theory, ie.
Ug2/u*2 = (1/k*) (( log(u*/fzo) -A)* +BY) -8

where A and B are constants and Ug is the geostrophic wind. A and B
have been taken as 1.4 and 2.1 and the implied values of the geostrophic
‘drag coefficient Cg = u*z/Ug2 are slightly greater than values often used

(eg. Arya 1975). Table IV shows Cg ~as a function of z and Ug as

given by equation (8). The present values accord with Large-Eddy
simulations and the results from high order closure models. Such results
probably correspond to more strictly neutral conditions than most
observations but are relevant to the analysis of Newley's results. The
above equation (7) for force F translates into an expression for a
change in the drag coefficient, ie.
Ac.rc, = 6.4 0 -9

where Cg is the drag coefficient for the undisturbed surface. With an
assumed basic value of z, v 0.lm equation (8) leads to an approximate

relation for the new value of z,, ie.

log(zo/zol) = 6.25 log(l + Cg/Cg) _ ~-10
where Z,1 1is the undisturbed value and 6.25 is approximately equal to
1/k* . A slope of 0.1 gives a change in z of 1.5 times the undisturbed
value. It is thus clear that slopes less than 0.1 can be neglected. A
slope of 0.2 gives a value of z, of 4.1 times the undisturbed value. For
slopes greater than about 0.2, Newley's (1985) results no longer follow
this relation. The value of the undisturbed stress no longer forms a
suitable scale for the force on the terrain and it is appropriate to
consider the change in z, (the undisturbed value is usually negligible

for these slopes) in relation to height scale of the terrain. Values of
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Table IV.

Values of geostrophic dfag Cg and angle o of surface stress
relative to geostrophic wind direction. The values shown are obtained
using Roséby number similarity theory for an atmosphere with neutral
static  stability. The values shown are for a coriolis parameter

f = 1dd+S_JJ Ug - 10 ms™ L Cg is a function of uy/fz  which to a first

approximation is proportional to Ug/fzo . A factor of 10 change in

Ug/f is thus nearly equivalent to a factor of 10_1 change in z.

z /m ng103 <° |
1074 0.64 7.6

1073 0.86 8.8

1072 1.20 . 10.5

1071 1.77 12.8

109 2.86 16.3

10t 5.13 22.1

102 10.73 32.9
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z, /h  corresponding to flows with different slopes are shown in Figure 1.
The increase in z /h with slope appears to reach values corresponding to
the h/10 rule at a slope of about 1.0 (45°). The results presented are
obtained with a length scale L = 10 m and a basic value of 2z~ 0.1lm.
The results should not be toé sensitive to the changes in L and z but
further work, especially with a three-dimensional model, would provide a
better basis for an empirical rule to determine Z, . As shown in the next
section the behaviour of z, /h for slopes-steeper than ~ 0,2 is in accord
with simple ideas which treat the object as an isolated body immersed in
an equilibrium velocity profile.

Also shown in Figure 1 are values of the displacement height D
derived from Newley's results. Again an extension to three-dimensions
would be needed to provide a practical guide. It is important to note
thatt D has been defined relative to the mean orographic height. The
values of D at small slopes are subject to some inaccuracy but seem to
be about 0.2 h., At larger slopes D is iﬁcreased. It is interesting in
the latter case that D appears toVBe about ‘0.2 hs where hS is the

height of the peaks above the regions of flow separation which occur in

the valleys.

Isolated roughness elements

For a single isolated orographic feature such as an island it is
possible to estimate the drag force from the usual aerodynamic rules. For
a bluff feature with slopes greater than about 45° the force may be
expected to be of order %QCdU’A where.Cd is the body drag coefficient
typically 0.2 to 0.8, U is the typical flow speed and A a frontal
areé of the body. ‘Such a force can only be represented in terms of a

value of z, on the assumption of an area in which to include it. The
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physical way in which the force on the feature will be incorporated into
the boundary layer structure will involve the momentum deficit in the wake
of the body. In an effort to provide some practical guidance to
determining 2, in real cases we can only proceed if we consider a
statistical distribution of isolated bodies. We may then argue that each
body will experience a velocity derived from the fimal velocity profile,

ie. the velocity U will be taken as

U(h/2) = (u,/k) log( h /(2 zé)) -11
where h is the body height and z, andvu* the final values of z, and uy .
The force on the body is then
F = -%gch (U(h/2))* A | -12
In order to derive a relation with no singular behaviour we assume a
stress u*l2 due to the undisturbed value of Zgs 241 ig.
U(h/2) = (u*l/k) log(h/(2 zg1)) -13
It follows that I
S u.® = ZE 7 Cq A (U(R/2))* +5C_ (U(h/2))"
where S is the surface area considered,
C, = k' /(log(h/(2 2z, 1)) )’
and the summatioﬁ inclﬁdes all bodies in the area; Ffom these equa;ions
we obtain
( log(h/(22)))* = k*/ ( 3Cy4/S +C_ ) ~14
This result is simplistic but from an order of magnitude point of view
shbuld be realistic. The’drag coefficient Cd will aepend on the type of
object. The objects in the numerical study are hardly isolated but it is
useful to compare relation (14) to the numerical results given in Figure
1. In Figure 2. curves derived from equation (14) with Cd = 0 are shown
for various values of Cd . The curve for Cd~'0.3 seems to fit Newley's
results for separated flows at slope angles greater than 0.3. For smaller
slopes Newley's results suggest that Cd should decrease below the values

given by (14). 183
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0.1 0.2 0.3
A/S

Figure 2. Values of z /h as a function of A/S where A is the
silhouette area of the obstacles occupying a surface area S . The curve
shows the relation given by equation (14) ie.

( log(h/(2z)) )* = k' /3 C4A/S
and curves for different Cd are shown. The relation used by

Lettau (1969) is also given.
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Comparisons with previous parametrization rules

A brief review of the estimation of z, for flow over obstacles was
given by Lettau (1969). He considered a variety of data including the
experiments of Kutzbach (1961) with "bushel baskets" distributed over the
surface of a frozen lake. He proposed the relationship z, = 0.5h A/ S
where h is the effective obstacle height, A the silhouette area of
obstacles and S the surface area. He compared this relation with a
variety of data but did not consider A /. S greater than 0.1 and made no
allowance for the "background" values of z_ due to the "smooth" surface.
Lettau noted that z =h / a with "a" constant was not adequate for the
results he considered. This is in keeping with the low values of A / S
and it is instructive to compare his formulae with that given by (14) with
Cn = 0. The two relations are compared in Figure 2. In view of Lettau's
empirical support it is reassuring that, except for small values of

A/ S equation (14) aléo gives z_ roughly proportional toh A /S .
For values of Cd appropriate to very bluff bodies (~ 0.7) there is also
quantitative agreement. At small values of A / S Lettau's formulae must
fail. For it to be correct the drag coefficient on the obstacles would
have to be very much greater than unity.

An alternative form of the Lettau relation is credited to Kutzbach
(1961) by Smith (1975), ie. z, = 0.2 h* /d where d is the average
distance between peaks separated by valleys. This relation assumes a
fixed "shape" of hill and cannot be shown on Figure 2 without an
assumption regarding the obstacle shape. Compared with the Lettau
relation, for isolated obstacles it gives a larger value of z whilst for
closely packed obstacles it gives a smaller value.

Analysis of wind tunnel data on flow past regular arrays of objects
has also lead to similar relationships for z - A summary of data obtained

in these studies is given by Raupach et al. (1980). For a range of bluff
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bodies such as cubes and cylinders“they‘find z, % hA/S for A/S less than
0.1 and z a maximum of ~ 0.1h for A/S about 0.2. For A/S greater than
about 0.2 there is a decrease in Zo/h' If their results are considered in
relation to equation (14) values of Cj between about 1 and 2 are implied.
Such values are not implausible for the objects and Reynolds numbers which
they considered but are unlikely to be appropriate for typical large large

scale orography.

Observations

Observations able to provide guidance in determining values of z in
flow over hills are very few. Fielder and Panofsky (1972) report values
of z, based on aircraft observations of vertical velocity variance. The
values vary from O.4m for plains to l.4m for mountains. Unfortunately the
paper gives no information on the exact size of the mountains. Since the
d;ta were reported to be obtained by an aircraft at a height of 75m it
seems safe to assume that the mountains were rather low.

Observations of wind profiles above complex terrain (Nappo 1977,
Thompson 1978) show extensive logarithmic velocity profiles and give large
values of zob - 3.5m Nappo 1977 and 35m Thompson 1978. Again there are
scant details of the orography but using Lettau's formulae Thompson
estimates z, = 8m. This estimate was only based ona 5km area and the
underestimate may be due to the presence of greater orography notedAto be
about 5km away. A more comprehensive study of wind prbfiles in complex
terrain has been made by Kustas and Brutsaert (1985). They examined
radio-sonde wind profiles in the Alpine foothills and obtained values of
z of about 3.8m and displacement heights of about 46m. The values of z
agree well with Lettau's (1969) formulae but if the small scale surface

roughness were allowed for ( 25 percent forest) it is possible that the
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present formulae would be more realistic. The value of the displacement
height is harder to interpret as it depends upon the choice of reference
height. The value obtained is about 0.5h and is not inconsistent with
Newley's (1985) results.

Recent work (Mason 1986) in a South Wales valley (an extension of
work reported by Mason and King 1984) provides direct measurement of shear
stress at 500m above 200m-high ridges, which were about 2km apart. The
data suggest a value of z, of about 3m. The high order closure model of

Newley (1985) has been applied to this scale of orography and also gives

z, = 3m. This orography corresponds to a slope of about 0.31 and it can

be seen on Figure 1 and 2 that both the numerical results for a sine wave
and equation (14) with Cd = 0.3 give the correct answer. Although
Lettau's (1969) relation gives a larger value of z, the relation provided
by Smith (1975) agrees with this result. The agreement with Smith's
relation is coincidental and due to the precise value of h/L  found at
this location.

More observations are urgently needed to provide verification on a
wider range of scales. At present we are forced to place much trust in

theory and laboratory studies.

Summary and recommendations

This note has sought to provide guidance on the representation of
"aerodynamic“ drag between the atmosphere and orography on scales between
metres and ten kilometres,

It is suggested that such drag can be described in terms of a

roughness length z, associated with a logarithmic velocity profile. By

187



representing the drag through z allowance can be made for the wusual
factors including buoyancy which influence the planetary boundary layer.
The direct influence of buoyancy processes upon z, has been neglected.
This should wusually be a good assumption for sqales up to about 100m but
is unlikely to be true for scales up to 10km unless the basic wind speed
is high. In particular stable stratification will suppress turbulence and
give rise to internal gravity wave generation. In such cases the
influence on z, ~is mnot known and as mentioned in the introduction,
gravity wave generation can perhaps be regarded as a separate but
important problem.

Having decided to use z, to represent the drag due to the smaller
scale orography there are a few points which should be borne in mind in a
practical application,

 The first point concerns the vertical scale in the boundary layer.
In order to give z, its proper meaning this needs to be dealt with
consistently, especially when z is large. If we assume the surface
z = s(x, y) represents the large scale orography of the numerical model
then s(x, y) can conveniently be assumed to be the height at which u = O,
ie, s(x, y) must include both the large scale orography and any
displacement height arising from flow over the "subgrid" scale features.
The mean height of the subgrid field should be defined as zero. With this
definition of z equation 4 becomes

U = (uu/k) loé((z+zo)/zo) -15
When z is comparable to z the use of z + z rather than 2z can be
important. The 1length scalés used in any turbulence model must also be
consistent and in the near surface region the mixing length 1 should be
given by

1 ~ k(z+ zo) -16

The second point concerns the finite difference representation of the
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boundary layer and can also concern the boundary layer in the absence of
orography. The large values of z, appropriate in flow over orography
should lead to an increased drag and concomitant increase in boundary
layer depth. Boundary layer models with a high vertical resolution
describe this effect quite naturally but models with limited verfical
resolution can fail to respond. Ih such coarse resolution models the
large mesh spacings inhibit the representation of the increased velocity
shear which gives an increased mixed layer depth. The problem usually
arises from the consequence of defining the Richardson number, or its
equivalent, over a wide mesh spacing. The value of such a Richardson
number is Ag- Az /Av?  where Ag is a '"potential" density
difference, Dv a velocity difference and Dz the mesh spacing. For
a positive [53 a large value of D z will give large stable
Richardson number. The real problem is simply a lack of resolution. The
problem is serious; if the boundary layer growth is restricted by the mesh
then the effect of orography, both in terms of drag and vertical
diffusion, fails to be realised.

The final point is just a reminder that it is ill-conceived to try to
estimate ER other than on the assumption of a statistical representation
of the orography and the scales comparable with mesh scales will not be
dealt with correctly. The value of zé at each mesh point should,lto be
consistent with the numerical representation, be subject to the same scale
of filtering as that used to derive the large scale orography. This
smoothing should not be applied to the actual values of z but the
procedure represented by equation (6) should be used to ensure the correct
surface stress.

In contrast to the many restrictions and qualifications the actual
recommendation can be presented quite simply:- divide the terrain up into

areas of broadly homogeneous types and then estimate z in each such
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area. Then

1. Allocate a value of Z,1 o based on the very small scale surface
characteristics such as grass, fields, forests or rocks.

2. Estimate A/S, O , and h where A is the silhouette area of the
obstacles, S the surface area involved, Qs the representative
orographic slope and h the typical peak-valley height. 695 should be
taken as h/ Ls where h is the peak-valley height and L, is the
horizontal scale over which most of the height change occurs. will
not be used quantitatively but just to determine which rule to follow.
There are many possible wéys of estimating A/S depending on the type of
orographic data available. A simple method is to consider a number of 2-D
sections with different orientations being used to obtain a statistical
estimate. On each section the height differences hup over which the
height is increasing are summed.

Then

A/ S = hup / LSec _ , -17
where LSec is the section length and the summation is over all sections.
The value of hup will be greater the finer the representation of the
map. In practice most orography has had sharp features rounded by
errosion, and evaluation of hup on, for example, a 1:50000 map will
provide an estimate of the main scales of orography. The finer scalgs can
be presumed included in the value of Z,1° In towns and urban environments
values of A/S due to buildings need a different approach, such as the
number and size of buildings.
3. If 95 is less than 0.2 we should use linear theory and not
bluff body dynamics. We wuse -equation (9) and (10) but estimate as
T A/S on the assumption that the orography looks similar to a sine

wave, ie.

log (Zo/zol) = 6.25 log (1 + 63 A* /S* ) -18

190



4, 1If 6L is greater than 0.2 we assume the bluff body relation
equation (14) with Cd dependent on E;s « On the basis of available
information we suggest Cq~ 0.3 for Os up to 1.0 and C4y ~ 0.7 for Os
greater than 1.0. In most orography Os is < l.Q and the higher value of:

Cd is really intended for sharp bluff bodies such as buildings. ie. we

use
( log(h/(2z))) )* = k*/ (3CyA/S+C ) -19

where Cn = k* /( log(h/(2 zol) )* (and may be negligible - in- mountainous

terrain) and h is the typical peak-valley height.

5. Finally we note that z derived from (19) should not exceed 0.1

Application of the above rules gives results which are not widely
different from the values suggested by previous workers. (eg. Smith and
Carson 1977). However, the precise difference may be significant and the
procedures advocated here have a slightly firmer basis and more general
applicgtion.

As an example of the present rules, application has been made to
three specific sites in the U.K.; the South Downs, South Wales and the
Cairngorms.

qu the South Downs a ten kilometre square centred at 50° 55' N
0° 45’ W was selected. Here values of h are about 100m and .9;~ is
between 0.1 and 0.2, The value of A/S derived from various sections is

~ 0.01l., The basic value of z, is harder to estimate. About one quarter
of the area is woodland occurring on scales of about 1 to 2 km. Taking
z, = lm for the woodland and z, = O.1m for the open areas equation (6)

indicates an overall value of = 0,27m.  Taking G = 7 A/S = 0.03

Zo1

equation (18) gives an increase in z of ~ 1.4 ie. a final value of

z = 0.4m.
o

!

For South Wales a ten kilometre squarev centred at 51° 45 N,
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3° 12’ W was selected. This corresponds to the field site used by Mason
and King (1984) and discussed above. Here Qs—v 0.33 so the bluff body
dynamics should be considered. h is about 250m and the mean value of
A/S~ 0.04. ( Owing to the ridge-valley orientation A/S +~ 0.08 for East -
West flow ). The basic Asﬁrface value of z has been taken as 0.lm to
correspond to open country with scattered trees and walls. Application of
equation (19) then gives a final value of z, = 2.0m (3.5m for
across—valley flow)

For the Cairngorms a ten kilometre square centered at 57°v2' N and
3° 45' W was selected. Here Os is 0.45, h is ~ 600m and A/S ~ 0.1.
The basic value of z_  is probably around O.lm but not very important.
Application of equation (19) gives z, = 12m.

Further work and observations are needed to provide better guidance
on estimating the displacement height D . A very unrefined guess would
be to set D , on a fairly local basis, to a fraction of peak to valley
topographic height. Newley's (1985) results suggest that D might be
~ 0.2 h for &} up to about 0.4 and then rise to about 0.5 h for 6% 21.0.
An area average of the local valueé of D would then need to be formed.
It is interesting to note that so called envelope orography with one
standard deviation of the orographic height added to the mean orograbhi
could be viewed as corresponding to a displacement height of 0.35h '
(assuming sinusoidal corrugations and remembering that h is thé peak

trough height).
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