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A very idealized model for error growth is used to discuss numerical weather pre-
diction model forecasts of time averages ranging from 0 to 30 days in duration at lags
of 0 to 30 days. The idealized model allows a simple assessment of how the initial
error, error growth rate and serial correlation influence a forecast model’s prediction
of a time average. The simplified nature of the idealized model also allows an easy
demonsiration of how various filters applied to the raw numerical predictions can help

to improve forecast skill.

1. Imtroduction

When meteorologists are asked to make a forecast for a month, a season or even a
couple of weeks in advance, they usually quote from numerous predictability studies
that it is probablybimpossible to forecast instantaneous deviations from climatology
this far into the future. They might also point out that skilful instantaneous fore-
casts are rarely issued by weather services beyond a few days in advance. On the
other hand, they might suggest that it is possible to give a broad overview of the
upcoming weather by considering the time-averaged behavior. For example, they
might predict if the average temperature over a large spatial region is likely to be
above or below normal in the next few weeks. They do this by two methods.

First, they know from numerous studies that long-lived anomalous forcings pro-
duced by boundary influences, such as sea-surface temperature anomalies, have rela-
tionships to the time averaged atmospheric behavior overlying and remote from the
anomalous forcings. Hence the knowledge that the boundary conditions are anoma-
lous initially and likely to persist somewhat into the future allows them to suggest
how the time averaged atmospheric behavior is likely to deviate from a long-term
average in the near future.

Second, they know that although the weather is not likely to be predicted very
well at long range, it is likely to be predicted well at short range. By averaging

the more well predicted days at the beginning of the forecast period with the less
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well predicted days at the end of the forecast period, they can issue forecasts of the
average weather that will have skill greater than that of an instantaneous weather
forecast at the end of the forecast period. For example, forecasts of a 30 day average,
averaged over forecast days 1-30, should be better than the i_nsta.htaneous forecast 30
days into the future (day 30). Also, the truly predictable signals at long range may
be obscured by random weather variations and averaging the predictions over time

may allow the predictable signals to emerge.

This second method was considered recently by Roads (1986b, hereafter referred
to as Rb). In a previous paper, Roads (1986a, hereafter referred to as Ra) had also
discussed the error growth inherent in a forecast of a time average by a numerical
weather prediction (NWP) model. However, the specific time averages referred to in
Ra were those that averaged the forecast from the beginning of the forecast period
(day O, i.e. the initial conditions) to the end of the forecast period (day T). This
type of forecast is usually made when the desired forecast time is much larger than
characteristic predictability or forecast times of individual events (say 1-3 weeks). For
example, the National Meteorological Center (NMC) provides monthly and seasonal

forecasts at the beginning of the forecast month or season.

Ra showed that the best forecasts of these zero-lag time-averages (forecasts start-
ing at day O and averaged to day T) were provided by properly filtering the raw
numerical forecasts. One filter used multiple regression to weight the individual days
that go into a time average. Another filter simply ignored the daily predictions once
the forecasts had more noise than predictive skill. This cutoff was near to the days
where the forecasts of individual days had correlations of approximately 50% or less
with the observed data.

Another type of forecast of a time-average currently provided by NMC is a fore-
cast of a 5 day mean 5 days into the future (average of days 6-10), which is a lagged
time average. In fact, as NWP models move into the extended ranges, some type
of time averaging will have to be done in order to weight the spectra toward the
longer time-scale features. Questions naturally arise then as to what the skill is and
what the filters are for the more general case involving arbitrary time averages at
arbitrary lags. The purpose of the paper by Rb, therefore, was to extend the re-
sults obtained by Ra using a very idealized model; in addition to the special case of
arbitrary time averages at zero lag, the more general case involving arbitrary time

averages at arbitrary lags was also treated.
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I will summarize some of these idealized results here in order that we might an-
ticipate some of the results that may be forthcoming from planned extended range
prediction experiments. Due to the speculative nature of the idealized model, I stress
at the outset that these results need to be checked with real honest-to-goodness theo-
retical predictability and practical forecast experiments. With the planned extended

range prediction activities, this experimental data should soon be readily available.

2. Raw Numerical Prediction

It will be assumed here that we are discussing predictability of time averages
within the context of a perfect model. That is, given an observed variable, ¥,, and

a predicted variable, 1y, the climatology or ensemble averages are identical, i.e.
< tPo >=<1Pp >,

as are the ensemble averages of the variance, i.e.
<PE>=<yi>.

< ... > denotes the ensemble averaging. Ensemble averaging is an average over similar
events. It is not to be mistaken for time averages. For example, we may desire to
discuss the ensemble average of a time average, e.g. < {¢)p} >, where

1 74+T
{'/Jp}:-f / Ppdt.

s
Here 7 is the lag time and T is the averaging time. The lag time, 7, is always
a measure describing how far from the beginning (i.e. the initial conditions) of a
particular prediction we are. It does not necessarily denote any absolute calendar
date. For a particular example, T = 10 and 7 = 5 denote a 10 day average of a
predicted variable, beginning (lagged) 5 days into the future, or in other words, a
prediction of a 10 day average, averaged from day 5 to day 15.

The correlation between the predicted and observed state will be used in this
talk to be the measure of the error. This measure has the advantage over the root
mean square (RMS) error in that dynamical models, as well as filtered models of one
kind or another can have the same correlation even if the RMS error is different (See
Ra and Rb, hereafter referred to as R). For example, if a perfect dynamical model is
filtered via a perfect statistical model, the statistical model and the dynamical model

will initially have the same RMS error but at long lags the statistical model has
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(1/ 2)1/ 2 the RMS error of the dynamical model; however, the correlation between
forecast and observed remain the same for both perfect models for all lags. Thus
the correlation measure may provide a uniformly good description of the skill over a
broad variety of dynamical as well as filtered models.

Now the cdrrelation between two time averages for a perfect model, (< ¢ > =

< 9p >) in which climatology is removed from the time series, is

< {¥p}vo] > _
< {9p} >1/2< [,]2 >1/2

Here
T1+T1
1
(o} = [ Yt
and
T3+T2
_ 1
[¢°]—T21,_/ Yodt.

As in R (see also Roads and Barnett,1984; Leith,1973; Munk,1960; as well as

others)
4T, 1T,

<[¢,,]2>— < f Yodt f Dodt >

r2+T= r2+T3
= —1}—2 < Yo(s3)%o(s1) > dsyds,.
2 1-2 T’
Similarly
+T, r,+T,
1
<{¥p}>= 5,? / / < ¥p(s2)¥p(s1) > ds;dsy
T,_ T:I.
and
T2+T2 r1+T1
< {¥p}[tho] >= T_T— f < ¥p(81)%0(s3) > ds;ds,.
rﬁ TJ.

As shown in Ra, it is possible to find analytic solutions to these integrals (de-
pending upon the analytic forms for the variances and covariances) but what we shall
concentrate on in this talk are the numerical results from discrete summations. For

example, let us define

o +1, o+ T,

1)z Do X <to(s2)to(sy) >

2 —
<[¢01> (T+ 8,=7, 8,=T,
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ct o= TS Chtelon) >
P (T+12 P2P1

8,=T, 8,=T,

and
1 T, +T1,

<Wplbel >= roym Ty 2 L <Y 31)'/’0(32)

8,=T, 8,=T,

Here Ty = 0 (as well as T} = 0) refers to the 1nstantaneous state. Thus, unlike
the continuous form of these equations, we must add 1 time unit to the normalization
factors in order to have robust definitions. However, since these factors are ultimately
cancelled when the correlation is computed, they are somewhat arbitrary anyhow.

We now need to have the form of the variance and covariance for the individual
days. First of all, a first order Markov model has been used successfully in the past
to model the statistical properties of variance functions of observations. The model
is

< Yo(82)Wo(s1) >=< 93 > 77l
For global geopotential data v ~ .3. Similarly it is assumed that if the. dynamical

model being used to make the prediction is a realistic representation of the observed

features then it also will have the same form, i.e.

< Pp(82)¥p(s1) >=< 9 > 7Mo%,

where again it is emphasized that < 1,0,2, >=< 2 >.

Finally, we need to determine the form of the covariance function. In R this was
determined from an RMS error model. The RMS error is related to the covariances
by

=< (o —¥p)? >
=< P>+ < P2 > -2 < Yoty >

_ 2 _<¢o¢p>
=2<9P5>(1 <dls )

The maximum error variance, E2, is 2 < ¥2 >. Hence

E
< Yoty >=< 93 > (1~ (5-)?)
T
Lorenz(1969, 1982) showed that a reasonable model for error growth of daily
(instantaneous) predictions is

(1+tanhg(t — T¢))
2

E_
Er
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Thus the Lorenz RMS error model describes the initial exponential amplification of
error as well as the eventual cessation of error growth as t — oo due to an assumed
quadratic damping. @ is the initial exponential growth rate as well as quadratic
damper. For global RMS errors in the 500 mb geopotentials, @ ~ .3 (see R). T. is the
time at which the RMS error is 1/2 the maximum value; in conjunction with a, T
also determines the magnitude of the initial error.

Assuming that the Lorenz RMS error model is realistic, the covariance for a

perfect model simplifies to

I>(2+e2
<tultpplt) >= SEZLFE),

where

= g-(t—Tc).

This covariance is valid for 8; = 85 = ¢t. However, we also need the correlation for
the predicted and observed days that are not coincident. For example, if the desired
time average is from day 5 to day 10 and the forecast days 5 to 10 are used then we
must consider the relation between forecast day 5 and observed day 5, observed day

6, etc. The assumption made in R is that

2 -2z
< Yo(32)¥p(sy) >= <(;p:_ 32,(;2_‘_':5%))::“718:—811,

where

z = %(31 —Te).

Some justification for this model of the covariance was given by Ra in a limited
analysis of European Centre for Medium Range Weather Forecast data. Much more
data is needed in order to verify the model proposed by R or to obtain even better
models. Presumably as more extended rarige forecasts are made, this data will be
forthcoming. For now let us assume that the chosen forms for the variances and
covariances are reasonable and hence reasonable models describing the forecast skill,
by NWP models, of time averages can be obtained.

Quite arbitrarily, v = a = .3 days~1 along with T; = 9 days was chosen for the
analysis to be presented in this talk. (Remember, only these parameters are used in
the simple models of the variance and covariance functions. They describe the amount
of serial correlation in the predicted and observed time series, the error doubling rate
as well as the eventual quadratic damping, and the error in the initial conditions.)

The basic picture to be presented in this talk is not changed for other parameters
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that may be slightly more relevant to present day models. In that regard, we must
be careful to distinguish what variable as well as what model we are discussing. The
parameters chosen here probably correspond best to what some of the future NWP
models will be able to predict in the Northern Hemisphere 500 mb geopotential field
at extended range. For present day models or for other variables besides the 500 mb
geopotential, it would probably be better to lower T a bit. Also, even though~, a and
T, can be adjusted somewhat to fit the desired data, it may eventually be better to
use the actual data. Finally, for different lags and averaging times, slightly different
parameters may be more applicable. The idealized model and particular parameters
chosen here are used simply to illustrate various points of possible interest in extended
range forecasts. The parameters should not be taken as the best fit to an arbitrary

data Set; that needs to be determined by the user.

Fig. 1 shows the correlations of various forecasts of time averages at various lags.
Here ry = 79 and Ty = Ty. Again, the r’s indicate the lags or the time from the
beginning of the forecast (the initial conditions) to the start of the time average; the
T’s indicate the averaging time; subscript ; indicates that this value is referring to
the NWP forecast; subscript o indicates that this value is referring to observations.
These curves are to be contrasted with those in Ra, where qnly 7 = 0 was considered

and the the correlation was plotted as a function of T. HereA, each curve represents a
different T

The uppermost curve shows the correlation decrease for instantaneous predic-
tions at lags (r) of 0 to 30 days. The lack of perfect correlation at day O for the
instantaneous predictions simply indicates the magnitude of the initial error. As the
lag increases the correlation decreases, initially slowly and then much faster and then

once again slowly, toward zero. This correlation is simply the shape of the tanh

function.

As longer and longer time averages are considered, the correlation decreases. The
reason for this is that the longer time averages include individual days that have a
longer lag from the initial conditions and hence a lower skill. Likewise, a time average
must have greater skill than the forecast of the individual day at the end of the
forecast time average since the time average includes days nearer to the beginning
days when the skill is higher. For example, the correlation for an instantaneous
forecast at day 30 is ~ 0; on the other hand, the forecast of the 30 day average over
days 0 to 30 is ~ .4, with the increase resulting from the high skill in forecasting the
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Figure 1. The correlation, p, between forecast and observed for the idealized NWP
model as a function of lag, 19 = 11 = 0...30 days, for various time averages, Ty =Ty =

0,5,10,15,20,25,30 days. The parameters, a = v = .3 days~1 and T, = 9 days are
used in the idealized model throughout the present paper.
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first few days.
There are a number of ways to increase the skill of the raw numerical predictions
given above. One way is to use multiple regression on the individual forecast days

and this is discussed in the next section.

3. Multiple Regression Filter

The multiple regression filter for a particular time average can be written

+T, 1 Ts+Ts
Yo(s o T a(sg)p(s
T2+1 sz—:r I () ag—_—:rs (ss)pas)

where o(sg) are the statistical weights to be determined by the method of least
squares. The division by the normalization factors (Ty + 1) and (T3 + 1) is done in
order to indicate the relative weights of the individual days that go into a particular
forecast. Again, since these factors are ultimately cancelled in the calculation of the
correlation, they are somewhat arbitrary.

The osg) are determined in the usual least squares way by finding those values
that minimize the error variance, v, for the ensemble. For example, the error variance

of the ensemble is

T, Tg+ Ty
v=(rm—=x P +1 8; o(sg) - 1) %Z_T a(ss) ¢p(83)>

The least squares method is implemented by taking the derivative of the righthand
side with respect to the a’s in order to find the best combination of the a’s that give
the minimum error variance. For example, taking the derivative with respect to a(rg)
and setting the result to 0 yields one equation in (T3 + 1) unknowns (the o’s), i.e.

1 1T, g+ T

T +1) OZ < Yo(s2)¥p(r3) >= T 1+1) 3" afss) < p(s3)¥p(rs) > .

=7, 8,=T4

Continuing on for a(rg + 1) to a(rs + T3), yields a matrix equation of order (Ts+1)
for the a’s, which can be easily solved.

Fig. 2 shows only the a’s as a function of sg (33 = O to 30 days) for various
predictions. Although the weights were determined both for s =0 to 60 and s3 =0
to 30 days, no discernible difference in the first 31 a’s was noted for the parameters
chosen here; this indicates that the a(sg) for sg > 30 days are unimportant for the

predictions considered here.

31




‘1:.|.|.|.|.|.|.

0 0 'sé'—{ 20 30 0 10

VNN SN WG (O T N1 Y [N VRN NONOY S T S [P ST SNSNNS TGN SO W NN SN Y SRS TN IS W ST B

Figure 2. Regression coefficients or statistical weights, o, as a function of each
predictor day of the NWP model, 83 = 0...30 days, for various desired time averages,
T, =0,5,10,30 days, at various lags, 73 =0,5,10,15,20,25 days.
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Figure 3. The correlation, p, between forecast and observed for various desired time
averages, Ty = 0,5,10,15,20,25,30 days, at various lags, 9 = 0...30 days. The solid
lines refer to the forecasts filtered by multiple regression, MR, and the dashed lines

refer to the raw unfiltered forecasts, U. These dashed curves were also given in Fig.
1.
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For the daily predictions( Ty = 0), at short lag times(ry ~ 0), essentially only
the day corresponding to the prediction is participating (a(sg) ~ 0 for 83 # 75). For
longer lead times, some marginal contribution from the initial days as well as the
days after the lag(ry) day participate. Curiously, the weights are negative after the
initial day of the desired lag. That is, a(sg) < 0 for sg > 73.

For longer time averages (Ty > 0), the peaks in the weights are broadened for
8g ~ 15 and 19 ~ 0, but for increased lags (r, >> 0) the a’s tend to sharpen again
toward the initial day of the time average. That is, a clear maximum exists for s3 = 5.
Again, as in the forecasts of the daily values, the weights are initially positive, rise
sharply to a peak for the initial day of the desired average, then decay toward the
end of the desired average (o +T3). For days after the desired average (83 > 79+ T5),

the coefficients are again negative but asymptotically approach zero.

Comparing the skill of these predictions with the skill of a straightforward unfil-
tered prediction in Fig. 3, we can see a substantial improvement in all forecasts using
the multiple regression filter. This is especially noticeable in the 30 day forecasts.
Here the variance explained is almost double that of a fore;ast that uses only a top

hat (standard time average) weighting profile for the individual forecast days.

Although the filter based upon the multiple regression coefficient weights of var-
ious days is likely to produce an increase in skill for a large ensemble, it is not
altogether certain that this skill can be achieved in practice due to potentially high
artificial skill. That is, although actual forecasts can be used to generate the sta-
tistical weighting coefficients, unless a very large number of forecsts can be used,
the multiple regression filter is likely to be deceptively good on the data set used to
generate the coefficients and deceptively bad on an independent sample (see Davis,
1976). Therefore, we should always be on the lookout for methods that provide

almost equivalent skill but have fewer parameters.

4. Forecast Window Filter

An obvious simple filter, consisting of only two parameters, is finding the discrete
interval of the prediction which is most closely correlated with the desired lagged time

average. That is, we wish to maximize the correlation

< [%o]{1Pp} >
< [v2] >1/2< (42} >1/2
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where
,+T,

1
o] = odt
ol = / v
and
T1+T1
{¢P} = 7]1.‘1‘ / ¢Pdta

by finding the 7; and T} of the forecast that provide the optimum forecast for a
desired time average given by 79 and Ty.

This optimum window was determined numerically in RD by taking a particular
desired prediction (say 7, = 5 and Ty = 30 days) and then calculating the best
correlation between this time average and a forecast time average. The forecast time
average ranges over a two dimensional space, (0 <7 <30 and 0< T} <30 days), for
a particular desired time average (i.e. a specific 75 and Tj.)

An example of such a calculation is given in Fig. 4 for Ty = 30 and 79 =0, 5,10,20
days. The thing to note here is that there is a maximum in the correlation field at
somewhat surprising values for 7y and Ty. For example, for a forecast of a 30 day
average lagged at 10 days, Fig. 4 shows that the best correlation is found by using
Ty ~ 6 and 7; ~ 9. Thus the forecast should only be made out to day 15 and the
average of the forecast over days 9 to 15 should be used as the optimum forecast of
the 10 day lagged 30 day average.

Many correlations of this sort can be evaluated and Fig.’s 5 and 6 summarize the
optimum r; and T of the prediction as a function of the desired time average, Ty
and 79. From the limited number of experiments it appears that 7y ~ 7y for 79 ~ 0. As
Ty increases, 7; approaches an asymptotic value approximately equal to the time at
which the correlation for the daily prediction drops to about 50% (~ v2T¢). Ty ~ T3
for 79 and Ty ~ 0. Ty asymptotically approaches a limiting value for r; small but T
large. As both 79 and T increase then T increases such that T; + Ty ~ 75. Thus, an
increased averaging time does help to improve the skill at this very extended range.
It must be stressed again, however, that the optimum forecast average and lag (the
forecast window) is still much different from the desired lagged time average.

It should also be noted here that some of the sharp jumps in the contours of Fig.’s
5 and 6 are, presumably, due to the use of a discrete truncation at one day intervals.
If much shorter intervals and concomitantly much more expensive computations were

carried out then these jumps would probably disappear and fractional days would be
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20
Figure 4. Correlation contours, between forecast and observed, for a desired time
average of Ty = 30 days lagged at 79 = 0,5,10,20 days using NWP model prediction
time averages of Ty days lagged at 7y days. Different contours are used for the different

79. The mazimum value for the correlation is indicated on the interior of each figure
Jollowing the + sign.
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Figure 5. Optimum NWP model Ty for various desired time averages,
desired lags, T2.
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Figure 8. Optimum NWP model Ty for various desired time averages, Ty, at various
desired lags, 14.
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Figure 7. The correlation, p, between forecast and observed Jor various desired time
averages, Ty = 0,5,10,15,20,25,30 days, at various desired lags, 9 = 0...30 days.
The solid lines refer to the multiple regression forecasts and the dashed lines refer to
the forecasts using the optimum NWP model 71 and Ty.
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selected. The correlations may also be slightly improved, but as we see in Fig. 7, it
is probably not worth the extra expense.

Fig. 7 shows the correlation using the window filter (dashed lines) versus the
multiple regression (solid line) filter. Multiple regression is superior to the window
filter, although, in coinparison to the increase from unfiltered to filtered prediction
data, only slightly. Therefore, since fewer filter coefficients must be defined it will

probably be better, at least initially, to use the window filter.

5. Conclusions

An idealized model for error growth of forecasts of time averages by an NWP
model was recently examined by R and this work with the idealized model has been
summarized in this talk. These time averages were of arbitrary duration and arbitrary
lag. As was shown, it was helpful to filter the forecasts since the variance explained
could be substantially increased with the proper filter.

One filter was multiple regression. Here each day of the forecast was statistically
weighted. For the forecasts of discrete time averages lagged from the initial day,
the initial days of the forecast mariginally contributed with greater contributions
occuring as the actual forecast and desired forecast days approached each other. A
strong contribution then occurred when the regression and desired lag days coincided.
The weights subsequently decayed with increasing forecast time and then became
negative for forecast times past the desired time average.

A two parameter (window) filter provided almost as much skill. Here the best
time average and lag of the forecast (or, in essence, the best forecast window) were
determined. The optimum forecast lag reached a limiting value near to where the
daily correlation approached .5. The optimum prediction time average increased,
however, such that the lag plus time average was approximately equal to the lagged
first day (or first few days) of the desired time average. That is, after the daily
forecasts begin to drop in skill below about a .5 correlation, it is better to average
the forecasts up to about the first day or so of the desired lagged time average.
Forecasts beyond this point are not very useful.

To summarize, let us assume that we wish to predict the time average, T days in
duration, averaged from day 79 to day 75 + Ty days into the future. Again, r denotes
the lag from the initial conditions and T' denotes the averaging length. One way to

make this prediction is to use a numerical weather prediction model forecast starting
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at day 7y then averaging the forecast from day 7y to day ry +Tj. r; and Ty can be
the same as or different from 7o and Ty. As was shown, the best forecasts do not
necessarily have 7, = o and Ty = Ty. In fact, as was shownin R, for iy =75 =0
and Ty >> 0,Ty << T,. For example, to make the best forecast of the average of
the next successive 30 days, it is probably best to average an NWP forecast over the
first few days (say 10 until further analysis is done, see R) and call that average the
forecast of the monthly average.

For 79 >> 0, the optimum 7; is ~ V2T,., where 2T, is the approximate time at
which the RMS error curve crosses the climatology curve or, equivalently, the time
at which p ~ .5. Also for 79 >> 0, T} + T ~ 79. For examplé, to make a forecast of a
30 day average starting 30 days from now (i.e. forecast the January average starting
at the beginning of December) it is best to average the daily forecasts from the time
the daily forecasts have a correlation of .5 (say 1 week) up to the beginning of the
desired forecast (beginning of January). That is, the average of the forecast for the
last 3 weeks of December provides a better forecast for the month of J anﬁary than
the actual NWP forecast of the January average.

If a sufficiently large data set were available, an even more skillful filter would be
to properly weight each day of a forecast by using multiple regression. Unfortunately
due to the present limited data sets, the artificial skill is likely to be way too high
for this latter multiple regression method and hence the actual forecast skill is. likely
to be way too low, in practice. Moreover, the increase in skill with the multiple
regression filter, over the window filter, is extremely small.

Finally, let us not forget that the conclusions of this talk  are based upon
a very simple and idealized model for error growth. Much additional work needs
to be done in order to determine how real NWP forecast models behave (eg., see
Ra). In that regard, the scientific community is eagerly awaiting the results of the
dynamical extended range forecast experiments to be conducted over the next few
years by various NWP modeling groups. Also, let us not forget that the influence
of anomalous boundary conditions or specific synoptic situations may change some

of these conclusions, especially at the very extended ranges or limits of present day
NWP forecasts.
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