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Summary: The notion of "statistical equilibrium” in a
turbulent system, that is basic to the classical theory of
general atmospheric circulation and is'also invoked in some
theoretical interpretations of persigtent anomalies, is
re—examined in its physical foundations by means of a simple

example of turbulent baroclinic flow.

1. INTRODUCTION

Since the discovery of baroclinic instability, hundreds of
studies have been devoted to analyzing the growth process of
unstable disturbances at the expense of potential energy made
"available" by the differential absorbtion of solar radiation

in the earth’s atmosphere. .

Most of the papers on the subject discusé,under various
simplifying assumptions,linear stability analysis of known
stationary solutions of the equations for atmospheric flow.
Such papers essentially propose an elaborated version of the
original formulétion, by Charney (194?) and Eady (1949), of

baroclinic instability theory.

Much less attention has been devoted to nonlinear stability
analysis of baroclinic flows. The best known contributions on
this matter are due to Pedlosky, starting from his classical
paper of 1970. In the studies pefformed "in Pedlosky’s

spirit"” some properties of the unstable system are usually
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analyzed by weakly nonlinear perturbation expansions . In most
cases, however, the authors fail to seek the link between

the global properties of phase-space and the statistical
properties of baroclinic turbulence.

On the other hand the classical theory of general circulation
dictates that "average" (statistical equilibrium) states are
essentially maintained by turbulent fluxes. Statistics must
somehow be recovered. This is done in a number of papers,
devoted to studying baroclinic conversion under conditions
sufficiently'realistic tobpermit comparison with observations,
by considering a basic state near the observed time-—average.
Interestingly enough such comparisons systematically reveal
discrepancies of horizontal scale and vertical structure
between observed baroclinic waves and their theoretical
counterparts(see,fcr example,the classical paper by Gall

(1976)).

All in all very little conclusive work appears the literature
concerning the maintenance of statistical equilibrium in the
general circulation. Apart from the pioneering studies by
Lorenz (1962 , 1963) , more concerned ,though , with the
annulus dynamics, I believe the relevant contributions are
those of Charney (1959), Green (1970) , Wiin-Nielsen and
Fuenzalida (1975) and White (1977). The mechanism highlighted
in these works is essentially that of baroclinic instability -
barotropic stability emerged at the end of the fourties from
the studies of Charney (1947) and Kuo {(1949). Comparison with

" observed statistics is confined to fluxes of heat and momentum

252



and seem to confirm the plausibility of the hypothesis that the
jet structure is maintained in the atmosphere by the combined

effect of baroclinic instability and barotropic stability.

Other ideas appear here and there in the literature. An
interesting example is the phenomenological analysié by Stone
(1978,1982) based on the assumption that the mechanism of
baroclinic conversion must eventually stabilize near marginal
stability. Although never clearly specified, the implied:
mechanism éflstabilization seems to be that of depletion of

available potential energy instead of barotropic -stability.

More recently the issue of statistical equilibria has been the
object of renewed interest in the context of the controversy
regarding "multiple equilibria” . This matter is well
documented elsewhere , e.g. Benzi and Speranza (1986) andin the
literature quoted -therein. The physical problem is in essence
the same as in the case of ordinary baroclinic instability: we
want to understand what type of scale interaction maintains the
statistical equilibrium’(equilibria!) and how to describe
correctly the fluctuations with respect to the equilibrium (the
transitions between different equilibria). The only difference
is that, this time, we are dealing with the dynamics of low

frequency variability.

In this presentation I prefer not to address the question of
multiple equilibria, although of major concern to me, but
rather concentrate on discussing the basic problem of the
maintenance of statistical equilibria. This I will do by

means of a simple, but statistically realistic, example of
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baroclinic flow recently set up by Malguzzi and myself in order
to explore a number of properties of baroclinic waves,
specially concerning their interaction with the mean flow.
After a description of the model and its statistical p?operties
as derived from a 10 year integration (Section 2), I will
examine the system in the framework of dynamical system theory
(Section 3), from the point of view of classical meteorologists
(Section 4) and, at last, in my own way (Section 5). Some

very tentative conclusions will eventually be drawn.

2. GENERAL PROPERTIES

2.1 The model

Recent experience with high resolution numerical models, e.g.
that of Benzi et al. (1986), shows that localized features,
like isolated vortices, can play an important role in the
global balances of turbulent flows. However the atmospheric
circulation is dominated by mean flows that certainly play a
remarkable role in determining the dynamics of fluctuations.
In fact the classical theory of general circulation deals
almost exclusively with global interactions in the wave-mean
flow form. Although recognizing the potential role of
space—-time intermittence, I will concentrate here on global

interactions, in line with the meteorological tradition.

The simplest model representing the dynamics of interaction of
baroclinic waves with a zonal flow and displaying earthlike
statistics, turns out to be a minimal vertical truncation (two

layers or modes) of the equations of motion with enough
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latitudinal resolution to guarantee adequate description of
barotropic interaction between baroclinic waves and the zonal
flow.

T will describe here the quasi-geostrophic version in two
layers, following the notation of Pedlosky (1979). Starting
from the potential vorticity equations with Laplacian
dissipation, written in terms of the barotropic ®=(¥,+ ¥;)/2
and baroclinic t=(¥,- ?3)/2 components of the streamfunction,
and introducing a baroclinic forcing t¥, we obtain:

D0 + I(B , T8+ By) + I(T ,VT) =

= -3/29% (8 - 1) (1)
’Bt(VZ'c - 2Ft) + J(® ,V2® + By) + J(T ,¥?*T) =
:)%/2 2(® - t) ~YVPt + 2F(t - k). (2)
We separate now the symmetric component:
o(x,y,t) = - |U(y,t)dy + &’ (x,y,t) (3)
t(x,y,t) = - |m(y,t)dy + T (x,y,t) (4)

and introduce the separated form:

‘ +60
8 (x,¥,£) = Sm(An(y,t) galx) + (F)) (5)
(k7,0 = B (B (Y1) Ea(x) + (K)). (6)

The main purpose of the assumptions (5-6) is to allow simple
representation of nonlinear wave-wave interactions . In fact, by
inserting (5-6) into (1-2) and projecting onto thevfunctions
gﬂéx), equations in which nonlinearity is lumped into scalar
products of g-functions can be obtained. Here, however, we
shall concentrate on the wave-mean flow interactions.
Consequently we assume:

gi(x) = exp(ikx) , gmﬁx) =0 for nfl (7)

This reduces {(dropping superfluous indexes) the equations of
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motion to:
’gtU +¥%/2(U - m) + 2k Im(AAXx + BBXx) = 0 , (8)

Qt(my),—ZFm) +95myy”‘))€/q(U - m)yy QF)’(m - m*) +
+ 4kF Im(A*B)Y + 2k Im(ABX + BA*) 0 (9)

’B(Ayy- k?A) + (/2 + ikU)Ay 7
- [ik3U + 1kUy - ikp +3:k?*/2]A +
—(ikmy, + ik3m -3k*/2)B i (ikm —)Q/Z)B”,= 0 (10)
Q[Byy —(k® - 2F)B] + (%/2 +Ys + ikU)By
- [ik3Uu + ikUyy - ikB +3L k2 /2 + k3D + 2F)?+ 2ikFU]B +
(1kmyy+ ik? m -Y:k? /2 ~ 2ikFm)A + (ikm - J)/Z)Ayy 0 (11)
where any trace of wave-wave interaction has disappeared,
except for the momentum and heat fluxes in the zonal flow
equations. Since A and B are complex, (8-11) constitute a set
of six field equations in latitude y and time t. Notice that
when U and m are fixed, as in some cases of marginally unstable
flow that we shall consider later, the wave amplitude vector
(A,B) can be written explicitly in terms of the zonal flow
(U,m) as exp(Tt), where T is the matrix of the evolution
operator in (10,11). In general, though, the evolution

operators of different instants T(t), T{(t’) do not commute

and the generalized exponential solution cannot be written.

2.2 THE STATISTICAL PROPERTIES

Experience shows that the system (8-11) displays realistic
statistical properties and these are conveniently modelled by
means of a spectral representation in terms of a few tens of
modes. The results we show here are relative to an integration
with a leap—-frog scheme in time (time-step ~ 1/10 day) and a
pseudospectral representation of fields in terms of 32
latitudinal components. The integration is carried on for 10

yvears (= 350.000 steps corresponding to about 1 hour on a CRAY1).
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Yalues of the dissipation coefficients are respectively%; 0.45
(decay—time ~ 2.5 days in dimensional form) and¥§0.1157
(decay-time =~ 10 days in dimensional form). The external
forcing, operating only on the gravest latitudinal mode, is m¥
= 1.41. This corresponds to a thermal forcing of 9. The zonal
wavenumber is k = 1.3 (= 4800 km). The energy cycle is

correctly closed and very realistic.

Fig.l displays the scatter of different components of states
sequentially occupied by the system in time and Fig.2Z the
relative probability densities. Fig.3 shows the average in
time of the zonal flow; although characterized by a high degree
of variability from year to year, the average is quite stable
after ten years. The average of wave amplitude is obviously
zero. Power spectra are shown in Fig.4. It shouldbbe kept in
mind that our dissipation is not scale-selective and, R
therefore, we are not dealing with an inertial range: the -3
spectrum is not that of two-~dimensional turbulence theory! The
time spectra, shown in Fig.5, confirm the "turbulent" nature of
the system. Combined wavenumber-frequency spectra reveal the
energetic dominance of the lowest harmonics (Fig.6). These
statistical properties are in reasonable agreement with those
of the real atmosphere. For the sake of comparison I

show in Fig.7 a typical histogram of short baroclinic waves

(see again Fig.2).

The problem I want now to address is that of setting up a
consistent dynamical theory of the statistical equilibria

observed in our model atmosphere.
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Fig.l a) Scatter diagram of the first meridional component of
zonal wind shear (mi) versus the fTirst component of the zonal
wind (Uy). Units are dimensionless (one unit corresponds to 10
m/sec). The total time of integration is about 10 years.

b) Same as a) but for the real and 1imaginary parts of the
first barotropic meridional component of the wave-field (Ag).
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Fig.2 a) Histograms of Uy (solid line). The dashed line
represents a gaussian having the same mean and variance as the
distribution of Up. b) Same as a) but for the real part of Ag .
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Fig.3 a) ten years average of the zonal wind at the upper
level (liv.1l) and lower level (liv.3). Units are m/sec.

Examples of averages over individual years are shown in b) and
c).
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Fig.4 Fourier spectrum of the total energy {kinetic +
available) as a function of the meridional wavenumber w3 =
zj/Ly, j = 1,2,3,... The slope of a wjy" law, n = 2,3,4, is
also plotted for comparison.
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Fig.5 Power .spectrum of a) real part of A, and b) first
component of the mean zonal wind U,. In abscissa is the
period (in days) on logarithmic scale.
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Fig.6 Wavenumber-frequency power spectrum for a) barotropic
wave--component {(contour interval .1) b) mean zonal wind. On
the y-axis is the period on logarithmic scale.
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Fig.7 Histogram of spectral power of short (zonal wavenumbers
7-18) baroclinic waves in the northern hemisphere computed from
500 mb heights of winters 1966-1978. Heights are integrated in
latitude between 30 and 75 degrees. The signal is detrended by
operating a running average at 16 days. (From Benzi and
Speranza, 1986). ‘
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3. THE DYNAMICAL SYSTEM
The first approach I propose is the mathematical one: starting
from stationary solutions (if any) the onset of turbulent chaos
is followed by varying an order parameter, in our case the
external thermal forcing.
The stationary solution is most easily determined as the
"Hadley circulation™:

A B =20

U m (12)
Mmy, - 2Fy (m - m¥) = 0

o

that is characterized by zero wind in the lower layer. Linear
stability analysis of this solution (a classical topic in
meteorology!) gives the results shown in Fig.8 for the first
and second mode. For k = 1.3 stability is lost around;ﬁ% = 4,
Fig.9 illustrates the bifurcation sequence. At é@ = 4 the
system is stable; the stable orbit, that at,&% = 4,07

winds several times before spiralling down to equilibrium,
degenerates at 492 = 4.2 into a stable Hoﬁf cycle. Between 4.2
and 4.3 another cycle is bifurcated: the motion is
quasi-periodic, i.e. the ratio between the period of the new
orbit and that of the first Hopf cycle is irrational and the
ensuing vacillation is covering its toroidal phase space. At
high values of the forcing the whole space near statistical
equilibrium is filled. The sequence is of the type described
by Feigenbaum, Kadanoff and Shenker (1982) who alSO provide an
example of renormalization near the transition to chaos. The
chaotic behaviour is generated near the second orbit in a

fashion very similar to that described in KAM theory, although
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Fig.8 Growth-rates of the most unstable a) symmetric b)
antisymmetric eigenmodes of the linear stability analysis of
Hadley circulation versus the zonal wavenumber k and the
external forcing. Contour interval is .1.
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Fig.9 Projection of the phase-space trajectory on the
(Im(Ai),Re(Ai)) plane for different values of the external
forcing. All the trajectories describe a l-year evolution of
the system. a)dg = 4. b) = 4.07 c) Hz = 4.2 d) Hdg= 4.3
e) g = 6. 3 s 9. The Hadley circulation loses its
stability at Qg = 4.158.

267




here the system is dissipative.

Since the prototype of atmospheric behaviour we are interested
in is very far from transition, there is not much quantitative
knowledge we can gain from the study of the bifurcation
sequence. However, as we shall see later, the qualitative
understanding of the onset of baroclinic turbulence is crucial
for setting up a dynamics of fluctuations near statistical

equilibrium.

4. THE THEORY OF GENERAL CIRCULATION

The theory of general atmospheric circulation revolves, in ﬁany
different fashions, around the basic idea that turbulent fluxes
maintain an equilibrium circulation (the "stationary flow"
determined by time—averaging) conspicuously shifted with
respect to the true stationary solution (the Hadley
circulation) and that any dynamical theory of fluctuations near
statistical equilibrium, e.g. linear stability analysis,

should be referred to such a state.

I will try here to test the consistency of such a theoretical
framework by analyzing our model atmosphere in its context.

The statistical equilibrium circulation is well approximated by
the average zonal flow of Fig.3. Linear stability analysis of
this circulation gives the results shown in Fig.10. As

expected the system is pushed by turbulent fluxes much nearer

to marginal stability than with respect to the. Hadley circulation
(compare with Fig.8), although still remaining in the unstabie

range. This result at first sight confirms classical
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Fig.10 Growth-rate of the most unstable eigenmode of the
linear stability analysis of time—averaged zonal flow. The
vertical shear m is varied mantaining the profiles unchanged.
Statistical equilibrium corresponds to mg = 1. . Contour
interval is .1
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Fig.l1l Scatter diagram of zonal wind and first wave-component
of the system with external forcing producing a fixed point at
the statistical equilibrium of the system with the scatter
diagram shown in Fig.1l.
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conjectures about baroclinic turbulence in the atmosphere as,
for example, those formulated by Stone (13978). However a
thorough investigation of nonlinear theory reveals very
dangerous inadequacies. In order to avoid the laborious (and
boring!) mathematics typical of weakly nonlinear

expansions I will try here to give an idea of the nature of the
difficulties encountered in the formulation of a consistent
theory,along the lines that are classical in meteorology,by
means of a numerical experiment very similar to the basic one
described in Section 2. The experiment consists of a ten year
numerical integration of the system (8-11) for a choice of the
external forcing that balances the time—-mean state. As a
consequence the new system has a fixed point exactly in the
statistical equilibrium. The scatter diagrams of various
components are shown in Fig.l1l. Comparison with the

statistics of the original experiment (see again Fig.l) reveals
two conspicuous problems: the variance is too small and the
new statistical equilibrium is shifted with respect to the old
one. The first problem is associated with the circumstance
{previously considered favourable) that the system is very near
to marginal stability of the time-mean state. In

principle this problem can be handled by carefully reshaping
the center manifold near marginal stability. At any rate the
need for an accurate rewriting (renormalization) of the

equations emerges already.

But where the physical nature of the limitations of classical
theory most clearly appears is in the second problem: the

shift of the equilibrium is caused by an essential symmetry of
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the system, namely that associated with the property of
baroclinic instability to transport heat only in one direction
so that nothing like an "antibaroclinic" instability exists.
One can easily be convinced that this difficulty must be
faced no matter how one modifies the stability problem;

moreover it is not model-dependent and is, therefore, basic.

In conclusion the foundations of the theory of general
circulation appear rather shaky. This perhaps explains why it

is so often invoked, but never thoroughly formulated!

4. A TENTATIVE MINIMAL THEORY FOR STATISTICAL EQUILIBRIUM
A satisfactory solution to the problems outlined in the
previous section will probably come only from a complete
theory of renormalization of the baroclinic turbulence.
I do not have even a hint of what the correct renormalization

i
procedure may be. It will not come out to be an obvious one.
What I can propose here is a line of approach emerging from the
work that Malguzzi and I are performing on different
truncations of the system (8-11). Truncation has, to a certain
extent, the same qualitative effects as the decrease of the
stress parameter: if the dimension of the truncated space 1is
not sufficient for the embedding of the center manifold of the
instability "generating" the turbulence, the system is
stabilized. On the other hand the spectra of Fig.b6
substantiate the hypothesis that, at least energetically, a
limited number of components plays a dominant role.
It is interesting, therefore, to consider the phenomenology of

a sequence of trucations very much like the sequence of
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bifurcations discussed in Section 3.

Fig.1l2 shows the typical results obtained with truncation at 4
modes in the wave field and 4 modes in the zonal flow,‘4 and B,
8 and 8 respectively. Particularly interesting is the sequence
of the zonal flow: the fixed point of the (4,4) system,
strongly shifted with respect to the Hadley circulation because
of the extreme efficiency of the waves in trasporting momentum
and heat, becomes a stable,though less efficient, cycle for the
(4,8) system and an unstable cycle for the (8,8) system.

Notice that we speak only improperly of acycle because in the
rest of the phase-space the orbits are ergodic and filling
(remember that vacillations of waves are characterized by
irrational period ratio). Comparison of the scatter diagram
of the zonal flow in the unstable (8,8) system with the
original one (in Fig.1l) shows that the variance is very well
distributed and, apparently, both the problems outlined in the
previous section are solved: the instability of the cycle in
the zonal flow is non—-shifting and characterized by the right

variance amplitude.

An adequate discussion of the physical mechanisms that are at
the basis of such.a striking result requires careful
mathematical consideration of the properties of instabilities
growing on periodic and quasi-periodic orbits versus those
growing on fixed points centered on the average of the cyclic
orbits themselves. Suffice here to remark that many properties
are extremely different. Therefore, if the above results were
confirmed for more complex and realistic systems, we might have

a potential explanation of the discrepancies between the
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classicalvthéofy'of baroclinic instability and available
observations. MoreoVer, if the global properties of phase-space
of the baroclinic system are associated with the instability of
a basicaliy‘pyclic process, the identification of such a

process inifhe‘féal atmospheric circulation becomes a primary
task. Aﬁ dg;iaﬁsyﬁfpdtheéis is at this point that the indicial
circulation‘mafibe more "fundaﬁental" then a priori thought.

These prqbléms are the object of active investigation.

5. CONCLUSIONS

Given the relevaﬁce of the subject debated, the mechanism of
maintenance of statistical equilibrium of baroclinic
turbulence in the atmosphere, I hesitate here to state any firm
conclusion: much more work is needed on the statistical
properties of various model atmospheres and, even more, on
similar properties in the observed atmospheric circulation. I
only hope I was able to show that there is no convincing prove
concerning the internal consistency of the classical
interpretation schemes of the general circulation and that some
of their known limitations in explaining observed properties
can perhaps be mitigaied, if not eliminated, in the context of
other theories.

I want to conclude with a general consideration. The
atmospheric system is characterized by the simultaneous
excifation of many spectral decades. The task of
parameterizingvsmali scales on large ones ("renormalizing" in
the language of physicists) is not made simple by

scale-separation, similarity, or any other obvious symmetry.
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The problem of determining the collective dynamical effect of
all the motions that will remain essentially unresolved, no
matter what resolution will be achieved by future GCM’s, is
totally open. The time has come to take inspiration from other
fields of science that have already faced similar situations
(see, for example, Wilson (1975)) and try at least to outline

some possible strategies of attack on the problems in question.

6. REFERENCES

Benzi, R., Paladin, G., Paternello, S., Santangelo, P.,
Vulpiani, A., 1986: Intermittency and coherent structures in
two—-dimensional turbulence. Submitted to Phys.Rev.Lett..

Benzi, R. and Speranza, A., 1986: The statistical properties
of low frequency variability in the northern hemisphere.
Submitted to Mon.Wea.Rev..

Charney, J.G., 1947: The dynamics of long waves in a
baroclinic westerly current. J.Meteor., 4, 135-162.

Charney, J.G., 1959: On the general circulation of the
atmosphere. Rossby Memorial Volume. New York, The Rockfeller
Un. Press.

Eady, E.T., 1949: Long Waves and Cyclone Waves. Tellus, 1,
33-52.

Feigenbaum, M.J., Kadanoff, L.F., Shenker, S.J., 198Z:
Quasiperiodicity in dissipative systems: a renormalization
group analysis. Physica D, 3, 370-386.

Gall, R., 1976: A coﬁparison of linear baroclinic instability
theory with the Eddy statistics of a general circulation model.
J.Atmos.Sci., 33, 349-373.

Green, J.S.A., 1970: Transfer properties of the large
scale eddies and the general circulation of the atmosphere.
Quart.J.R.Met.Soc., 96, 157-185.

Kuo, H.L., 1949: Dynamic instability of two-dimensional
non~divergent flow in a barotropic atmosphere. J.Meteor., 6,

1056-122.

Lorenz, E.N., 1962: Simplified dynamic equations applied to
the rotating-basin experiment. J.Atmos.Sci., 19, 39-51.

275




Lorenz, E.N., 1963: The mechanics of vacillation. J.Atmos.
Sci., 20, 448-484.

Pedlosky, J., 1970: Finite amplitude baroclinic waves. J.
Atmos.Sci., 27, 15-30.

Pedlosky, J., 1979: Geophysical Fluid Dynamics. New York,
Springer.

Stone, P.H., 1978: Baroclinic adjustment. J.Atmos.Sci., 35,
561-571.

Stone, P.H., Ghan, S§5.J., Spiegel, D.,Rambaldi, S., 1982:
Short-term fluctuations in the eddy heat flux and baroclinic
stability of the atmosphere. J.Atmos.Sci., 39, 1734-17486.

White, A.A., 1977: The surface flow in a statistical climate
model-a test of a parameterization of large-scale momentum
fluxes. Quart.J.R.Met.Soc., 103, 93-119.

Wiin-Nielsen, A.C., Fuenzalida, H., 1975: On the simulation of
axisymmetric circulation of the atmosphere. Tellus, 27,
199-214.

Wilson, K.G., 1975: The renormalization group: critical

phenomena and the Kondo Problem. Rev.Mod.Phys., 47, 773-840.

276





