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1 INTRODUCTION

Equations and notation in this lecture will follow those in a survey of
analysis methods for NWP published by Lorenc (1986). One of the themes of this
paper was that most analysis methods can be thought of as approximations to an
optimal analysis equation. Differences in terminology and generality of
definition of ‘optimal' can obscure this, as can the different names and
buzz-words used. In section 2 I set out and discuss the ‘optimal' equation. Of
course to do this without long-winded qualifications, I use my own preferred
terminology, and apply my own understanding of ‘'optimsal’. In section 3 I discuss
iterative solution methods in general, and their possible advantages. In section
4 I survey many of the iferative methods which have been tried, trying to
relate them to the 'optimal’' equation of section 2, although many of them were

" not originally presented in this way.

2 DERIVATION OF BASIC ANALYSIS EQUATION

2.1 Optimal analysis
Our objective in analysis for NWP is to find initial conditions for our

forecast model which fit the observations, and which are consistent with our
prior knowledge as to the behavior of the atmosphere. We might also have
requirements imposed by characteristics of the NWP model. Procedures to satisfy
the latter I class as initialisation techniques. As the verisimilitude of the
NWP model increases, the need for initialization of a good analysis should
decrease. However the balance achieved by NWP initialization techniques may be
the best numerical way of expressing our prior knowledge about the atmosphere;
in this case these initialization techniques should be part of our optimal
analysis procedure.

We need to find a single specification of optimal initial conditions,
whereas our knowledge in fact only gives us a range of possibilities. We can
use Bayesian arguments to find the most likely. This can be done
mathematically by a variational minimization of a penalty function which is the
sum of penalties measuring the fit to the observations, and the consistency with
our prior knowledge. In general an iterative technique will be needed to solve

this variational problem.
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If the prior constraints are linear, and the error distributions are
Gaussian, then these penalties are quadratic, and we are finding the

minimum variance solution. In principle, direct (non-iterated) methods exist for

this case. One such method is QI. In four—-dimensions a direct method is the

Kalman—Bucy filter. In practice both these methods require further

approximations to be made before they can be applied to NWP analysis. Iterative

solution methods, making' different approximations, may still be the best chouice.

2.2 Fit to observations

In order to compare an analysis specification, or model state (x) with the
observations (y,?, to measure the fit between them, we need to be able to
convert from one to the other. Where a direct conversion 1is possible, it is
simpler to convert the observations towards the atmospheric parameters used to
define a model state. We assume that this has already been done in y. However
there remain some observations, particularly from remote sensing, for which a
unique conversion is impossible. Since our NWP models are becoming more
realistic and comprehensive in their representation of thé atmosphere, the
transformation (£ from x to y is in most cases more nearly unique. If the
probability distribution functions of observational errors, and of errors in K,
are approximately Gaussian, with covariances given by O and F respectively, then
the fit to the observations is measured by (y,~K))*(0+F)" (y,~Kx)). K is the
forward process, or generalized interpolation from the model to the

observations. The analysis problem can be thought of as finding the

generalized inverse of K, to interpolate from observations to model.

2.3 Fit to background

If we had no observations, we would presumably still have a best estimate
of the most likely model state, we call this the background x,. This will of
course be consistent with our prior knowledge about atmospheric structures.
This prior knowledge will also tell us that some modes of perturbation about X%,
are more likely than others. If this prior knowledge is sufficiently linear and

Gaussian, with covariance B, deviations from our prior knowledge can be measured

by (%—x)*B'(x—x).

2.4 Analysis eguation

Our basic optimal analysis problem is thus simply to minimize a penalty
functional (J) given by the sum of these two terms:

T = (Yom KGO ) (O+F )" (Yom K ) + (%—x%)*B (%-x%) ¢))
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Note that I have been deliberately vague about the analysis specification,
or model state x. In its simplest traditional form it is a gridpoint field. For
multivariate three-dimensional analysis it is many fields. It does not have to
be represented by gridpoints (eg spectral representation is possible). It does
not have to be for a single time. In each of these cases the analysis equation
remains the same, although of course the meanings of x, K, and B will change.

The time aspect is worth discussing more fully. Since observations are
distributed in time, one way of helping reduce the underdeterminacy is to use a
four—dimensional distribution of them. This alone does not help, since we have
to make x four-dimensional as well. However we have prior knowledge about the
way the atmosphere behaves; this enables us to say that most four-dimensional
states are very unlikely. If we use the NWP model itself in some way to

express our knowledge of atmospheric evolution, then the analysis technique is

called four-dimensional data assimilation.

3 ITERATIVE SOLUTIONS

There are several iterative solutions to the problem of finding the x

which minimizes (1),

3.1 Advantages and disadvantages

Advantages of iterative methods are:

(a) They can be computationally cheaper.

(b> The need for data selection algorithms can be avoided. 1l.e. all
observations can affect all grid-points.

(c) The need for data search algorithms can be avoided. i.e. it need never
be necessary to list the observations near a given point, instead
working in terms of the grid-points near each observation.

(d) Nonlinearities in K, and non-Gaussian error distributions, can be
treated. (The latter can be done by allowing B and O tc be functions
of the latest best estimate of x, rather than of x,. Alternatively, a
non—-quadratic form for (1) can be derived and solved.)

(e) Special structure in K and B can be used to implement multiplication
by them, rather than the semi-empirical covariance function modelling
used in OI. In this way it is possiblé to introduce complex prior
constraints into the analysis.

(f) If the algorithm is carefully designed, we can make a virtue out of
the slow convergence of some cases; often these cases are those where

the observations were in error (Grends and Midtbe 1986).
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Disadvantages of iterative methods are:

(g) Because of the iterations, we can be forced to make approximations in
terms which we could afford to calculate more accurately in a direct
method.

(h) Because of (g), and also if we have exploited (b), (d> and ), it 1is
more difficult to analyse the behavior of the ‘'scheme. For instance we
cannot easily get an analytical expression for the expected analysis
error,

(1) Because of (h), it is difficult to perform a preliminary, fully
objective, quality control of the observations, using the analysis
equations. (f) can be exploited however to integrate a quality control

within the analysis, but this needs empirical tuning.

3.2 Descent algorithms

Tterative methods of finding the minimum of a functional are called
descent algorithms. Gill et al. (1981) is a good textbook for these. Taking

partial derivatives of (1) with respect to the elements of x gives
7= —2{ K*(0+F)"" (yo—KG@0) + B (%-x) } @)
where J' is a vector of partial derivatives of J, and K is a matrix of partial
derivatives of K. The simplest algorithm is to go from the current best
estimate x[u] to a new estimate x[u+l] in the direction indicated by J', the
direction of steepest descent. A more efficient method is to make the direction
of search differ from that of previous iterations, as in the conjugate gradient
algorithm. In principle the fastest algorithm, in terms of number of iterations,
is that of Newton. This requires knowledge of J', the matrix of second
derivatives of J.
| g = 2{ K*(O+F)K + B } 3
[l = xlul - (I") 7 4
(We have neglected differentials of K, 0, and B in (3}, so strictly this is a
Gauss—Newton iteration.) If (4) is evaluated exactly, then algebraic
reorganizations are not very important. However the large matrix terms have to
be approximated in practice. The grossest approximation is to replace the large
matrix inverse by a scalar, taking us back to the steepest descent algorithm.
For such approximations it is advantageous to remove a factor of B' from J.
This can be thought of as transforming the representation used for x into one
giving greater weight to those modes of B about which we have most prior

uncertainty.
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Fig.l Three graphs are shown, shifted in vertical scale to avold overplotting.
Dashed lines- 'truth' used in idealized one-dimensional analysis experiment.
Solid lines - Bottom: background used,

middie: 5th iteration of an analysis fitting the

background, and the observations shown by * ,

using a conjugate gradient method and (1) and (2),
top: ditto , with control variable transformed by a factor B.

An example of the eft:ect this can have is shown in Fig.l, from Lorenc (1988a).
In this simple one-dimensional analysis it is assumed that we have prior
knowledge that smooth changes to the background x, are more likely than rough
ones. A straightforward conjugate gradient algorithm first reduces the
observational penalty so that the analysis fits the observations, then in later
iterations it sets about reducing the roughnesses introduced. As can be seen
from curve 2B in Fig.l, after 5 iterations many of these remain. In contrast, if
we transform representation for x, to remove the factor B*', then these
roughnesses are not introduced so readily. This is illustrated in curve 3B.
Note that the fit to the observations in curve 3B is worse however. Both
methods converge to the same limit, but in practice this is less important than
ease of computation and speed of convergence for the various modes during the

early iterations.

3.3 Background and first—-guess

In iterative optimal analysis it is important to differentiate between
these two terms, which are often used synonymously in OI literature,
The background (x,> contains useful prior information, which should be

retained, so that after convergence the analysis should depend on it.
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The first—-guess is the most convenient starting point for our iteration;
ideally the final analysis should not depend on it. Of course in practice the

most convenient first-guess is usually the background.

4 PRACTICAL ITERATIVE SCHEMES

4.1 The Successive Correction method

This method was introduced as a rather pragmatic, empirically justified,
scheme for the analysis of meteorological fields by Bergthorsson and Déds
(1955) and Cressman (1959). Attempts to put the treatment of different scales
on a more formal footing were made by Barnes (e.g. Barnes 1973). We shall
derive the methods as an approximation to (4). Taking a factor of B' from I',
and putting it in J", gives: |
xutl] = xtul + Qf W(y.~K&dul>) + x—xlul '} G
where W is an N.xN, matrix of weights, and Q is an N.xN, matrix of normalization
factors, given by:
W = BK* (O+F)"" 6
Q = (WK+I)™" 7>
Three approximations convert this iteration, which as it stands should

converge to the optimal solution, into the successive correction method:

(a) ‘As in OI, we model BK* by a continuous covariance function, so that (6>
gives us weights which depend on the distance between observations
and grid points and on the observational errors.

(b) We approximate Q by the reciprocal of the sum of weights at each
grid-point, rather than the N,xN, matrix inverse of (7). It is helpful
to think of Q as a function of the data-density; this approximation
makes it a local function at each grid-point. Note that Q only
affects the rate of convergence of the iteration, not the final limit.

(c) We start the iteration from x%,, and only continue for a finite number
of iterations. Because of our rescaling by B, x will not differ too
much from % in modes which are strongly penalized in our background
penalty, and the x,—x[u] term in (5), which arises from the background
penalty, can be neglected.

Thus the successive correction equation is

xMutl] = xlul + Q W (y.~KG&luD)) )
where the weights (w) which form matrix W are given by an empirical formula
rather similar to (6), and the normalization factors (Q) are given by a diagonal
matrix of terms Gw+i)', or somethinvg similar (sometimes the 1 is omitted).
Sometimes ‘smoothing is applied between iterations; this might be regarded as a

rather more complicated Q.
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Fig.2

Fig. 4a. First scan in an analysis of the surface pressure. The radius of
influence (N) of the stations in this scan is 6 grid units=1800 km.
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correction analysis method (from D&ds 1969).
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Note that because of the omission of the forcing towards the background, the
method will converge to fit the observations exactly, if this is possible. (8)
thus only converges to the optimal analysis in the case where the observations
are perfect.

Generally it has been found that convergence is faster if large horizontal
scales are done in early iterations, with an appropriate form for the weights
and a large radius of influence for obsérvations. Later iterations put in the
detail by having a rapid drop to zero in the weights formula. This is
illustrated in Fig.2, from DB&s (1969).

It was also noted empirically at an early stage that the successive
correction method as outlined above gives each observation in data dense aréas
equal weight to isolated observations. Although the net weight after a large
number of iterations will correct this, convergence will be speeded by making
the weights dependent on the local observation density (e.g. Db8s 1969), We can
go to the extreme in doing this by replacing the gridpoint normalization Q,
which we have approximated by the the reciprocal of the sum of weights (and
hence the observation density) at each gridpoint, by a similar observation
normalization Q°, evaluated at observation positions:

xutll = xlul + W Q' (y.—K&lul)) 9
This is the form used in the Meteorological Office's analysis correction scheme

(Lorenc et al. 1988, Macpherson 1987,1988). Note that it has the advantage of

preserving any linear properties of the weights, such as a constraint that wind
increments should be non-divergent, while (8) does not. Like (8), (9) treats the
observations as perfect, and converges to fit them exactly. Bratseth (1986)
proposed a way round this, by replacing y, in the iteration by an (iterated)

estimate of what the perfect observations would be:

xfutl] = xlul + W Q" (ylul-K&ul)) (10)
ylutll = ylul + Q' (ylul-Kxlul)) an

if we go back to (6) for the weights, and use
Q = (KW+I) (12>

for the normalization factor, then this iteration also converges to the optimal
analysis. As for (5), any approximations made in Q' only affect the rate of
convergence, not the final limit. Fig.3 (from Bratseth 1986) illustrates this
scheme for a simple one-dimensional analysis.

This convergence to the optimal result can appear surprising, if we only
look at the weight formula for a single iteration, since it is impossible to get
negative weights, or to get normalized weights which add to more than one. In
the OI formula for weights both can occur, to give the extrapolation effects

seen in fig.3, and to give extrema greater than any single observation. As long
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as we take proper account of the accumulated effect over several iterations,
which occurs through the use of -K(x[ul) in the correction formula for xlutll,
then the same is true for the net weight in the successive correction method.
Similar comments apply to other iterative schemes described below. It can be
very misleading only to look at the mathematical properties of the first

iteration; extrapolation effects occur only in the accumulated result of several
iterations.

Fig.3 = Analysis of two perfect. observations © .
Solid lines: background, and OI analysis.
Dashed lines: modified successive correction analysis
after 1, 5, and 25 iterations (from Bratseth 1986).

4.2 Alternative methods of expressing B

B is our way of expressing our prior knowledge of which modes of
variation about x, are most likely, In OI, and in the successive correction

method, 1t is represented by an empirically determined background error

covariance function, which is the major ferm in the expression for the weighis.

However we might say that our only prior knowledge is that small scales are
less likely. Multiplication by B is then equivalent to a filtering of small
scales (and a scaling of the values by the background error variance). K* is

the adjoint or transpose of the interpolation (K from grid to observations; it
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can be represented exactly, or approximated by accumulating observation
increments at surrounding gridpoints. Then, again omitting the background
forcing term, we get:

xlull = xlul + QB K* (O+F )" (yo.— K(xlul)) (13)
An old Meteorological Office scheme used orthogonal polynomials to do this
filtering (Dixon 1976). An old NMC scheme used Hough functions (Flattery 1871).
Experience with both these methods, as with the successive correction method,
was that rapid convergence was aided by doing large scales in the early
iterations. The latter scheme also used prior knowledge about balance, since in
early iterations wind and height fields were coupled by the use of balanced
funtions. Phillips (1986) has shown that there are similarities between
empirically determined background error covariance functions, and those obtained
assuming equipartition of energy between geostrophic normal modes. In this
case multiplication by B is equivalent to projecting on these modes, scaling
appropriately, and projecting back again. Parrish (1988) has proposed a scheme
along these lines.

4.3 Four—dimensional data assimilation

(1) is completely general; x can be expressed in any way, including a four-
dimensional field, and y can contain observations over a period of time. To get
an optimal analysis we must then use our prior knowledge about the evolution of
the atmosphere. The best way to do this in practical NWP 1s to use a forecast
model. Since forecast models are not perfect, the constraint imposed on our
four-dimensional analysis, that its time evolution should be consistent with the
model's, should not be strictly enforced. Practical implementation of a optimal
four—dimensional analysis scheme with such a constraint is severely limited by
avallable computer resources. The storage and manipulation of high-resolution
four—dimensional fields requires many more resources than running a NWP model,
which only manipulates three-dimensional fields. The traditional NWP method of
approximating four-dimensional data assimilation is the analysis-forecast cycle,
in which observations are inserted using a purely three—dimensional analysis
procedure into a background forecast from the results of the previous analysis.
In this case our X, summarises the information from all previous observations;
it often contains more information than the current observations. If the
evolution of errors in the forecast can be modelled by a linear K, then matrix B
of the error covariances at each time can be forecast, and the optimal final

state can be found explicitly, using a Kalman filter. This method does allow

for deficiencies in our forecast model, since errors in X%, are represented by B.

However B is so large as to make iis accurate manipulation impracticable.
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An alternative to the intermittent analysis-forecast cycle is

repeated insertion data assimilation. In this too the forecast model is run

forward only, with the model state being nudged towards the observations over a
period of time (Lorenc 1984). This can be regarded as an‘ analysis-forecast
cycle, with the analysis being done by an iterative method, and with iterations
of the analysis and time-steps of the model intermingled (Lorenc et al 1988).
The approximations used to model the time variation of B, and the fact that
observations from different times are not analysed together, mean that analysis-
forecast cycles are not optimal in their use of the time-dimensional information
(e.g. tendency information, and advection of tracers) from the observations.

If we ignore imperfections in our forecast model, and impose the model's
equations as a strong constraint, then many of the computational difficulties of
a four—dimensional analysis can be avoided, since all possible four—-dimensional
fields are defined by their initial three-dimensional fields and the NWP model.
We can thus reduce the analysis problem to that of finding the best initial
state (le Dimet and Talagrand 1986). K is extended to include the forecast from
this initial state to the observation times, as well the interpolations in space
to the observation positions. Since we can run the NWP model which forms the
major component of K, it is not too difficult also to run its adjoint, and
evaluate explicitly K*. We are including more observations in the analysis, so
the background information is less important, and we can approximate (or even
ignore) the background penalty. Then an iterative solution to the analysis
equation (1) becomes feasible, using (2) and a descent algorithm such as the
conjugate gradient method. Talagrand (1988) and Courtier (1988) describe these
variational four-dimensional methods. They are computationally expensive; each
iteration requires an integration of the NWP model, the storage of all its
results, and integration of its adjoint. Thus the full analysis will consume at
least an order of magnitude more computer resources than the NWP model used.

Since explicit computation of terms like K*B K is completely impractical for
present forecast models and computers, an iterative method which avoids
evaluation of J* is necessary. However it is possible to combine the OI

approach in space with an iteration for the time-dimension (Lorenc 1988b).

4,4 Nonlinear problems

Iteration is necessary whenever (1) is not quadratic in x. This occurs
when K is nonlinear, as it is for the NWP models used in the four-dimensional
assimilations described above. Another example is the inversion of cloudy
radiances. This can be regarded as a multivariate one-dimensional optimal

analysis using (1). Eyre (1987,1988) solves the equation using an iterative
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Newton method.

If the probability distribution function of observational errors is non-
Gaussian, the observational penalty in (1) is non—quadratic, and iteration is
necessary {(Purser 18984).

The properties of these nonlinear problems are discussed more fully in

Lorenc (1988a,c).
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