MODELLING OF INVERSION PROCESSES AND CLOUD-TOP ENTRAINMENT

M.K. MacVean
U.K. Meteorological Office
Bracknell, England

1. INTRODUCTION

According to a recent global climatology, the atmospheric boundary layer contains cloud
about 60% of the time, with stratus or stratocumulus being the most commonly reported
cloud type. Such cloud is very important both for climate and local weather because of its
effect on the radiation budget. Cloud-capped boundary layers are generally characterized
by strong gradients in temperature and humidity across cloud top. A good understanding
of the mixing processes across cloud top is crucial to accurate modelling of such boundary
layers. Unfortunately, several difficulties stand in the way of such understanding.

Figure 1 illustrates that the typical vertical scale of variation of properties across the
inversion is very small (typically of order 1-10m) compared to the boundary layer depth or
the scale of the large eddies. Longwave radiative cooling near cloud top has a comparably
small vertical scale. As a result it is very difficult both to obtain good observations and to
model numerically the range of scales involved. Also great care is needed in the choice of
numerical methods for modelling, in order to accurately simulate the advection of sharp
gradients and changes of gradient.

Measurement and modelling of the cloudy boundary layer is thus a particularly chal-
lenging problem and it is a very active area of research with ongoing controversy, particu-
larly as regards cloud-top entrainment instability. The current state of the art as regards
simulation using fine-scale models can be summarized as follows. Unequivocal “direct”
simulations are not feasible, even if one allows the term “direct simulation” to include
models with a constant eddy viscosity which is significantly greater than the molecular
viscosity, although still small. Optimistically one might require a grid spacing of order
10c¢m in a domain with linear dimensions of order 1km for such a simulation. Even two-
dimensiopal simulations with such parameters are unlikely to be feasible for some time
to come, while corresponding three-dimensional simulations ('Which are what is really re-

quired) will remain impractical for the foreseeable future. On the other hand, large-eddy
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Fig 1: High resolution profiles of the vertical velocity and temperature fields across the top
of a stratocumulus deck, from Caughey et. al. (1985)

simulations have already been carried out in two-dimensions, with a resolution of a few
metres and in three-dimensions with grid spacings of a few tens of metres. Since such
simulations include a subgrid model, involving assumptions and choices of parameters
which are not easily verified, because of the lack of appropriate turbulence data, caution
must be exercised in the use of data from such simulations as a proxy for observational
data.

In this paper, we will first consider two issues of relevance to large-eddy simulation of
the cloudy boundary layer, namely the choice of numerical scheme and the parametrization
of the subgrid buoyancy flux. The latter leads naturally on to a discussion of cloud-top
entrainment instability, after which two outstanding issues with regard to parametrization
of such boundary layers in large-scale models are briefly considered.

2. NUMERICAL SCHEMES FOR ADVECTION
It is well known that many simple advection schemes (for example, second-order centred
differences) handle the advection of sharp gradients or changes of gradient poorly, develop-

ing spurious oscillations of quite large amplitude. This is a particularly serious problem
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in models of the cloud-capped boundary layer, which is characterized by a very sharp

transition from the well-mixed cloud layer to the strongly stratified inversion. Energetic
eddies within the boundary layer may cause vertical displacements of the inversion, if they
extend to cloud top, and if inadequate numerical schemes are used, unphysical behaviour
is observed. Typically, a spurious, relatively dry layer forms at the top of the inversion.

Instantaneously, negative humidities may occur at some grid points. The behaviour at

the base of the inversion is somewhat different, as the overshoots tend to be quickly mixed
over the whole layer, resulting in a spurious moistening. Similar effects are observed in the
temperature field; the combined effect on the buoyancy field is such as to generate regions

of static instability above cloud top, which feed back through the subgrid model and can
result in the formation of a spurious mixed layer at the top of the inversion. Clearly there

is little point in worrying about the realism of any subgrid model close to cloud top, in

the presence of such numerical effects. The development of numerical schemes which do

not exhibit such behaviour is an area of active research. It must be remembered that the

avoidance of overshoots in such schemes is generally the result of implicit numerical dif-

fusion in some form. In choosing an algorithm, it is important to check that this diffusion

is acceptably small. Otherwise there is the risk that one is merely exchanging one set

of problems for another. In the light of extensive experimentation with various schemes

in our model of the stratocumulus-capped boundary layer at the UK Met. Office, we

feel that the approach of Leonard (1991) and, in particular, his ULTIMATE QUICKEST

scheme, has much to recommend it, being simple, robust and effective.

3. SUBGRID BUOYANCY FLUX

A key element in the formulation of most subgrid models is the parametrization of the

buoyancy flux. In first-order closures, this is required as the numerator for the Richardson

Number; in closures involving an equation for turbulent kinetic energy, it appears on the

right-hand side of that equation. In many models, this quantity is required at the centre

of the top and bottom faces of control volumes centred on the grid points at which the

thermodynamic variables are held. When two vertically adjacent control volumes are

either both saturated or both unsaturated, the calculation of the buoyancy flux on the

interface between them, in terms of the fluxes of conservative variables is straightforward.

However, the formulae are quite different in the two cases and the crucial question which

arises is how the case when one control volume is saturated and the other unsaturated
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Fig. 2: The buoyancy flux profile assumed to result from the specified mixing process

should be treated. It is not generally clear from the descriptions in the literature how
this case is dealt with in particular closures. Where this case is addressed, the normal
approach appears to be to take a weighted mean of the formulae for the saturated and
unsaturated cases. Great care needs to be taken if such an approach is to be energetically
consistent. An alternative approach, which is guaranteed to be energetically consistent,
was first proposed by Mason (1985) and further developed by MacVean and Mason (1990).

MacVean and Mason’s approach treats two adjacent control volumes as a thermody-
namically closed system and considers the energetic implications of exchanging an ar-
bitrary, small volume of fluid between the two, initially homogeneous layers and then
rehomogenizing them. The assumption is made that any change of state and associated
latent heat change occurs instantaneously and at the interface. Consistent with this, the

buoyancy flux resulting from this exchange is modelled as shown in Fig.2.
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It is easily shown that the total buoyancy flux within the system is related to the net

conversion from kinetic to potential energy (S) by
O r=. 7 —
—————/ Kdz=5 = —/ w'B'dz
at Zy 2Z)

where K is the resolved kinetic energy. Given our assumption about the location of the

latent heat release, B may be treated as a conserved quantity within each layer individually

(7).
(),

where (w'B');, (w'B'), are the values of the buoyancy flux at the top of the lower layer

and therefore satisfies
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and the bottom of the upper layer, respectively. Given the assumed linear variation of
buoyancy within the layers, it can be shown that

S=—/zaw’B’dz=%}t—)

where P, the time-varying part of the total potential energy relevant to the specified

mixing process is defined by
P = (Flﬂlz - _B—2H22)/2

If we discretize over the time 6t taken for the small volume eH, to be exchanged and

introduce the depth-averaged buoyancy flux w'B’ v, then we obtain

S §P 5P
TR () o - _ 1
(Hy + Hy)w'B' 43 5 —6H2 (1)

Here, 7 = eH,/ét is the rate at which volumes of material are exchanged between the
layers.

We will now outline how this energetically consistent formulation of the buoyancy
flux may be used in first- or second-order closures. In the framework of a K-theory local
turbulence closure, 77 may be related to an eddy viscosity v; at the interface, by n = v;/ Hp,
where H,, = (H, + H;)/2. Then, denoting by an asterisk superscript, values of quantities
after the specified mixing process has occurred, we may write

T = Vil(By = Bo)i:? — (B, - By)H\’]
AV eHz(Hl +H2)2

(2)
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The buoyancy is determined from the appropriate conserved variables through a consti-

tutive relationship, while the values of any conserved variable C' after mixing are given

by

K

02 = (1 - 6)52 + E_C-l (3)
e é — f_I?__
Cc, = (l—eHl)Cl +eH1C'2 (4)

For a linear constitutive relationship, assuming that € is so small that the mixing does
not change the states of saturation of the layers, the buoyancy flux may be shown to be
independent of ¢ when (2) is expressed in terms of conserved variables. Furthermore, in
the cases where either both layers are saturated or both are unsaturated, and therefore

there is no discontinuity in the buoyancy flux at the interface, it may be shown that

wB'; = 2w'B 4y = —vi(By — B,)/Hp,
Thus, in this case, our scheme reduces to the standard K-theory definition of the buoyancy
flux.

For a fixed Prandtl Number, a Richardson Number (Ri) can be calculated from (2)
and the resolved deformation (x?), without prior knowledge of v;. The eddy viscos-
ity can then be calculated from a general mixing length closure, which takes the form
vi = £2x(1 — Ri)'/2, where the length scale £ is a function of Ri and perhaps other fac-
tors. Once v; has been determined, the turbulent fluxes of conservative properties between
the layers can be estimated using K-theory.

In a second-order closure, predictive equations are carried for the subgrid fluxes of
conserved variables. The divergence of these fluxes can be used instead of (3) and (4) to
determine the implied new values of the conserved variables. These may, in turn, be used
to calculate §P, from which w B’y may be calculated, using the left-hand equality in
(1). This value of the subgrid buoyancy flux is then used in the equation for the vertical
velocity variance. An independent choice of parametrization for this flux is likely to be
energetically inconsistent.

In deriving the parametrization above, we have considered carefully the energetics of
mixing across cloud top. It was realized many years ago that, under certain circumstances,
evaporative cooling resulting from such mixing could lead to the formation of saturated

air parcels which were denser than the undisturbed cloudy environment. Randall (1980)
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and Deardorff (1980) independently derived criteria for this to occur. It was also postu-
lated that the sinking of the dense air parcels away from cloud top could lead to further
mixing across cloud top, constituting a positive feedback mechanism, which might lead
to the rapid breakup of stratocumulus sheets. This process became known as cloud-top
entrainment instability. As a criterion for buoyancy reversal (the generation of mixtures
denser than either of the components), Randall and Deardorff’s condition is generally ac-
cepted. It can be expressed in terms of the jumps across cloud top of equivalent potential

temperature (Af,) and total water mixing ratio (Ag,) as
AB, < kA7, (5)
P

where k,, is a function of state, having a typical value of 0.23. However, its relevance to the
rapid breakup of stratocumulus has been increasingly questioned as more observational
data has become available. Figure 3 shows data compiled by Kuo and Schubert (1988);
it may be seen that there are about as many observations of persistent stratocumulus on
either side of the line BO, which represents Randall and Deardorff’s stability boundary.
MacVean and Mason (1990) and Siems et al (1990) have both suggested that Randall
and Deardorff’s analysis does not address the crucial requirement for a direct feedback
process, namely that there be a net kinetic energy release due to the postulated initial
mixing, on the same space- and time-scales as that mizing. Their analysis also neglects
the work done against gravity in entraining the less dense, unsaturated air into the cloud.
MacVean and Mason argue that, provided one considers two layers of approximately equal
thickness, comparable to the scale of entrainment across cloud top (a metre or so, say),
then the model already presented for determining the subgrid buoyancy flux in a turbu-
lence closure, embodies the condition for the existence of the direct feedback mechanism
which is called cloud-top entrainment instability. Under the above assumptions, if S <0
then the specified initial small amount of mixing results in an increase in the net kinetic
energy on the time and space scales of that initial mixing. This condition can be expressed

as

AG, < kmEL;Aat (6)

where k,, is a function of state with a typical value of 0.7. It may be seen from Fig.3 that
this stability boundary delimits quite well the region of parameter space in which persis-

tent stratocumulus is observed. However, there is very little data from the situations when
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Fig. 3: Data on the jumps in properties across cloud top, as assembled from various sources
by Kuo and Schubert (1988). The symbol + indicates an observation of persistent

stratocumulus, A an observation of stratocumulus which subsequently broke up
within 12h and x and observation of trade-wind cumulus. Also shown are the

stability boundaries BO and CO corresponding to (5) and (6), respectively.
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stratocumulus is rapidly breaking up, which are crucial for the verification of any crite-
rion. Betts and Boers (1990) have, however, analysed data obtained across a cloudiness
transition during FIRE. They identified four regimes—stratocumulus (99% cloud cover),
broken (73%), cumulus (12%) and clear (0%). We have calculated corresponding values
of the stability parameter R = Af./(L/c,)Ag, as 0.34, 0.53, 0.69 and 0.72. This data
is therefore consistent with the relevance of (6) rather than (5) to cloud-top entrainment
instability.

It is hoped that forthcoming experiments such as ASTEX will provide better data
for examining the validity of criteria for stratocumulus breakup. In the meantime, an
extensive programme of numerical experimentation has been carried out using a two-
dimensional version of our large-eddy model. A domain 2.5km wide and 4km deep was
considered, using a uniform horizontal grid length of 5m and a vertical grid with a uniform
spacing of 5m for a few hundred metres either side of cloud top, although non-uniform and
coarser elsewhere. In order to isolate the effect of entrainment across cloud top, surface
fluxes and radiative parametrizations were not included. The model was initialized with
a horizontally homogeneous initial state on which was superimposed a random humidity
perturbation of very small amplitude at a single level about 100m below cloud top. The
cloud extended from about 650m to 1100m and had a maximum liquid water mixing ratio
of 0.8gkg~!. The initial conditions above cloud top were carefully chosen to ensure that
the horizontal mean value of the stability parameter R remained very close to the value
initially specified, throughout the integration. The initial conditions below cloud top and
the complete initial buoyancy profile were the same for all runs. Integrations were carried
out for a range of values of R. It was also judged to be of crucial importance to determine
the sensitivity of our results to the subgrid model employed. Subgrid models employed
included the first-order closure detailed earlier in this paper (referred to as M M), several
variants thereof and several constant values of eddy viscosity.

Figure 4 shows timeseries of the domain-integrated liquid water content at various
values of R from integrations using the subgrid model M M. It must be remembered that
with this subgrid model there is no explicit mixing across cloud top for R < 0.7. It may
be seen that when there is small-scale turbulent mixing across cloud top (R = 0.78), the
cloud breaks up very rapidly—a typical e-folding decay scale over the period from 1800s-

5400s is about 700s. Within the 90 minutes following initialization with an extremely
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Fig. 4 Timeseries of the domain-integrated liquid water content from
integrations using subgrid model M M, at R = 0.78 (lowest curve), 0.6, 0.5,
0.4, 0.3 and 0.18 (uppermost curve)

small perturbation, the total liquid water content has dropped to less than 1% of its initial
value, with a cloud cover of less than 20%.

For R < 0.23 buoyancy reversal does not occur and so there is no source of kinetic
energy in the model. Accordingly, the cloud field remains essentially horizontally homo-
geneous and there is no perceptible decline in the total cloud amount. For 0.7 > R > 0.23
buoyancy reversal does occur, as a result of the implicit diffusion of the numerical advec-
tion scheme. The kinetic energy generated increases with R but even at R = 0.6 there is
no evidence that it leads to runaway entrainment. Over the first two hours, the horizontal
homogeneity of the cloud is destroyed and very occasional breaks occur in it but the cloud

cover remains in the range 95—100%.'
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Fig. 5: As Fig. 4 but for integrations with a constant eddy viscosity of 0.2n7s’

Figure 5 shows corresponding timeseries from integrations with a constant eddy vis-
cosity of 0.2m2s~!. The e-folding decay scale for R = 0.78 (measured from 1800-3600s)
is of order 600s, which is comparable to that seen previously. The cloud has completely
disappeared in less than 90 minutes. The constant eddy viscosity leads to a slow decline
in liquid water, even for R = 0.18. However, in that case the cloud remains essentially
horizontally homogeneous. For R > 0.23 the horizontal homogeneity is again destroyed
as a result of the buoyancy reversal. The e-folding decay time increases with R but at
R = 0.6 it is still about 3000s, some 5 times longer than for R = 0.78. For R = 0.6 the
cloud thins significantly over the two hour period shown but relatively few breaks occur
in it, the cloud cover still exceeding 90% at the end.

Figure 6 shows timeseries from integrations with R = 0.78, using various different

sﬁbgrid models. Only a weak dependence on the subgrid model is apparent. In each case,
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Fig. 6: Time series of the domain-integrated liquid water content for integrations at R = 0.78
with various subgrid models

the cloud dissipates so quickly (with an e-folding time of typically 600 — —700s) that it is
hard to conceive of any process for replenishing moisture which could act rapidly enough
to stop the cloud evaporating completely within an hour or two. On the other hand, for
values of R just above the critical value for cloud-top entrainment instability suggested
by Randall and Deardorff, there is no sign of runaway entrainment. Convective motions
driven by the buoyancy reversal disrupt the horizontal homogeneity of the initial state
but the cloud cover remains close to 100% and the decline in the liquid water occurs at
such a slow rate that it might well be reversed if moisture sources were included.

Figure 7 shows a plot of the decay rates against R from integrations with various
subgrid models. These graphs are characterized by an almost linear increase with R from

the buoyancy reversal criterion (R = 0.23) up to about R = 0.5 and a very rapid increase
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Fig. 7: Variation of the e-folding decay rate with R from integrations with various subgrid

models

between R = 0.6 and R = 0.78.

These results strongly suggest that cloud-top entrainment instability may be a very
potent mechanism for the breakup of stratocumulus cloud but that it does not occur at
the point in parameter space suggested by Randall and Deardorff but rather, at values
close to the critical one derived by MacVean and Mason. We have considered cloud-top
entrainment alone in this study and deliberately excluded other physical processes such
as radiation and surface fluxes, which may play a significant role in reality. Our results
should therefore be interpreted as indicating that it is highly unlikely that stratocumulus
will persist at values of R in excess of about 0.7 not that stratocumulus will persist at

lower values of R. Processes other than, or in addition to, cloud-top entrainment could

well lead to breakup in this region of parameter space.
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4. PARAMETRIZATION IN LARGE-SCALE MODELS
A subgrid parametrization equivalent to MM has been included in the UKMO atmo-

spheric GCM (Smith,1990). Such an application’ raises two issues in particular, which
merit further consideration.

In the large-eddy model used in the studies reported here, the convective motions
resulting from buoyancy reversal if R > 0.23, occur mainly on the resolved scale and it is
only the mixing on a scale of a few metres or less (which leads to the buoyancy reversal),
which is parametrized. The convective motions which are resolved in the large-eddy
model, become subgrid-scale in a GCM but a parametrization such as MM clearly does
not represent them. The question is whether this upside-down convection is represented
by another parametrization in the GCM and, if not, whether this is a serious omission.

The second issue concerns the interpretation of the M M subgrid model when applied
on a GCM grid. Typically the vertical grid spacing close to cloud top will be at least several
hundred metres and, moreover, the thickness of the layer just above cloud top may be
significantly greater than that of the layer immediately below. Thus the conditions which
were previously argued to Be necessary for the M M closure to embody the condition for
existence of a direct feedback mechanism do not appear to be satisfied. Also, MacVean and
Mason have shown that the critical value of R at which the conversion from potential to
kinetic energy changes sign is, in general, a function of the ratio of the layer thicknesses.
If the layer thickness increases significantly with height across cloud top, as in many
GCMs, then the critical value of R is increased from 0.7 towards 0.93, the value for static
instability in an unsaturated atmosphere. Thus it would appear to be artificially harder
to initiate subgrid mixing across cloud top with such a grid configuration. One might
expect this to result in a tendency for over-persistence of stratocumulus layers. However,
Smith reports that this is not the case in his GCM simulations and suggests that the
penetrative convection scheme may compensate for the reduction in diffusive mixing.
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