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Abstract

Formulation of the ECMWF variational analysis is described together with the
detailed implementation of the background information term. Methods to obtain
multivariate, balanced increments are introduced and illustrated. The importance
of choice of control variable (pre-conditioning) is discussed. Results are illustrated
through the use of single-observation experiments.

1. INTRODUCTION

In the 4D variational formulation of the data assimilation problem, where the model is assumed perfect, one

has to find a model trajectory which fits the observations (y) available during an assimilation period (z,, t,),
and which also fits the past information available as a background valid for ¢, according to their respective.
‘statistjcal accuracy. This trajectory is entirely determined by the model state at time ¢, x(z;), through the
integration of the model. x(¢)), (or more generally u(t,) = F(x(f,)), where F is any invertible functioh)

may be taken as control variable of the following minimization problem: minimize the cost function

J@) = J, + J,, where
J, measures the distance between x(z,) and the background x,;

J, measures the distance between x(7) and the observations.

It is not discussed here why the cost function is the sum of two terms. This can be shown to be related to
hypotheses on the statistical distribution of the joint probability law of the couple (background information,

observations) where one attempis to find the maximum likelihood estimator (Lorenc, 1986 and Tarantola,
1988). The model has to be integrated from #, to the appropriate observation times in order to compare
x(#) with the observations. Large-scale minimization algorithms require the gradient of the cost function
with respect to the control variable. The adjoint model has to be integrated back to ¢, in order to obtain
the gradient with respect to x(t,), the gradient with respect to # is then obtained by applying the adjoint

of the change of control variable (Le Dimet and Talagrand, 1986).
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A three-dimensional variational analysis can be designed like the four-dimensional formulation described
above in which thevmodel integration is switched off: x is then compared directly with observations made
at time ¢, (or around ¢z)). It can be shown (Lorenc, 1986), that assuming a Gaussian probability law and

quasi-linearity of the observation operator H, Optimal Interpolation is equivalent to the minimization of the

cost function:

J=dy+J, ©)
with  J, = Ya(x-xp)' B! (x-x,) )
J, = Y(H@-y) O YHE®-) : ©)

where B is the covariance matrix of background error, H is the observation operator that allows
computation of the model equivalent H(x) of the observed quantity y, O is the covariance matrix of
observation errors (which also contains the representativeness error). The superscript ¢ denotes the

transpose.

Minimization of J(x) with respect to u requires the following steps:

a) Provide an initial estimate for u.

b) Computes x = F(u)

c) Compute the cost function J and its gradient with respect to x.

d) Compute the gradient with respect to u (adjoint of step b)

€) Pass. V,J and J(u) to a minimization scheme which computes a more accurate estimate of u.

f) Iterate on b) through e) until a desired convergence is achieved.

If other information is available, the cost function may have additional terms:
J=d, +d, +J +. @
where J_ might measure the distance to the slow manifold. The use of such a J, is one technique to

impose a mass-wind balance (Courtier and Talagrand, 1990).

As we are using minimization algorithms from libraries, this formulation of variational analysis, in practice,

reduces to the computation of J,, J. J,, ... and their gradients. The gradient of J is given
VJ=V.(J, +J, +J, +..) =B (x-x) + H* O (Hx-y) + V. J_ + .., ®))

where H is the tangent linear operator to H in the vicinity of x. The minimizing solution is characterised

(if unique) by setting this expression to zero.
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In methods of steepest descent the search direction is the direction of the local gradient J/. This is

inefficient in a region of steep valleys in the cost function. If J is a strictly convex quadratic function then
pre-conditioning with the inverse Hessian leads to the Newton algorithm which ensures the minimum is
found in a single step. A limited storage quasi-Newton algorithin is still a great improvement on steepest
descent without the necessity of the storage and computation of the Hessian. In this approach, using

previous descent direction, one effectively takes a second order rather than first order local approximation

to J. In the range of validity of the tangent linear operator H’, J” is given by

V:J =B+ H'O'H. (6)

This will result in optimal pre-conditioning of the minimization. However the inverse of the Hessian is

impossible to compute, or even to store, because of the size of the control variable # (107 in a model such
as the ECMWF operational one). We shall use B! as a pre-conditioning, the change of variable » being

such that F B! F-1 is diagonal as detailed in section 2.2.

Minimization is performed using a limited storage quasi-Newton type algorithm M1QN3 provided by the
Institut National de Recherche en Informatique et en Automatique (INRIA, France). A description of the
algorithms and the performance of the code are given in Gilbert and Lemaréchal (1989). Essentially, the
method uses the available in-core memory provided by the user to update an approximation of the inverse
Hessian matrix of the cost function. Once the memory is used up, the quasi-Newton matrix (approximation
of the inverse Hessian) keeps being modified during the minimization process by dropping information
coming from the oldest gradient and inserting information coming from the more recently computed

gradient.

2. BACKGROUND CONSTRAINT

2.1 Univariaie formulation

The background term is given by equation (2):
J, = ¥e(x - x,)’ B(x - x,)
The practical difficulty is the size of B which does not allow, in practice, its inversion. B, being
symmetric, can be diagonalised:
B=gAg!
with & unitary &' = &
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and J, becomes

J, = [A“V‘Q'l(x—xb)]' [A %L (x-x))].

The idea of the practical implementation of 3D-Var is to approximate ! with a sequence of operators.

For a univariate analysis we choose to have the following sequence of operations:

1) Difference x and x, in spectral space

‘2) Convert from vorticity, divergence to winds w!
3) Transform to grid-point space - 5!
4) Norrpah‘ze with respect to background errors ¢ N
5) Transform to spectfal space S
6) Convert from winds to vorticity, divergence ’ W

7)) Multiply by the square root of the inverse spectral horizontal background error

covariance matrix h%
8) Project onto the eigenvectors of the vertical background error correlation matrices p1
X=P ¥ WSNSTW!(x-x,) RN )
and J, =% x' Al y with § = €(x-xp) B (8)
v, J, - ATy ©

Identifying ¢-! as the sequence of operators 2) through 8), A is a diagonal matrix containing the eigenvalues

of the vertical background error correlation matrices.

In order to obtain the gradient with respect to x the adjoints of the above operations have to be applied in

TCVerse sequence.
V, Jy= (W) STYNS'W R PV, J, (10)

where * denotes an adjoint operator.

2.2 Choice of control variable

Let us assume that the minimization is performed in the space of the model variable x. ‘Since the o's are
spatially varying the B matrix will be far from diagonal, and the problem might be ill conditioned if a
diagonal matrix is used for defining the scalar product. However, if the o values are taken as constant over

n levels and errors are assumed uncorrelated in the vertical, then B is diagonal, and exact minimization

of J,, alone can be accomplished in 1 iteration using B-1 for defining the metric.
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Alternatively, the control variable may be taken as y then the Hessian is simply A, which is diagonal.
Such a change of control variable and the use of the matrix A~! for defining the metric improves the pre-
conditioning. The exact solution for J, alone is found in a single step, even with full geographical

variability of the forecast errors and vertical coupling. It is, of course, simpler to re-define the control

variable as A%y, which reduces J, to its simplest form - which is done in practice.

2.3 Multivariate analysis
In the variational analysis which became operational in June 1991 at the National Meteorological Center

in Washington (Parrish and Derber, 1991), the model variables are constrained in order to stay close to the
equilibrium of the linear balance equation applied on the model levels (slightly modified to account for
divergence). This is achieved by a choice of control variable which takes into account the balance equation.
The NMC analysis variables are:

. Departures from the 6 h forecast for vorticity and divergence;

° Departures from the balance equation solution of the temperature departures to the 6 h forecast.

By assigning appropriate statistics to the errors of these variables, a balance is achieved which the authors

claim is good enough to obviate the need for normal mode initialization.

In the assimilation context, one is interested in finding an analyzed state which is close both to the

observations and to the slow manifold. In the previous sections, the 3D-Var problem was expressed as

min Jx) = J, + J, an
xaE .

find the minimum of J in the space E which is the phase space of the model.

Forecast evolution is confined to the attractor of the model, which is approximated by the slow manifold.

A consequence is that the forecast errors lie, to first order of approximation, on the tangent plane of this
slow manifold. In other words they do not span the whole phase space E but only a subspace, which one

may denote Ep. In the current ECMWF operational implementation of OI, E, is defined by geostrophic

balance on the f-plane. In the NMC implementation of 3D-Var (Parrish and Derber, 1991), E, is defined

by the linear balance equation V2 = V.(fVy) where ¢ is the geopotential and ¢ is the stream function,

with some enhancements to account for divergence.

A consequence of assuming that the errors are wholly within Ej is that B is singular; the kernel of B

contains the orthogonal of E, which will be denoted by E;. B is no longer invertible, the formulation
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defined by (11) and (2) is then no longer suitable for this problem. It can however easily be reformulated

as

min J(x) = J, + J, | (12)

2
with

Jy = [Sgx-x)1Bg [Sp(x-x,)] | (13)
where §, is the projection onto the subspace Ey of Rossby modes and parallel to the subspace E; of
gravity modes. The last equation is equivalent to

Jy = (-x,)' S5 B! Sy(x-x,) (14)

where B! is any matrix identical to B,',1 on Ey and which could take any value on E;. Furthermore, one

should notice that

min J(x) = S [min J(Sx(x))]
xeEp | xeE

and as, in practice, a descent algorithm is used which computes descent directions as a linear combination
of several gradients, and as the initial point of the minimization can be assumed to be on the slow manifold,

one has the algorithmic equivalence

min J(z) = min J(S(0) (15)
xeEp wE ‘

with ,
Jy = (%) Sy B! Syx-x) (16)

Remark This is different from the problem

min JG) = J, + J, an
xeEp

with
Jy = (-x) B(x-x) | (18)

which could be solved by resetting the gradient in the gravity part to zero. Since however, Sc(x-x) =0

at the beginning of the minimization, the two formulations lead to similar results.

2.3.1  Shallow-water illustration

From (16) it is clear that if a matrix B~' has been specified and if any kind of gravity wave control is used,

s . . ] t »-1
the inverse of the effective matrix of covariance of first-guess error becomes Sz B Sg
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Consider the implementation of J, as it pertains to the shallow-water problem. The state variable of the

model x = ({,D,$) consists of vorticity {, divergence D, and geopotential ¢. One may define the

intermediate variables

- V-v,
{ =Vx 5 8 (19)
_ V-,
D=V 5 (20)
Vv
$ - "’;4’3 @1)
¢ .

Isotropy is assumed for the autocorrelation function of {, D and §. The first-guess term J, expressed in

spectral space becomes

1 « & 1 < 1 « 3 |
=L =X &=y 5 —=3 (22)
The a,, ap and ;" are the expansion of the autocorellation functions of the fields , D, and §. They can

be easily deduced from the grid point values of the autocorrelation function.

2.3.2 A simple example of the impact of imposing a balance

Consider in the previous example a single wavenumber. For the (n,m) considered, the matrix B is

aC"O 0
B=|0 a0 (23)
0 0 a ‘

Now assume that the balance condition which is imposed is

where o can be any number. The projection operator § is then such that the vector (0,1,0) is in the

kernel. The vector (1,0,&), being in balance, is kept unchanged and the vector (-&,0,1) is in the kernel.

For the latter, it is implicitly assumed that the scalar product is the usual one defined by
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(Cn)? + (DL + ($2)2. Actually there should be some scaling between momentum and mass but it does
not change the point being made in this section. The matrix of the projection is then

1 1 0 «
S, = 0 0 0 © (25
LI " 0 o (25)

The effective covariance matrix of the background errors becomes

2.2 (1 0 a
SpPs-22% 1o 0 o0 26)
A+a?) | ¢ 0 @

This has a number of implications:
. Assuming that “c" = a; and that @ = 1, which is reasonable for scales close to the Rossby radius

of deformation, the effective matrix is half of that which has been specified. In other words, the
variance of error which has been specified in grid point space is not that which is actually used,
only half of it has an effective contribution.

. Assuming that the specification of the gy and a;' has been made consistently with the balance

equation, that the effective matrix may well depend only on one of the g” and not on the other for

this particular scale.

One could have increments in geostrophic balance by using a univariate background term and controlling

independently the gravity waves. The simple example described above shows that such an approach is not
an acceptable solution in practice, since one would not be able to deduce from the specified o, the value
effectively used. It is thus necessary to have the geostrophy embedded within the covariance matrices of

the background errors B.

24 Implementation of a multivariate J,

The basic idea is to split the J,, cost function into Rossby and gravity components and penalise the latter,

thus ensuring the analysis increments lie close to the tangent plane of the slow manifold. For the higher
vertical modes it makes little sense to treat the Rossby and gravity parts differently as the frequencies of
the latter are no longer so large. These higher vertical modes may be conveniently treated as univariate.
This may be achieved as follows:

1.1 Difference x and x,, in spectral space AX

1.2 Project onto Rossby modes for desired subset of vertical modes Vx,
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1.3 Project onto Gravity modes for same subset of vertical modes Ax

14 Obtain Ax, by differencing Ax with Ax; and Axg

Axp = R(x-x,) | 27N
Axg = G(x-x,) ' (28)
Axy = Ax - Axg - Axg | (29)

It is convenient to split J, into "slow", "fast" and "univariate” components:

Axp\f A
gy - s (2] ity 05ty vit it ()
R Og

(30)

Ax;\! A
+ Y o (——:"') (hg"y (V5" V5" k3" (———:"
G G

S’

A 4
. % (———"”) By (VY Vit ht (ﬂ)
Oy Oy

where (Ax/o) is a short hand notation for the sequence of operators (WSNS W) as described in section
2.1

If one defines

g = P5 ki WSN, S7'W-Ax,, Y
Xs = P5 hg* WSN, S7'W-Axg, (32)
Xy = Py hy® WSN, S7'WAx, (33)

then, as shown in Appendix A, (30) reduces to

J, = Vacpap AR xp + Ve cg X6 AG Xg + Ve Xy AT Xy

. 1
For the bulk.of the spectrum is set to — and ¢, t0 .
P ‘e 2¢ DR 2019

¢ controls the relative contributions of the first two terms. It may be thought of as the percentage error

variance explained by the gravity wave part of the flow. e is currently taken as 10% which mirrors the

operational ECMWEF OI assumption that 10% of the wind error variance is in the divergent part of the flow.
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For large-scale gravity modes, for example those important in the description of tides Cg is setequal to ¢y,

thus these modes will be analysed with the same weight as Rossby modes. Note that with this formulationJ,,

does pot exactly imply a univariate analysis.

The J, gradient is now also split into three terms and the adjoint computations 2) — 8) of section 2.1 have

to be carried out for each of the terms in tumn:-

Vasgds, = (W) ()" Np 8" W* (h2")* (PR)" cg 1z (34)
Visds, = W) ) Ng §* W* (hg™)* (PS)* ¢ %o (35)
Vae s, = WD (87" Ny 8° W* (hy") PG 3y (36)

the adjoints of 1.1) — 1.4) then gives V. Jp-

The above formulation is fairly general, allowing, in principle, different standard error fields for "fast",
"slow" and univariate terms, different horizontal structure functions and different vertical structure functions.

For the initial configuration it has been decided to opt for the simplest case of
Oy=0g=0g hy=hyg=hg Vy=Vg=7V,
which implies P, = P, = P, and N, = N = N. These constraints can be relaxed as experience dictates.

25 Vertical interpolation of fields and effective o,

In order to compute observation departures, the model field is interpolated both horizontally and vertically

to the observation location. This interpolation can, depending on the location of the observation relative

to the model grid and the degree of correlation of background errors, significantly reduce the effective O

For an observation lying between two model levels with temperature T, and T, the interpolated model value
at the observation point (using linear interpolation) is given by

T=al; + (1-)T, (37)
and the error in the interpolated value is given by:

e=ae, +(1-0) e, + ¢, (38)

where e, is the error in interpolation process.
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1 i 1 2 - v = 2 -

Assuming €, is uncorrelated with €r» Er, and ¢ < ers Ep > <eT2, eT2> andBo < Ers Br, >
2 .

and 0, = < g, g, >, with -1 < p < 1,

R 4

then o - (¢ 1-a) G} fi) (lf‘a) o? + o5. (39)

More generally, for intelpolation/extrapolaﬁon of one vertical profile x from another x using a linear

2 1
operator D:
x =D -x (40)
2T 1
the error covariance of x is given by
"2
C =D-C ‘DT+@G 41)

2 1

where G is the error covariance of the operation D. This problem is discussed by Eyre (1989) in the

context of 1D-Var.

If G is omitted, then one obtains the (usually false) result that the interpolated profile is more accurate than
the profile from which it is interpolated. Examining (39), for p = 0 one finds that

aj = a? o? + (1-a)* o’ | | 42)
which for & = 0 or & = 1 gives aj = o2

but for @ = 0.5, gives g = Yad?.

This indicates that the background is more accurate at intermediate levels. The analysis increments are

2

o ' : .
controlled directly by the ratio —% where of, is the observation variance. If oi is halved, the observation
o, ' '

will have less impact on the analysis. For realistic values of o, and o,, the analysis increments are smaller

by 20%.
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For p = 1 one obtains g2 = o2 :

and for B = -1 one obtains o} = o%(1-2a)?.

This analysis indicates that an observation lying midway between model levels is given less and less weight
as the structure functions become increasingly sharp. Ultimately, as the correlation between adjacent levels

becomes negative the observation is ignored.

This is a genuine problem since situations exist where an observation is of no use. It is also a design
feature of 3D-Var. It reveals a problem which becomes acute when the structure functions are too sharp
compared to the model vertical discretization.

The feature does not show up in the current ECMWF implementation of OI. However, in the ECMWF O],
the background is interpolated at the observation point using (37) but the ¢’s which have to be explicitly

interpolated are not interpolated using (39) but using (37). OI is thus not mathematically consistent (in its
implementation!)

‘One could minimize the impact of the problem by using cubic interpolation in the vertical. One could also
use tricks to mimic OI such as explicitly changing g, S0 as to compensate for the changed o, (P Undén,

personal communication). However, it is not clear if one should do this. Is an observation located at a half

level as informative as an observation located at a full level?

It is clear that one should ensure that the vertical structure functions are reasonably resolved by the vertical
discretization of the model and, if at some levels they remain too sharp (e.g. at the tropopause), it is a strong
argument for having more vertical resolution in the model at such levels. For multilevel observations, one
should extract data such that their vertical resolution is consistent with the model vertical resolution. It is
worth noting that the problem also occurs in the horizontal but is of smaller magnitude since i) we use

bicubic interpolation, and ii) the horizontal correlation of errors are relatively broad.

3. THREE-DIMENSIONAL ANALYSIS EXPERIMENTS
3.1 Experiments with no J.

The effect of the choice of control variable and balance constraints on speed of convergence is most easily

seen in the absence of observations as the solution is known precisely, and one can expect to solve the

minimization problem under certain conditions in a single step.
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In the absence of observations and any balance constraints (univariate J,) the solution is x = x,, where

The background error field has considerable horizontal and vertical variability - as is necessary for proper
representation of the background error variances. When the model state vector in spectral space, x, is
chosen as control variable, then even for J, alone, convergence is achieved rather slowly typically reducing

the cost function by ~20% in 30 iterations. This is because it is not possible to precondition the

minimization sufficiently well simply by specifying the diagonal elements alone (see section 2.2). If,
however, y, the departure of the model state variables from the guess, normalized by the forecast error
standard deviations and projected onto the eigenvectors of the vertical background correlation matrices, is
chosen as control variable then (again, for J, alone) exact convergence to machine precision is achieved

in a single step of the minimization scheme as in this case the Hessian is diagonal and the correct pre-

conditioning may be applied

The choice of y as control variable in the multivariate formulation of J,, no longer ensures the Hessian is
diagonal and so convergence is not achieved in a single iteration, even for J, alone. However, it is still

much better, in terms of conditioning, than using x itself. If the e in J, is chosen sufficiently small the

Sp(x—xp)

), which of course, consistently,
o

optimal choice of control variable would become P! p~* [

implies an analysis of the slow modes alone. Some experimentation will be necessary to determine an

optimum choice for the more general formulation.

3.2 Single observation experiments

The multivariate balance imposed by J, as described in section 2 provides a mass wind coupling over the

whole globe. In the examples which follow all vertical modes are used in the separation between Rossby
iand gravity waves. Horizontal modes used are those corresponding to vertical modes 1 through 7. Beyond
vertical mode 7 the same set of horizontal modes (those associated with vertical mode 7) are used for ail
higher modes. Note that there is no univariate component in this example (although such a component is
allowed for in the general formulation as described in section 2.4). Fig. 1 shows the response to an isolated
observation at 60° N of a) height, b) zonal wind, and c) meridional wind. In each case the analysis
increment is near geostrophic. The horizontal scale is determined by the horizontal structure functions
which are described in Appendix C and the vertical spread by the vertical structure functions described in
Appendix D.
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Fig.1 Response of the 3D-Var analysis at 500 hPa to an isolated observation at 60°N. Hough balance, € = 0.1. a)
height, b) zonal wind, ¢) meridional wind. Contours are of height and the arrows indicate vector wind. Polar
stereographic projection centred on the observation location.
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One of the limitations of the ECMWF OI analysis is the lack of mass/wind balance as one approaches the
equator - the scheme becomes univariate at the equator. Fig. 2 shows the response to an isolated
observation at the equator of a) positive zonal wind, b) negative zonal wind, and c) a southerly meridional
wind. The variational analysis has a strong mass-wind balance even at (°. Note, however, the absence of
a Kelvin wave response, in the current formulation these are taken as "fast" modes and assigned relatively
large errors. As Parrish (1988) and Daley (1993) point out, Rossby modes imply a negativeu, ¢
correlation at the equator, whereas Kelvin modes imply a positive u, ¢ correlation at the equator, The

addition of Kelvin modes in the "slow" term of J, will considerably reduce the u, ¢ correlations at the

equator (Parrish, 1988).

Fig. 3 shows the linear balance response to an isolated zonal wind observation at O°N. Compare this with
the Hough balance shown in Fig. 2a. The similarity with the linear solution is, of course, affected by the
number of vertical modes used in the Rossby/gravity separation - in this case 7. Closest similarity with
the linear solution is obtained when the external mode is used for the separation as Hough balance becomes
linear in the limit of infinite equivalent depth. One can expect there to be sensitivity of the increments to

the details of the Rossby/gravity/univariate separation, again this will have to be an area of further research.

Finally, it is worth noting the effect of varying the e parameter in (30). In all the above ¢ = 0.1, which
implies that 10% of the error variance lies in the gravity wave part of the fields. Fig. 4a shows the effect,
for a single zonal wind observation at O°N of ¢ = 0.5, and Fig. 4b of ¢ = 0.9, c.f. Eig. 2a which is the
e = 0.1 case. The balance changes from near geostrophic with e = 0.1, to almost entirely a geostrophic
with ¢ = 0.9. As discussed in section 2.4, the € parameter is analogous to the OI formulation in which
one assumes that a certain percentage of the variance is described by the divergent component of the wind.
Daley’s (1983) experiments indicated that 10% was a reasonable figure for this, and following further
experimentation by Undén (1989) this is the value used operationally by th_e ECMWEF OL Iis role is slightly

~ different with the variational analysis and this is another area which may benefit from a closer study.

4. FUTURE DEVELOPMENT
4.1 Other approaches to dynamical balance

Within the variational approach it is possible to include balance constraints in a number of different ways,
one method in which the background constraint is explicitly formulated in terms of fast and slow modes has

already been introduced in section 2.4.

Two other approaches have also been implemented as options:
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Fig.2  Response of the 3D-Var analysis at 500 hPa to an isolated observation at 0°N. Hough balance & = 0.1. a) positive

zonal wind, b) negative zonal wind, c) southerly meridional wind. Contours are of height and the arrows indicate
vector wind. Regular latitude/longitude projection.
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4.1.1 NNMI in the cost function

The cost functions may be formulated in terms of initialized fields, NMI(x), so that
J, = (NMI(x) - x) BV (NMI(x) - xy)
J, = (HNMIx) - y) O HNMIZ) - )
This involves a change of variable by performing a non-linear mode initialization (NNMI) on x, the adjoint

of which is needed in calculating the gradient of the cost function with respect to x. Implementation is

straightforward as the NNMI and its adjoint are simply operators which are applied at the appropriate points

in the chain.

It has been found in Courtier and Talagrand (1990) and Thépaut and Courtier (1991) that this approach

acts to speed the convergence. However, if the number of iterations increases, the NNMI process is inverted

by the minimization and the minimizing solution contains gravity components.

Also, this formulation leaves a certain amount of ambiguity in the control variable itself since both x andy
in general contain gravity wave components. The minimization will attempt to fit the slow component ofx
to x, through modification of the control variable. In practice x seems to reach the slow component ofx,

rather quickly, within 5 or 6 iterations. Thereafter the minimization has difficulty in reconstructing the "fast’

components in x,, and in the case of a ’noisy’ x, may never succeed.

The balance condition which is imposed through NNMI imposes a geostrophic coupling only for the vertical
modes included in the NNMI (at ECMWF this is five). As the amplitude of these modes is large mainly

in the stratosphere and for the largest vertical scales in the troposphere, the analysis (even if it is free of
gravity waves) becomes univariate close to the boundary layer: increments on temperature in the low

troposphere leads to small increments of wind.

Use of NMI(x) in the cost function will not automatically provide a balanced final state, but it will usually
speed up the initial rate of convergence since the minimization acts in a subspace of x (the slow modes).

Balance considerations may be addressed through a further, weak constraint J, described below.

412 J,
The second approach consists of introducing a cost function J, which contains a penalty term on the

tendency of gravity modes G
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J, = a |dG/dt[*

This is carried out by computing the tendency of the gravity modes of the analyzed state through one time-

step of the model; and the adjoint through one timestep of the corresponding adjoint model.

Consider an example where the background, x,, and the starting point for the minimization (first-guess),

X,, are two initialized analyses 24 hours apart. These have been truncated to T21 from T106. Both fields

have been operationally diabatically initialized, whereas the variational analysis currently only uses adiabatic
initialization, therefore the fields are not fully 'balanced’ for this model. The control variable used for this

example is the model state vector x (with horizontally constant forecast error variances). It is found that,
with only one iteration of NNMI, the amount of gravity wave activity increases rapidly. Two iterations of

NNMI is sufficient to control it to a reasonable level. Increasing the number of NNMI iterations beyond

this point has relatively little impact upon the amount of gravity wave activity.

Fig. 5 shows the cost function gradient as a function of the number of simulations. Most rapid convergence

occurs when NNMI is used alone, in this case x moves towards the slow components of x, relatively
quickly. Slowest convergence is found when using J, alone, where the minimization is trying to consider

the whole phase space of the control variable. Combining NNMI with J_ seems to give the benefits of both

- enhanced initial convergence plus an explicit control of gravity waves.

J, isa constraint on the gravity mode tendencies and can be thought of as a progressive NNMI applied to

x. J, may complement the use of NMI(x) in the computation of the J, and J, cost functions by

introducing a constraint on the fast modes which is absent from these terms.

The use of NNMI in the J, and J,, terms of the cost function and together with a J, term attempts to

produce analysis increments tangent to the slow manifold as defined by NNMI. As the curvature of the
slow manifold is small in midlatitudes, the impact expected in a purely geostrophic analysis is small. One
could, of course, have 10 cheap iterations with no NNMI or J, followed by 10 expensive iterations with NNMT
instead of having the 20 iterations all performed with NNMI. As 3D-Var is significantly less expensive
without NNMI and J, than with them, their use should be avoided unless the benefit is significant.
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The addition of constraints also complicates the minimization issue. For the most efficient minimization
one should include the Hessian of the NNMI (and of J,, which will be similar) in the pre-conditioning.

No attempt to do this has so far been made.

4.2 Analysis of the kemnel ;

In view of the problems experienced in diagnosing the kemel of the P - T, Inp, transform (Appendix B),
it is clear that a more satisfactory approach/would be to analyze the kernel directly, i.e. make it a part of
the control vaﬁable. This would have the advantage of extracting more information from the observations.
Preliminary attempts show that the technique is about as successful in generating a known profile as is the
diagnosed kernel approach, but that there is a strong sensitivity to.the formulation of the scalar product.

This requires some thought as one would not want to upset the J, pre-conditioning.

5. CONCLUSIONS , ,
The general formulation of the ECMWF variational analysis system has been described. It is shown how

the cost function J is split into a number of components J,, J, and J_. This paper has concentrated on

general aspects of the formulation and the detailed implementation of the background term Jp

It is emphasized that computational efficiency is of paramount importance. The background constraint is
formulated in such a way as to ensure that the Hessian is as close to diagonal as can reasonably be achieved,
thus enabling suitable pre-conditioning for the minimization. Appropriate choice of control variable for the
minimization is found to have a substantial impact upon the rate of convergence. It is demonstrated how
by a suitable choice of control variable one may account for geographical variability of the background
errors, and vertical correlation of the errors without in any way deteriorating the convergence properties of
the scheme. A conscious decision has been taken not to work on minimization algorithms ’in-house’.
Instead general minimization packages are being used as developed by INRIA (Gilbert and Lemaréchal,
1989), the algorithm currently being used is the M1QN3 package.

Mass wind balance may be treated through a number of different mechanisms - for example use of normal

mode initialization and its adjoint, or through a penalty term which keeps the tendency of gravity waves
small. These two approaches impose balance independent of the form of the background constraint J,.

It is shown that this is not an acceptable solution in practice since it is not then possible to deduce from the
specified background errors the value that has effectively been used. It is shown that it is necessary for the

balance constraints to be imbedded (at least to a large extent) within the covariance mairices of the

69



background errors B. The implementation of this constraint is described in detail and the resulting

multivariate increments illustrated through the use of the single-observation experiments.

Other aspects of the use of NNMI are discussed. Use of NNMI in the cost function acts to speed

convergence since the minimization acts in a subspace (the slow modes). With the penalty term on gravity
modes initial convergence is generally slower than when NNMI is used in the cost function (because

minimization is no longer primarily acting on the slow modes) but, when used in combination with NNMI
in the cost function, convergence is not unduly affected. It does, however, act to progressively dampen the
gravity wave tendencies and introduce a degree of balance into the fields. This result is consistent with the
findings of Courtier and Talagrand (1990) using a shallow water model, and Thépaut and Courtier (1991)

using a 3D primitive equation model.

Specification of the background error statistics is described in detail. A simple, yet flexible, parametric form
has been introduced for the horizontal background error spectrum. The vertical covariances are based on
those currently used in the ECMWF OI analysis.

The scheme as currently implemented offers a suitable and convenient basis for future development.
Obvious avenues to be explored including tuning of the horizontal length scales perhaps including a vertical
variation. Wave number dependence of the vertical correlations. Choice of number of vertical modes used
for the separation of Rossby/gravity components. Inclusion of Kelvin modes in the "slow" terms. Direct
analysis of the kemel. Differing statistics for Rossby/gravity terms. Experience will dictate which of these

are important, and indeed, other issues will undoubtedly emerge.
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APPENDIX A: FORMULATION OF THE BACKGROUND ERROR COVARIANCE MATRIX B

Al Decomposition of B

The model state vector x is given by:

E
= D
P
q
where
£ ] L model n levels
1
N spectral coefficients (A1)
4 variables
E. Dimensionof x =4 x N x L
\ L /spectral coefficient 1
L -1

&1

L &L spectral coefficient N |

Let xf, = RAx/og, xé; = GAxlag and ¥’ = (Ax-RAx-GAx), where Ax = x - x, and R is a projection
operator onto the "slow" modes, G is a projection operator onto "fast" modes. This is a shorthand notation

for the sequence of operators (WSNS™! W) as described in section 2.1 and 2.4. Xps xé and xj, are then

spectral space variables describing normalised departures from the background field.

In terms of x/, the background constraint given by (36) may be expressed as:-

Jb -. 1 Ca ,ZC_I; (Q:&)‘ (:Z;Vz)t g;% Q:& ‘ljR
oo o) (Ee) B Bo e (42
v x, [A () (£ () =y

which assumes separability between the horizontal and "vertical". Because of the normalisation by the ¢’s,
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h and V contain only correlations. The ’¢’ terms are there to provide a relative weighting between the first

two terms (see section 2.4).

Since J,, is split into three componenis of identical form it is only necessary to consider one of them in detail.

In the following ¥/, & and ¥ can be taken as referring to either the 'R’, *G’ or *U’ terms.

h takes the form
b‘e o 0 0
0 QD 0 0
b= o 5 o (A3)
0 0 0 &
a]
B O
g
0
: ez
where é& - . (Ad)
“EN|
h, 0
0 h
and 4 = ' ‘ (AS5)
~&n .
. )

QE is of dimension L, l_zE of dimension N x L and k of dimension 4 x N x L
B

This, in print:iple, allows the horizontal structure functions to vary in the vertical and also for each model
variable.

The vertical term ¥ has the form
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Y- }_55 _‘KD Py (A6)

where, for the moment, it is assumed that W = [0] for i = j, thus ¥ is block diagonal, with elements J**
where x = £, D, P, gq.
il

Vgl

- " . (A7)

[Vl

where it has been assumed ¥V, = 1 and Vi= Vi
[V},‘] is the vertical background error correlation matrix for variable y, and is of dimension L.

Y% is of dimension L x N, and ¥ of dimension 4 x L x N.

In principle, this form allows [¥}] to vary with horizontal wavenumber (n,m). Note, however, that this would

imply non-separable structure functions when used in combination with vertical variations in length scale.

The background operator B has the form

B - p* V* (0% & | (A8)
from which one obtains the expression for B!

B! - @ @yt E" | B (A9

as used in (14).
b is a diagonal matrix of dimension 4 x L x N. The inverse of a diagonal matrix [k,] is simply a diagonal

.11
nx |{—
ma M
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Thus K% = | B* - |- Ewhere ky - £ » (A10)
. k = h%
N, '}

[

™
[}
© o
o ©
Qob

0

0 &k
where gﬁ - &2 and ky, = (A1)

O © ©
()]

Zen

=)

k,, is of dimension L, )'=cE of dimension N x L and K of dimension 4 x N x L.

K=" and ky . by = = .. 2

B by
In a similar way, V is a block diagonal matrix

o000
0 Yo o
Y- 0 og""o
0 0 0 y#

(Al12)

The inverse ¥! is given by

[ pE'o 0 0 |
o ¥y 0 0
-Vl = Al3

0 0 oy«

But  V** is as given by A7.

is the vertical prediction error correlation matrix for variable y of dimension L and its inverse is
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[ 0 0

re it |0 [Uv] ’ .

U - P& 0 0 - (A14)

B - @ W r*p* (A15)
which becomes |

B'-K' WYUK | ~ (Al6)
and the cost function (A2) becomes ; ;

J=%x"K' U U KX ‘ (A17)
or J = % (U¥KY) (U*KY) (A18)

The equation may be simplified by using the eigenvectors of the matrix U. _
U is real and symmetric from which it follows that the eigenvalues A, are real and the eigenvectors are

orthogonal.

R'UR-A- (A19)

A

where R contains as its columns the L, linearly independent (and in this case) orthogonal eigenvectors of

U.

If the eigenvectors are normalised then R becomes an orthonormal matrix and

R'-R
In terms of the eigenvectors R, U is given by

U-RAR | S (A20)
and  U% - A% R (A21)

Substituting this expression into (A18) gives

J=%A*R KXY Q*R KX) o (A22)
Let x=A%R'KY . . (A23)
Then J =% x'x ‘ (A249)
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¥ is simply the projection of K x’ onto the eigenvectors of the vertical background error correlation matrix

multiplied by the square root of the eigenvalues of the latter.

If this procedure is carried out for the "slow", "fast" and univariate terms of J, in turn, one obtains

Jy=Yeecpxt x, +Vecgxlx. vy x (A25)
R *R ¢ *c vy

A2  Computational form of J,
The univariate form is computed as:

(DPg L N

J=% zxj 29> 2 | (A26)

-(El

\EL spectral coefficient 1

VI = (A27)
( El
1 \ EL spectral coefficient N |
The multivariate form is computed as:
L 2 2 L N 2 .
J=Yc (2 ) (Xk)n.z) + Yoy [E ) (xk)n,l)
=1 n=1 =p =1 n=1 x=E
P (L N
+%cg Y, [E E (xG)u,I) (A28)
% \-1 a=l

Gbpg L N

+% Y XYY 6o

=1 n=1

q is, of course, included in the univariate part y,,.

It is convenient to analyse the Rossby part in terms of vorticity as one is then sure of the value of the

background error being applied, if all terms were present the effective background error would become scale-
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dependent since at some scales the wind error term would dominate and at others the mass term would.

Similar remarks apply for the gravity part. It is, however, necessary to include the mass term for n = 0,1,2

as the vorticity alone is insufficient for these wavenumbers.

If one wishes to analyse certain gravity modes, e.g. tides, then it is straightforward to transfer such

components to the univariate term, in which case they will automatically gain equal weight with the Rossby
components.
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APPENDIX B: TRANSFORMATIONS BETWEEN P AND T, Inp_

The model uses a linearised mass variable P where P=¢ + R,T Inp_, where ¢ is linearized geopotential

height and 7 is a (constant) reference temperature. As the intention is to use the model’s Hough modes to

distinguish between balanced and unbalanced components of the fields it is convenient to work in terms of

P rather than temperature and log surface pressure.

However, the advantage of the vertical coupling is not gained without some loss. There are (L+1) degrees

of freedom in the 7, Inp, combination, but only L in P, where L is the number of model levels. Clearly

there is no problem in defining P from I and Inp,, but the transformation from P to I and Inp, involves
a degree of arbitrariness. It is interesting to study this latter transform in more detail. The transform from

I and Inp, to P may be expressed as P = G ¥V where G is a L by (L+1) matrix and ¥V is a vector of

dimension (L+1) containing L temperature values plus log surface pressure, P is a vector of dimension L.

@ basically contains the linearized hydrostatic integral of temperature to obtaih geopotential height. In a
similar way, the inverse transform may be expressed as ¥ = H P, where H is a (L+1) by L matrix. The
transform from T, Inp, to P and back to T, Inp, may be written ¥/ = E ¥ where E = H G, and E is of
dimension (L+1) by (L+1). If one calculates the eigenvalues and eigenvectors of the matrix £ one finds

L eigenvalues equal to 1 and one eigenvalue equal to zero. The latter eigenvalue is associated with the
kemnel, or "nullspace”, of the matrix E. The structure of the kemel, shown in Fig. 6, describes the
information which is lost in the transformation from [, Inp, to P. This information cannot be reinstated

by the transform from P to T, Inp, and the final field is characterised by a zero projection onto the kernel.
As an example, if one takes the following temperature profile, as shown by the solid line in Fig. 7, and

applies the operator E, one obtains the result shown by the dotted line in Fig. 7. The temperature difference

between the two profiles at model level 19 is 159° C!

Clearly, this is not a very good description of the original temperature profile. The information lost is vital

to a correct description of the profile.

The problem is how to deduce the correct amplitude of the kemnel. In the above example there is a clear

solution: one calculates the amplitude of the projection of the original field onto the kemel, apply the
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operator E, then simply add back the kemel with its original amplitude. This technique reproduces the

original profile to within machine accuracy.

If one does not know the original T, In(p)) field (which is the case with variational analysis since the control

variable is a function of P) then the amplitude of the kemnel has to be diagnosed in some way. In order to

do so it is necessary to close the problem by applying an additional constraint. An obvious choice is one

which minimizes the second derivative of temperature in the vertical. Define a matrix § such that

1+a, -2 l-a, O

0 lvay -2 l-a
0 0 1l4a, -2

§=10 0 0 1l+g

(0 0 0 I+, -2 l-g )
where § is of dimension L by (L-2). The 'a’ terms are introduced by the irregular spacing of the eta-
levels. A measure of the *noise’ in the profile is then givenby J = ' §* § T, where T is the temperature

profile as derived from P. What is the amplitude of the kemel such as to minimize J? Define a vector [

containing the first L elements of the kemel K (the one dropped is that operating on surface pressure), then

the problem may then be expressed:-

find the value ¢ such that :c (I - cLy §' 8 (T - cL) = 0. This is a linear equation in ¢, the root of

. T'8'S L
which is easily determined. A little algebra leads to the result that ¢ = _7:7:“; note that the denominator
: L'SSL

is a constant. One may precalculate a vector Z = (§'S L) | L* g'g Ly then ¢ = 7' Z.

Carrying this out (i.e. adding cX to the T, Inp, field derived from P) gives the new profile shown by the
dashed line in Fig. 7 (almost distinguishable from the original profile - full line).

At most levels the difference with. the original profile is about tenth of a degree, the largest difference, of

about a half degree, occurs at the lowest level. There is no sign of ’'noise’.
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Solid line shiows a typical temperature profile. The dotted line shows the effect of transforming (7, Inp,) to (P) and
back to (T, Inp,). It is effectively the original profile with zero amplitude for the kernel. The temperature difference at
model level 19 is 159°C. The dashed line (barely distinguishable from the solid) is the temperature profile recovered
from P after diagnosing the amplitude of the kernel. ‘
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The solid line represents a delta function in temperature centred at model level 11. The dotted line shows the profile
after transforming (7, Inp,) to (P) and back to (T, Inpy). The dashed line is the transformed profile plus diagnosed
kernel.

80



It is important to note that this approach only changes the amplitude of the kemel. There is no change to

the corresponding P field. Information on P supplied through the minimization is passed on intact.

Effect on very sharp profiles _
Fig. 8 below shows the effect of the transformation on a delta function at model level 11. In this case the

field as recovered from P shows rather a lot of noise, the spurious signal at level 19 is 30% of the value at
level 11.

It should be noted that the criterion for diagnosing the amplitude of the kernel (minimum second derivative

of T in the vertical) is clearly inappropriate when trying to recover a delta function. Even so the technique

reduces this noise by over a factor of two.

NMC approach
According to the Parrish and Derber (1992) paper the NMC approach is to explicitly minimize a cost

function for temperature J = I* §* § T where the matrix § is an (L-2) x L matrix with all zeros except
for the three diagonals Sﬂ = 1, Sm1 = -2, Sj g, - 1,1 <j < L - 2. Which, for regularly spaced levels,
applies 2nd derivatives to the temperature in the vertical. First, the equation for J is expressed in terms of
P and Inp_ using the definition of P. The resulting equation is then minimized, at constant P, to solve for

Inp,. Finally P and this value of Inp, is used to solve for T using the definition of P. The result should

be very similar to that obtained using our approach.

Other solutions
Hoskins and Simmons (1975) also choose Inp, so as to minimize the two-grid wave in T. In their case they
do this by demanding that a binomial filter (1,-4,6,-4,1) on I produce zero result (they were using a five-

layer model). Thus Inp, is chosen such that a cubic polynomial can be fitted through the five values of .

A remark on NNMI

The 2 delta eta noise causing such a problem is not apparent in initialized fields. A likely explanation
follows from the fact that the kernel has zero frequency and therefore is described by the Rossby component
of the flow. As NNMI only affects the gravity part of the flow, the kemnel can not be changed by the

initialization process.
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APPENDIX C: HORIZONTAL STRUCTURE FUNCTIONS

Cl1 Observational evidence

Published literature concerning the shape of horizontal structure functions of short-range forecast errors is
somewhat scarce. The information at our disposal consists of the two papers Hollingsworth and Lonnberg
(1986) (hereafter HLL86) and Ldnnberg and Hollingsworth (1986) (hereafter LH86) which were the basis
for the structure functions of the "new" ECMWF OI described by Shaw et al. (1985). Ldnnberg (1988)
(hereafter L.88) describes some "revised structure functions” as used at ECMWF. From elsewhere, we have
Bartello and Mitchell (1992) (hereafter BM92) and Mitchell et al. (1990) the latter has not been used since

no spectra were presented in it.

These authors have been using the northermn American radiosonde network (the only homogeneous network
available) and thus have sampled scales from 300 km to 3000 km which corresponds to total wave numbers
6 to 66. Comparing Fig. 2 of HL.86 with Fig. 11 of BM92, one sees that the spectra agree pretty well in
the range 15 to 60 with, in particular, a maximum around wave number 20. The maximum at wave number
9 in HL86 is suspect and this can be explained by an accumulation of larger scale energy which was not

properly sampled.

In terms of slope of the wind spectrum, BM92 are very careful, saying that it is negative in the range 3-6.
However, for geopotential they claim a range of minus 3-4. These figures are contradictory since, under
the geostrophic assumption, a slope -p for wind leads to a slope -(p+2) for geopotential. LH86 came
to the conclusion of a negative slope for wind of between % and 1 which is again contradictory with Fig. 2
of HL86 where the wind slope is in the range minus 3 to 4 and closer to 3 than to 4. The explanation of
this apparent paradox is in LH86 Fig. 8 where we can see that the end of the spectrum is noisy to the point
that it is difficult to infer any sensible geopotential slope in the inertial range. This has been recognised by

L.88 since the revised structure functions have been obtained using a slope 4 for geopotential.

Fig. 2 of HL86 is believable for the inertial range since:

- it is stable with respect to number of Bessel functions retained

- it is confirmed by Fig. 14 of HL86

- it is confirmed for wave number 15 to 40 by Fig. 8 of LH86.

It has been chosen to use a slope of -2 in the inertial range for the wind power spectrum (which corresponds

to -3 in terms of modal spectrum) since it is consistent with Charney (1971) theoretical analysis of 2D

quasigeostrophic flow.
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For the larger scales, one can hardly believe Fig. 2 of HL86 (wind pairs lead to less information on the large
scales than height pairs). Furthermore, it is not in agreement with either Fig. 8 of LH86 or Fig. 11 of
BM92. The fact that the slope of height is negative in Fig. 7 of LH86 or Fig. 5 of BM92 and that it is
positive in wind (Fig. 8 of LH86 or Fig. 11 of BM92) shows that the wind slope is between 0 and 2. At
0 the wind spectrum is flat and at 2 it is the height spectrum which would be flat. Using the 2 points
available in LHS86 lead to a negative slope 1 for height. In BM92 the 2 points would lead to a negative

slope 0.3 for height. For wind this transforms to a positive slope” in the range 1 to 1.7 (assuming
geostrophic balance).

C2 A parametric formuia for the spectrum

Consider the following expression for the wind power spectrum

nl
e +|—

fn) = a

1 . __’_l_ otP
no

with p, =2
p =3
n, =15
n, =2
e =0.1

For large n, f(n) ~ n™"* which justifies the choice p, = 2.

For small n (and €) f(n) ~ n™. Thus P, gives the (negative) slope in the inertial range and p, the

(positive) slope for the large scales.

The maximum of f{n) is for n > n, but close to n,. For given slopes p, and p, the correlation length

scale is quite sensitive to the choice of n,, for the slopes chosenn, = 15 gives a length scale of about

500 km for geopotential.
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- ¢ has been made negligible ¢ = 0.1, it controls the shape (and not slope) of the spectrum for very
large scales n = 0 1o n;. Once & is negligible, n, is just a scaling factor, it plays then no role in

the shape of f

- the value chosen for is based on forecast error studies using satellite radiances (Rabier, personal

communication).

The spectrum is rescaled so that the correlation for zero separation is equal to 1. The scaling factor is easily

computed as

-1 -1
(E @ py (0)) = [E f(n)x\/2n+1)

Fig. 9 presents the spectrum obtained and Fig. 10 presents the corresponding <¢,d> grid point correlation
function superimposed with what is used in ECMWF OL

No information was available on the planetary scales. e and n, are the free parameters of the formulation

which will have to be evaluated. Studies currently being undertaken (Rabier, personal communication)
should shed some light in this.
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Fig.9  loglog plot of the power spectrum describing the horizontal background error structure for wind and height.
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APPENDIX D: SPECIFICATION OF THE VERTICAL ERROR CORRELATION MATRIX ¥V

Y is a block diagonal matrix with block elements square matrices of dimension , one block for each of the

3-D state variables.

For consistency with the mass-wind balance, as imposed through , it is advisable that the same vertical
correlations are used for both mass and wind. The covariance is not explicitly specified, but is implied
through the covariance, although because of the limited accuracy to which one can construct the kernel

(Appendix B) it is not uniquely determined. As it will become clear, the implied covariance is very
sensitive to the <P,P> covariance, for this reason it is chosen to use the latter to specify the <g,£> and

<D, D> rather than the reverse. <g,g> covariances may be independently specified - these have been

modelled on the current ECMWF Ol form for relative humidity correlations.

In the absence of information specific to P, a natural starting point is to generate <P,P> covariances from
those of height. One may do this, for example using the form for <®,&> used by the operational ECMWF
OI scheme. Fig. 11a shows the resultant P correlation of all levels with model level 11 about 500 hPa.
One may now use the model code to explicitly compute the corresponding <T,T> covariances. Fig. 11b
shows the resulting T correlation between level 11 and all levels and with p,. The structure is very noisy.
If one uses these <P,P> covariances in an assimilation with a single temperature observation at 500 hPa,
one obtains temperature analysis increments as shown in Fig. 11c - again very noisy. This problem occurs

because the <T,T> covariance structure implied by the <P,P> covariances is too sharp in the verical to
be properly resolved by the model resolution.

A safer approach is to take as a starting point a reasonable <7,T> covariance structure and use the model
code to generate the corresponding <P,P> covariance. As an example, Fig. 12a shows the temperature
correlation between model level 11 and all levels; and Fig. 12b the <T,Inp > correlations. These, together,
now imply a <P,P> correlation for model level 11 as shown in Fig. 12c. Comparing with Fig. 11a we see
that these are somewhat broader. One can repeat the exercise of using the model code to reconstruct the
implied <7T,T> correlations for model level 11. The result is shown in Fig. 12d. Comparing with 12a one
sees that the original correlation structure has been maintained through the transforms. Repeating the single

observation analysis experiment using the new <P,P> covariances one obtains the increments shown in
Fig. 12e. This is more like what one would hope to see - it has none of the noise evident in the earlier case

(c.f. Fig. 11c), however it is not identical to the <T,T> correlations shown in 12a, and this requires further

investigation.
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Fig.11 a) <P,P> correlations of all mode! levels with level 11 as calculated from ECMWF Ol height covariance.
b) <T,T> correlations of all model levels with level 11 as implied by the <P,P> correlations shown in Fig.11a.
c) 3D-Var analysis increments resulting from a single temperature observation at 500 hPa (approx model

level 11).
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APPENDIX E: SPECIFICATION OF THE STANDARD DEVIATIONS OF BACKGROUND ERRORS

An estimate of the rms forecast errors of u, v, T and & (E,,,) is available from the operational OI analysis

on a 6° x 6° lat/long grid at 7 pressure levels ( 1000, 500, 300, 200, 100, 50 and 10 hPa).

i) Horizontally interpolate E,, to the model gaussian grid.

ii) Vertically interpolate the E,,; to the model n-levels, using the background surface pressure to
define the levels.

iii) Generate error fields for the variables used: contra- and co-variant components of the wind, In D,
and q.
Contra and co-variant wind.
Oyv = E, cosine(lar)

Surface pressure.
Oy, = ngh'

PSE,
P,

Specific humidity.

. - (1 - g)e,R, (Ar)
7 (p-e)R (100

where currently Ar varies quadratically with p from 10% at 1000 hPa to 50% at 300 hPa passing through
30% at 500 hPa. Above 300 hPa it remains 50%, and below 1000 hPa at 10%.

Mass variable P
The current specification of the P standard errors is in terms of the OI height errors:
g, -8 E,
This, approximate, form for the P errors follows from the fact that P represents a linearized computation

of geopotential height.

The approach adopted is:-
1) Specify the <T,T> and <T,Inp > correlations, and climatological T standard errors.
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2) Compute the implied <P, P> correlations using the model code, including the diagnosis of the
kernel.

3) Use the diagnosed kernel in all P to T, Inp, transforms.

4) P standard errors used are derived from the OI height errors of the first guess forecast.
Options exist for further processing of the rms errors, such as sefting 6’s to constant values over 7 -levels,

and spectral smoothing of (1/g). The latter is necessary to avoid too much aliasing in the calculation of
the cost function.
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