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Summary: The Bayesian justification for the penalty function used
in variational methods is reviewed. The formalism 1is applied
first to Gaussian distributions, then manageable approximations
for handling non-Gaussian distributions are discussed. The
Bayesian approach provides a sound basis both for variational
analysis and the quality control of observations.

The normal variational approach, using a descent algorithm, is
not necessarily robust if the possibility of gross observational
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satisfactory solution can be found, and where a variational
descent algorithm fails to find the correct minimum. The

accuracy of the first-guess is crucial.

The same Bayesian formalism can be applied to the decision taking

algorithms used in traditional quality control methods. The -
relationships between non-Gaussian variational methods 'and the

operational quality control algorlthms at the Met Office and at

ECMWF are discussed. o

1. BAYESTAN DERIVATION OF ANALYSIS EQUATION

This derivation mainly follows Lorenc (1986).

1.1 Notation

X atmosphere as represented in model , ,
. model representation of the true state of the atmosphere
X prior estimate of X, (e.g. from‘forecast)
y observations
y observations that would be given by errorffree instruments

K(x) forward operator for calculating y from x
K tangent linear operator .of K,

such that K(x+6x)=K(x)+K6x+O(6x2).

P probability
D probability distribution function
P(x)

probability that xsxt<x+dx
= p(x)dx

N.B. We use x both for the vector of values,band for the event xsxt<x+dx.

P(A|B) is the conditional probability of A, given B.
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1.2 Probability Equations

Probabilities are used in a Bayesian way to describe the state of
information. We have some prior information about x. We add to this
information from observations y. We need to know the posterior knowledge

about x. Operator K does not have a normal inverse.

From now on all probabilities are conditional on knowing x . To simplify

notation we write P(-) instead of P(-lxb).

The basis of the derivation is the identity:

P(xny) = P(xly) Ply) = P(ylx) P(x)
= plxiyldx plyldy = plyixldy p{x)dx (1)
What we want an expression for is:
P(xly) =p(x|y)dx, the analysis probability, i.e. the probability that

xsxt<x+dx, given the background X and the observations y.

We assume we know certain distributions, based on our prior experience and

our knowledge of the physics:

P(x) =p(x)dx, is the probability that x5xt<x+dx, given only the

prior knowledge of x .
p(ylytnx) is the instrumental error distribution.

p(ytlx) is the forward operator error distribution.

From the last two distributions, we can find:

P(ylx) = p(ylx)dy, the probability of getting observations y given x=x .

piyln) = [ plyly, ) ply, %) ay, (2)

From this, and our prior knowledge of x, we can find:

P(y) =p(y)dy, the probability of getting observations y.

fp(y|x) p(x) dx

J J P(Y|YtHX) p(ytlx) dyt p(x) dx

ply)
(3)

Bayes’ Theorem, which follows from the basic identity (1), is:

pixly) = plylx) p(x) / ply) (4)

We can substitute the expressions derived above to give:
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I P(YIytAXJ p(ytlx) dyt p(x)

pixly)
pr(ylytm) p(ytlx) dy, p(x) dx

This p.d.f. describes our total posterior'information about x, given

Y.

1.3 Solution Using Gaussian Probability Distributions

We assume K can be linearized in the region of x and xa.such that

K(x) = K(x) +K (%), "

We assume all the p.d.f.s are Gaussian, and use the notation

-1/72

N(x|m,B) = ((2zm)"|B}) exp(- %(x—m)TB_l(x~m))

(5)

X and
b

(6)

(7)

where B is an NxN positive definite matrix, and |B| is its determinant.

-

We assume: that we know:

the background error distribution:
p(x) = N(xlx,,B),
the instrﬁmentai error distribution:
plyly,nx) = N(yly,,0),
the forward operator error distribution:
Py, 1% = Ny 1K), F),

where B 0 and F are covariances.

Then, wusing the properties " of Gaussians, the observational

distribution is given by the convolution:

plylx) = | pyly,m) ply,1%) ay,

N(YlK(xt),0+F)

where O+F (=E) is the observational error covariance.

The observation distribution, only knowing X is given by:

ply) = N(le(xb),o+F+KBKTi.
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Substituting these into Bayes’ Theorem (4) gives:

p(xly) = N(ylK(x_),0+F) N(x|x ,B) / N(y|K(x ),0+F+KBK')
t b b :
(10)
= N(x|x ,A).
a
where;xa and A are defined by
A = B - BK (KBK'+0+F) kB :
e (11)
x =x +BK (KBK +0+F) (y-K(xb)).

It is normal to assume that the "best" estimate of xt;is given by the mean
x of the Gaussian posterior distribution. Thus using the above equation

we can calculate X directly. This is the "0I" equation.

1.4 Variational Solution

If K is more nonlinear, or the p.d.f.s are non—Gaussian, then the direct
solution derived above cannot be used. Although the Bayes’ Theorem (4) for
the analysis p.d.f. is still valid, the expression for p which results is
usually too complicated to be very useful in describing our knowledge about
x; we want an estimate of the "best" x, without evaluating the full p.d.f..
First, to define "best", we define a loss function L(xl,x) giving the cost
to us of making an estimate X when the true value is x. The expected loss
R is .

R(x ) = j L(xl,x) p(xly) dx (12)
The best estimate is the X, which minimizes this. In general this require
evaluating all of p(xly). This can be avoided by making L a negative delta
function, so that there is a gaih from getting exactly the X . With this

spike loss

L(xl,x) = -6(xl—x) (13)

R(x) = -p(xly) (14)

Substituting in the Bayesian expression for p(x|y), and since p(y) is
independent of x, the x which minimizes R(x) is the same as the x which

minimizes a penalty function % given by

F = -In(p(yix)) -1n(p(x)). (15)
If we substitute the Gaussian p.d.f.s of the last section into this, we get:

3= l(y—K(x))T(0+F)_1(y—K(x)) + x —x)TB_l(x -x)} + constant. (16)
2 27p b
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If furthermore we make K linearizable, we see why the linear problem with
Gaussians is easier to solve: # becomes a quadratic in x. Using the same
algebraic manipulations. as are needed to establish .the properties of
Gaussians used in the last section, and the same definitions (11) of-xa and

A, gives:

B2 "%(xa—x)fA_l(xa—x) + constant. o an
qur ylérgé problems it .is easlier tow find’ X iterati&ely, eQén if }‘;is
quadratic. If K cannot beAlinearizgdhover the.whole}range pontaiping X
and possible x s, then an explicit solution is not possible. If K is still
differentiable, so that

K(x+8x) = K(x)+Kx6x, as 8x0 : ' ©(18)

then we can look for the minimum of % using a descentbélgorithm. Af fhe

minimum, the gradient of j‘with respect to the components of x is zero:
, T -1 : -1 ‘ ; C e
d =K (0+F) "(y-K(x)) - B v(xb—x) = 0. : (19)

This formula is exact; we can find the most probable x. The next stage. of
generalization is to allow the p.d.f.s to be weakly non-Gaussian. That is,
we use the Gaussian formulae with 0* lF* and’ Bx ‘being slowly varying
functions . of x, whose derivatives we can neglect. We . also. neglect
derivatives of Kx. Then if we define xa;as the x which minimizes J, i.e.

¥ o= -k T F )7 yK(x)) - B, " xx) = 0. @
Then

1 -1 -1

g =k _To_+F_ )k +B t=at o (21)
Xa Xa Xa Xa Xa

Then, in the neighbourhood of xa,
p_(xly) « N(x|x 3. (22)
If K 1is sufficiently nonlinear, or the p.d.f.s are sufficiently
non-Gaussian, p (x|y) may have multiple maxima. We have then to consider
a X

how to decide which is best. We can generalize on the spike lpss, by

"allowing the loss function to be a Gaussian: V
,‘L(xl‘,x) = - N(xl |x,L). o (23)
As L fends to Eéro this givés us the spike loss. For fhe Gaussian anélysis

problem we can evaluate the convolution éxplicitly: n

R(x ) = - N(x |x_,A+L) | | o (2e)
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Thus the loss is minimum when xléxa, as we would expect. We can use this
expression to help us in deciding between peaks in a non-Gaussian posterior
p.d.f., by assuming that the peaks can be approximated by a local Gaussian.
We assume the spread of the entire posterior p.d.f. can be characterized by
S (i.e. S describes the distance between peaks). If L>>S then the loss
function is quadratic over the range of significant probabilities, and the
best estimate is the mean of the full p.d.f. (which may fall between two
peaks). But if L<<S then we may‘consider the peaks separately. Then if,in

the vicinity of the ith local maximum the p.d.f. is
plxly) =P N(xlxi,Ai) (25)

Then the loss associated with choosing the analysis to be at this maximum

of p{xly) is given by

R(xi) = —Pi N(xl|xi,Ai+L) (26)

If S>>Ai>>L then R(xi).s —p(xily), and the best peak is the highest.
If Ai<<L<<S then R(xi) = —Pi x constant, and the best peak is that with

the largest area.

2. VARIATIONAL METHODS WITH NON-GAUSSIAN OBSERVATIONAL ERRORS

Lorenc and Hammon (1988) introduced a simple model of observational errors:
They are uncorrelated, so that each observation can be considered
separately. For each, either the observation is good, in which case its
error comes from a Gaussian, or it has a gross error, in which all observed
values over a range of plausible values are equally likely. Thus we have

(for "plausible" y)
plylx) = (1-P(G)) N(ylK(x),E) + P(G) k - (27)

where E is the observational error variance (=0+F), P(G) is the probability
of gross error, x is the true value, and k is given by

kdy =1 (28)

Plalues'e

It is instructive to look at some simple posterior p.d.f.s resulting from
this model, before going on to the full multivariate analysis problem. The
simplest case is for a single 6bsérvation of one parameter, and a prior
(background) estimate v, (=K(xb))_from a Gaussian distribution. Because
P(ylx) is non-Gaussian, the shape of the posterior p.d.f. depends on the
difference between y and Y,» as illustrated in figure i. Even in this, the

simplest case, there are multiple maxima, and there are configurations in
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which a variational search, starting from the prior estimate Yy will not

find the best value.
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Fig 1. p.d.f.s for an observation, background, and Bayesian analysis, for a
selection of observation-background differences o. p.d.f.s are

appropriate for ship observations of surface pressure, with
P{(G)=0-5. (Lorenc and Hammon 1988).
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Fig 2. Two examples of p.d.f.s from simulated doppler wind observations,
with xt=7, ~good observations having E=9 and P(G)=0-5. (Dharssi et

al. 1992).
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Figure 2 shows a similar error model applied to two realizations, each of
ten observations, from an idealized doppler observing system. With poor
signal to noise ratio, P(G) may be large for such an instrument; we have
used P(G)=0-5. In the lower example, it is not clear which is the "best"
estimate; no method can consistently find it. In the top example there are
multiple maxima, which become more obvious minima if we conveft to a 1n(p)
penalty function ¢, so even in this case a descentvalgorithm must start

near the correct value.

PENRLTY

[P W \I)JAA

-6 -5 -4 -3 -2 -1 0671 2 3 4. 5 &
NORMAL1ZED DEVIATION

Fig 3. Solid line: quadratic penalty function for a single observation,
Dashed line: penalty function assuming a P(G)=0:05. (Lorenc 1988)

Lorenc (1988) used an observational error distribution 1like (27) in a
variational analysis based on minimizing (15). The possibility of gross
errors converts the quadratic penalty function of (16) into one with
plateaus (Figure 3). If the current estimate in an iterative algorithm is
on one of these, the gradient does not well indicate which way to adjust
towards the minimum. Note that the width of the’minimum depends on E,
while the - spread of the deviations between ‘initial estimate and
observations depends on B+E. So if B is large, the'iterétion may not move
towards the absolute minimum. This was the case in the experiments of
Lorenc (1988). He tried various methods to improve the first-guess of the

iteration, for instance by first setting P(G)=0, but with limited success.

Dharssi et al. (1992) had more success in their examples. In simple single
value problems like those shown in figure 2, they found that increasing the
observational error E in early iterations helped the iterative estimate
move towards the best value. In a two-dimensional simulation of winds from

a scanning lidar, they found that for relatively dense but unreliable
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(P(G)=0-5) observations, the iteration did converge. It is an -open
question whether descent algorithms, suitably modified in early iterations,
will be sufficient for practiCal dpplicationsy or whether we will still

need the decisidn algorifhms described in the next séction.

3. Quality Control

3.1 Posterior probability of gross error

The posterior p.d.f.s shown in figure 1 are each the sum of two Gaussians,
one corresponding to there being a gross error (G), one corresponding to
the observation being correct (G). Lorenc and Hammon (1988) proposed

applying Bayes’ theorem directly to the gross error event G:

P(Gly) = plylG) P(G) 7/ ply) , , ;
= p(ylG) P(G) / (plylG) P(G) + p(yl&) P@E) £29)
Using (2) (27) and (28), we have
H plylG) = k (30)
Using (2) (27) and (9), we have
p(y|G) = N(y|K(x ),E+KEK') | | (31)
so ‘(29) can be. readily‘ évaluated.r . The two Gaussians in figure 1"are

weighted by P(Gly) and’P(éJy) respectively. Thus accepting or rejecting an
observation depending on whether‘P(GIy)‘is greater than or less than 0-:5 is
consistent with .the "best" analysis in terms of a Gaussian loss function,
as discussed in relation to (26), as 1ong as S>>L>>A. This is the basis of

the decision taking algorithms used in Bayesian quality control - schemes.

Dharssi et al. (1992) pointed out an interesting relationship between the
variational method and the posterior probability of gross error. If we

calculate #’ using the error model (27), then we get:

; _ _ e T -1, R P ’ B
¥ = K (Ex) (y K(x)) - B (xb x) = 0. (32)
where the diagonal element of Ex’ for observation i, is given by

(E,)

)., = E /PG 1%, ‘ e

Ei is the observational error variance of observation i if it does not have
a gross error, and P(éilx) is the posterior probability that it does not

have a gross error, given that X=X, . We are effectively increasing the
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assumed error variance of observations which are unlikely to be correct.
(This is not the same as the artificial increase discussed in section 2,
where Ei is increased when calculating Ei/P(éilx) in early iterations, to
aid convergence towards the global minimum). (32) has the same form as
(19), so by using (33) each iteration, a variational method for Gaussian

errors is converted to one for non-Gaussian errors.
At convergence, there will exist a final estimate of P(Eilx) for each
observation. It can be considered to be a Variational Quality Control

(VQC) decision about the observations quality.

3.2 Individual Quality Control (IQC)

(29) can be extended to consider more than one observation. Lorenc and

Hammon (1988) give the derivation for two observations:

P(Glly) = P(Gll-yl) / (p(y)/p(yl)p(yz)) (34)

ply)/ply Iply,) = 1—P((_}1Iyl)P(E;ZIyz){l—p(ylc_;lnﬁz)/(P(ylIf;l)p(yzlﬁz))} (35)

Ingleby and Lorenc (1992) give a more general derivation. The number of
terms to be considered in the extended equation goes as 2n, where n is the
number of observations, so evaluation of the exact equation rapidly becomes
impractical. Lorenc and Hammon (1988) suggest sequentialkapplication of
the "buddy check" equation for two observations as ah apbroximation. This
is the method used operationally at the Met Office. The decision about
whether to use each observation i is made individually, based on an
approximation to its posterior probability of gross error P(Gily). ~The
analysis is then made using the accepted observations, assuming they have

Gaussian errors.

3.3 Simultaneous Quality Control (SQC)

The 2" terms in_ the full expression for P(Gily) come from the various
combinations of acbepted and rejected.observatioﬁs. Each combination Ca is
associated with a multivariate normal distribution, each individually
calculated using (10), so that the total p.d.f. is given by (Ingleby and
Lorenc 1992):
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2M-1 |
plxly) = z p(xlynCa) P(Caly). ‘ : (36)

a=0

The posterior probability for each combination of gross errors can be found

using Bayes’ theorem:

P(Caly) = p(yICa) P(Ca) / p(y). (37)

If: we assume that each of the Gaussians which' makes a significant
contribution to (36) has a distinct peak, then we cenlapply (26) to decide
which gives the best estimate of x. If S>>L>>A it is the one with the

maximum P(C_ly).

Evaluating all 20 probabilities is impossible for large n. Since p(y) is
the same for each Ca' we can instead search for the combination with the
maximum p(yICa) P(Ca)' The states Ca correspond to ‘the vertices of an
n-dimensional hypercube. One possible algohithm for searching only a small
subset of possible combinations 1is relatea to the SIMPLEX algorithm in
integer linear programming. We start with an estimate of the best, and
then search to see if any of its neighbours is more llkely Moving from
one C to a neighbour corresponds to changing the quallty control decision
on one observation, while keeping those on other observations the same. If
one of the neighbouring combinations 1s more likely, we can then search-its
nelghbours, and so.on. - This is the basis: of - the. OI quallty control
algorithm of Lorenc (1981), which is used at ECMWF. Rather like the
variational descent algorithms, this’seafch algorithm relies on having a
good flrst guess of the best C , eince there will in general be’multiple

local maxima.

4. Comparison of quality control criteria

Figure 4 shows an example chosen to illustrate the differences between the
approaches. The solid line shows the posterior p.d.f. given by (36), while
the dotted lines are the constituent Gaussians. Variational analysis,
using a spike loss functien, will pick the highest peak (VAN). Note
however that a 31mple descent algorithm would have to start quite close to
b4 if it is to converge to the correct value; starting from xb will not

VAN
do.
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Assuming this XVAN is correct, all the observations have P(éiIXVAN)>O-S, so
if we were to use this as an acceptance criterion, and do a Gaussian
analysis using the observations, we would get the value corresponding to
the peak VQC. |

OIFFERENCE FROM BACKGROUND: PRESSURE

Fig 4 Solid curve: P(xly), dashed curves: P(nynCa), for yi=—9, -9 and -6,
xb=0, and other values appropriaté for sea—level—preésure
observations (E=1, B=2-25, k=0-043, and P(G)=0-04), from Ingleby and

Lorenc (1992). For meaning of annotations, see text.

Calculating the P(Gily) for each observation (IQC), the two observations of
-9 both have posterior probabilities less than 0-5 (i.e. they fail) while
the observation of -6 Jjust passes. This pass 1is in part due to
contributions from the possibility that the ‘other observations wefe

actually correct; IQC can give inconsistent decisions.

Simultaneous Quality Control does look for a consistent decision; in this
case the Gaussian with the largest area is that labelled SQC. It
corresponds to rejection of all the observations, i.e. it is the background

distribution. Note however that the SIMPLEX algorithm will not work well
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in this case. There is one local maximum for the combinations accepting
both observations of -9, and another for the combinations rejecting them
both. The SIMPLEX algorithm will cdnverge to one of these; it cannot get
from one to the other because intermediate combinations (accepting one aﬁd

rejecting the other) are less likely.

5. Concluding remarks

We have shown that the Bayesian approach provides a sound justification for
the quadratic penalty function used in variational analysis, if error
distributions are Gaussian. It also indicates how the method can be

extended to observations with non-Gaussian distributions.

The proper "best" analysis depends on an appropriately defined loss
function. Finding it requires convolutions over the posterior probability
density fﬁnctidn, which for’ non-Gauésian' distributions' is kimpradtical.
Variational analysis (VAN and VQC), and quality control algorithms {IQC and
SQC) are making approximations to the ideal loss function. ‘Ih NWP, we haVé
a background X which usually would lead to a fofecaét thét iS'nbt_too béd.
Large improvements on this accuracy are not required, so L=B. Individual
peaks in the p.d.f. have A£<B. S0 the assumption that S?>L>>Ai may -not be

too bad for NWP assimilation.

There have also to be approximations in‘implementation; hone’ofkthe méthqu
can be implemented perfectly in practical NWP problems. In the approximate

forms discussed here:

VAN and VQC‘use a descent algOrithm,‘with a modified pénaity function in
early iterations to try to get convergence to the best x from as wide a
range as possible of first-guesses. This has been tried on simulated
data by Dharssi et al. (1992) and is an attractive candidate for future

variational NWP assimilation systems.

IQC, as used at the Met Office (Lorenc and Hammon 1988), uses a sequential
pairwise buddy check to approximate the method for >2 close

observations. Some tuning of this has been found to be necessary.

SQC, with a SIMPLEX search, does not necessarily correctly handle close
observations which agree with each other, but might both be wrong. The
method used at ECMWF (Lorenc 1981) is similar to this (although the

rejection tolerances are set directly, rather than via P(G)).
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The Bayesian approach has allowed us to understand the relationship between

these different methods.
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