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1 INTRODUCTION

All along the seminar at the ECMWTF, there was a tense and stimulating debate about the tech-
niques for generating perturbations able to issue ensemble forecasts. This debate was animnated
by two principal actors who, understandably, defended their own methodologies. However,
when the meeting closed, there was still a number of open points left. The purpose of our note
is to briefly review theoretical issues about dynamical systems, that may help to elucidate these
points. It is not intended to preseut the authors’ original results. Most of the results summarized
here are detailed in Eckmann & Ruelle (1985) and Goldhirsch, Sulem & Orszag (1987), among
others. The cornerstone of the debate was the comparison between “bred grown modes” (BGMs;
Toth & Kalnay, 1993, 1996) and “singular vectors” (SVs; Buizza et al., 1993; Buizza & Palmer,
1995), also called “optimnal vectors”. From a practical point of view, the performance of these
two generation methods has been compared within the framework of a siinple quasi-geostrophic
system (Molteni & Marshall, 1993) by Houtekamer & Derome (1995), but doubt can be cast on
the realism of the model in the real-world situation, where convective instabilities emst at much
smoaller scales and much higher growth rates. '

The original problemn is primarily technical: Assuming that we roughly know the initial dis-
tribution of aunalysis errors, the -obviously- most correct way of generating randomn perturbations
around the initial analysis is to use a randomn generator having the same statistics as the error
statistics. The wnajor problem is that the space spanned by these errors is probably too large to
be sufficiently explored by a small number of selected pe1tu1bat10ns such as 1s pos51ble today.
Hence, one has to make compromises.

The BGM method cousists in an initial generation of small random perturbations, from which
the nonlinear inodel is integrated a loug time before the target time of the forecast. Perturbations
are rescaled over short cycles (typically 12 hours) and grown again. At the end of the process,
all perturbations are scaled to a desired (albeit arbitrary) amplitude. The SV method consists
essentially in pro jecting random perturbatious outo the fastest growing directions over a given
finite time interval, which is typically of one day and half in the current application at ECMWF.
Both techniques generate perturbations projecting onto unstable features of the atmosphere.
Our intention is not to give more credit to one of them, but only to clarify their theoretical
foundations based on what is known from the theory of dynamical systems. ‘

An important practical limitation of our discussion is that we focus lere on infinitesimal
perturbations. Using this assumption, both methods should, in principle, generate perturbations
mostly projecting outo the fast couvective modes, which are admittedly not responsible for loss
of predictability in the large scales at short leads. In the BGM method, which is nonlinear by
essence, these instabilities saturate and are not expected to show up in- the bred perturbations.
In the SV method, which is linear, one way of avoiding this difficulty is simply to employ a
large-scale model. The questions we address here are: (i) What is the definition of Liapunov
vectors, and how are the perturbatious generated by the two imnethods related to thein ? (ii)
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Are the two sets of perturbations identical, or spanning the same instability subspace ? (iii)
Are the perturbations tangeunt to the attractor ? (iv) What are the effective growth rates of the
perturbations 7 (v) How sensitive are the generated sets of perturbations to analysis errors ?

Within the stated assumptions, we will show that SV and BGM methods are related to two
different fainilies of vectors, the forward and backward Liapunov vectors, which have specific
dynamical properties. We felt necessary to devote a siguificant part of this article to the pre-
sentation of the theoretical background of our discussion, which is, for clarity, introduced using
an analytical example of flow trajectory.

2 THE LINEAR TANGENT OPERATOR

2.1 Definitions
Let us assume that the atmosphere’s evolution is governed by the nonlinear dynamical system :

dx(t)

= F( x(1)) 5 | | (@)

where x(t) is an element of the finite-dimensional phase space R”, x(t) € R™. Infinitesimal
perturbatlons y\t) are therefore governed by the tangent linear system: '

YYDy, yere. @

This system being linear, it has a resolvent M(t;,1;) that yields

y(t2) = M(t1,22) y(t) . (3)

What follows is simply a detailed discussion of the properties of the resolvent M(¢1,13). Note
that, regardless of the sign of t3 — t1, one has

| Mt t) = M, 1) | | @)

We assume by convention that ty > ; unless specified, and we are particularly interested in the
far future limit (i.e. when ¢; — co while #; is kept fixed at the present time), and in the far past
limit (i.e. when 1 — —oo while 2, is kept fixed at the present time).

2.2 An analytical ex’ample

In order to introduce and illustrate the propertles of M(t1,12), we use a simple example of ﬂow
deﬁned in R3 with three compouents (zq, 1, z2) such that the basm trayectow is

Q:o(t) = t (I)l(t) = wz(t) = 0

We assume that perturbatlons (31(t), y2(t)) in the plane (zq,z7) transversal to the tra,Jectorv
do remain in this plane. We neglect any noulinearity, assuming that the perturbation only
evolves according to the linear tangent system (2). We further assuine that the instantaneous
linear operator 6F /0x has one unstable and oune stable direction which are orthogonal in the
chosen basis, and that these two directious rotate uniforinly in tiine around the basic trajectory
with unit angular velocity. Although not very realistic, this example contains sufficiently rich
aspects that illustrate the behavior of infinitesimal perturbations a.long a flow t1a3ecto1v which
undergoes permanently changing stability conditions. : ~
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Explicitely, we have

d yl) (Xl 0> <y1>
L - R R_ : 5
dt(?!z L0 xe A 3 (5)

where R; is the rotation of angle ¢ with respect to the zq-axis. We assume in the sequel that
x1>0,x2<0,and § = %(Xl — X2) > 1. Using the transformed variables

!
()5 ()
Ys Y2

we obtain a linear system with constant coefficients

dy!

—dtl = X1y + 93, (6)
dy, ‘

— = “htxeu, - (7)

whose eigenvalues are 013 = %(X1 + x2) £ V62 — 1. The associated normal eigenvectors in the
rotated space are

ca(3) e
().

with a = § + /62 — 1. Notice that the two eigenvectors are not orthogonal; the cosine of their
angle is —1/4. '
It is easy to see that the resolvent M(#1,13) is

M(t1,;) = R,SD,S™ 'R, , (10)

_ 1 o -1 _ 892 0
where S_\/—zf—a‘<—1 o )’DT_(O sl),

81 = ealT, 89 = 6621, T = tg - tl.

3 EIGENVALUES AND EIGENVECTORS OF M(t4,12)
3.1 Example

The characteristic equation for an eigenvalue v of M(ty,13) is

V2 11\ .. 11
cos ¢ (1-}-;;5) —1/{cosrcos¢ (;I-i-g)—}—smrsmqb (;;—g)} =0, (11)

where cot(¢/2) = a. For large enough 7, 1/s; is large compared to 1/s;, so that we obtain the
two eigenvalues

v o~ 3199-%:—8;—“5), | | (12)
Vg z 82%' ‘ S (13)
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These elgenvalues are real but oscﬂlate strongly in time. They are not valid when cos(7—¢) = 0.
At such times, the elgenvalues are complex:

vy 5 = +ir/5157 (1 _ :Tzsinz ¢) - e%zsincﬁ,
1 .

where € = sin(7—¢). Thus, uniform convergence towards a plain exponential growth or decay, as

we mnay have naively expected, does not occur here. However, the amplitude of the oscillations

in v1 and v, does vary exponentially in timne, being proportional to s; for v, and to sy for v,.
When (12,13) is valid, the two normal eigenvectors are respectively

_ 1 a costy + sinty _

o= Mo ( asinty — costy for v=u, (14)
_ 1 asinty + costy 3

2 = M ba ( sint; — awcosty /. for v=uw. (15)

Thus, the eigenvector associated with v; depends only on #; while the eigenvector associated
with #; depeuds ouly on #3. In other words, the stable eigenvector converges in the far future
limit (when 2, — oo and #; is kept fixed) while the unstable eigenvector does nd_t. In the far
past limit (when #; — —oo and #; is kept fixed), the unstable eigenvector converges while the
stable vector does not. »

In our example, the eigenvectors swap roles periodically when cos(r — ¢) = 0. However,
the time interval during which each eigenvector deviates by more than a fixed offset from the
directions given by (14,15) decreases exponentially with time.

3.2 General r‘esults

The example in the previous subsection demonstrates that we cannot expect a simple asymptotic’
behavior for eigenvalues v; and eigenmodes e; of M(%;1,%2) when one of the times #; or t; tends
to 0o or —oo. Indeed, for these eigenmodes no mathematical result that is both complete and
general exists. However, our example clearly shows the possibility of soime as ymptotic properties.

Goldhirsh et al. (1987) derive such properties under the assumption that the eigenvalues
of M(t1,t2) are real and nondegenerate when  is lal'g‘e enough. They show that there exist
limiting exponents A; = limy, oo vi(t1,12) and that the most stable eigenvector counverges to
a fixed vector depending only on #; in the far future limit. Conversely, the same limiting
expouents are obtained in the far past limit but it is now the most unstable eigenvector which
converges. The other eigenvectors do not converge in the far future or far past limit but oue
obtaius a family of embedded invariant eigenspaces. We postpone the detailed desc11pt1on of
this important property to the next section where it is established using rigorous mathematical
arguments. ' .

It suffices to state here that the example studied so far does not satisfy the assumptions of
Goldhirsh and colleagues. Nevertheless, the asymptotic properties of the envelop eigensolutions
are very similar to those of the asyinptotic inodes described by these authors.

4 SINGULAR VALUES AND VECTORS OF M(t;, )

4.1 Definitions

Although it seems natural to study the resolvent’s eigenstructure, it is well known that the
growth of perturbations is not related to it but to the resolvent’s singular structure.

The singular values of M are the eigenvalues of the normal operators M*M or MM?* where
M* is the adjoint of M with respect to the scalar product < .,. > on R™, that is < M*x/,x >=<
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x',Mx > for any pair of vectors (x',x) in R™. I the canonical scalar product associated with the
chosen basis is used, the matrix form of (M(#1,1;))* is obtained by transposing M(%,1,).
For a given perturbation y defined at ¢ = ¢y, the quantity
5= < l\i(tl,tg)y,l\d(tl,tz)y > < y,(l\’[(t1,t2))*1\4(t1,t2)y >
<Y,y > <Y,y >

(16)

is the growth (or decay) of its norm under the action of the flow during the interval [t;,1,].

Since M*M is a symmetric positive-definite operator, it has positive real eigenvalues p;(t1,12)
and orthogonal eigenvectors f;(11,1,). Equation (16) implies that the eigenvectors describe the
axes of inertia of the error growth. More precisely, if the perturbations are contained at time
t; within a spherical ball of unit radius, they evolve at time 3 towards an ellipsoid, with axes
along the vectors M(t1,t2) f(t1,15) and lengths (ui(t1,12))*/2.

In turn, the vectors Mf]" are eigenvectors of MM* with the same eigenvalues p;. In other
words, the perturbations contained within a spherical ball at time ¢; were contained at time t;
within an ellipsoid with axis along the vectors M(t1,12) " 7 (#1,12) and lengths (p;(t1,12))1/2,
where f (1, 13) is the eigenvector of M(¢1,12)(M(t1,12))* associated with p;. We have

Mfr = mfs, M*f = /mff.

The eigenvectors ;" (t1,12) are the forwa,r‘d singular vectors as defined by Buizza & Palmer
(1995) while the eigenvectors f; (t1,1;) are the backward singular vectors. We show below that
breeding modes are related to f;(11,?2) when #; — —oc.

4.2 Example
The normal matrix associated with the example of section 3.1 is
M*M = R;,S™'D,S’DS™'R_;,,
which depends on ?; only through D. The singular value equation is
(u® + s252) cos? ¢ — y(s% + 52— 2sin?¢)=0.
It has two real roots which are asymptotically, for large 7,

2
8
1 2 2
1 = —0 9 = 85 COS .
B COSZ¢, H 2 ¢

These singlar values do not exhibit any of the oscillations which are obtained for the eigenvalues
of M(tl, tg).
The asymptotic normal eigenvectors of M*M are

‘ 1 o 1 -1
f+t=————R( ),f*t:———R( )
1(1) \/2—6—(; (31 1 2(1) \/QTO: 3} e

We see that there is no dependence on ?;, which has been dropped from the arguments, and
that ;7 (2;) is identical to hy(ty).
Similarly, the asymptotic normal eigenvectors of MM* are

- 1 @ _ 1 1
fl (tZ)_\/2—6(—1-'Rt2("1 )7 fz(t2)-—\/2—65th(a)-

We see that in this case there is no dependence on #; and that f; (¢2) is identical to hy(tz).

The key point revealed by this example is that the two families of vectors f7(z) and ;" (1)
are different, that is the “grown” and “yet-to-grow” perturbations have different main axes of
inertia. This is one main reason for which BGM method differs from SV method.
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4.3 The Oseledec theorem and the far future limit

Unlike the eigenvalues and eigenvectors of M, the asymptotic behavior of the eigenvalues and
eigenvectors of M*M is governed by one of the most important theorems in dynamical systems
theory, the so-called Oseledec (1968) theorem). It states that for almost any trajectory x(t),
which is a solution to (1), and for almost any scalar product < .,. > on R”, the following three
facts hold

1. For any vector e in R™, there exists an exponent
1 M(ty,1
/\(e) In ” ( 1, Z)e“ ,
7fz—roo tg — 1 ||eH

which is finite, does not depend on %, and takes at most n values A\; > A, > > Ap. In
practice, we assume that these values are distinct, which is genelallv the case. Here || is
‘the norm mduced by the scalar product

2. The hmﬂ; operator

. 1

Sealtr) = Jim L (Mt 1)) M(ty, 1) 72

ta—o0 fg — 11 D
also exists. Notice that the non-integer power of a symmetric positive-definite matrix
can easily be defined by diagonalization. This limit operator liowever depends on ¢, or,
more precisely, on the initial point x(21). In fact, only the direction of the eigenvectors of
Sco(t1) depend ou x(#;), but not the associated eigenvalues p;, which are the squares: of
the exponential of the above A;’s.

3. There exist a sequence of embedded subspaces
Ff(t) C FY(t1) C---C Ff(t) = R™,

such that on the complement F (¢;)\F, +1(t1) of Fi | in' F;* (the set-theoretic difference
between F" aud Ff ), the exponential growth rate (or decay) is A;.

The exponents A; are called the Liapunov exponents and the eigenvectors fi+ (t1) of Sea(t1)
are usually called the Liapunov vectors. A generally overlooked but essential result is that, while
the exponents and the embedded subspaces FZ+ (t1) are independent of the scalar product, all the
eigenvectors, but the last one, do depend on it. The last Liapunov vector f}(t;) corresponds to
the mnost stable direction, that is to the fastest decaving perturbation. The Liapunov vectors are
orthogonal, and the i-th one belongs to Fi (t;)\Fit 1 1 (t1). In fact, given an embedded sequence
of subspaces as above and a scalal pmduct thele is a unlque sequence of such orthonormal
vectors which satisfies

Fif (1) “‘"f+(t1)@ 1(t1) @f+(f1)

where x EB y stands for the direct sum of the vectors x and y, i.e. for their span ax + fy. For
forced dissipative chaotic systems, the first Liapunov exponent is strictly positive, leading to
the sensitive dependence on initial data. The sum of the exponents, which is the average trace
of the tangent liuear operator, is strictly negative because of the dissipativity. Hence the last
exponent is strictly negative, and furthermore one intermediate expouent is zero.

There are many corollaries and consequences of this theorem. One is the fact that the growth -
rate of the surface element spanned initially at t = # by any two vectors (e,€’) is exponential
in tine w1th an exponent A1+ Ag, unless the surface intersects Fit (1), and more generally the
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growth rate of k-dimensional volumes is A; + Ay + ... + Ag, unless they intersect F,:F 1(t1). The
subspaces Fi"’ (t1) ate invariant under the tangent flow, i.e. for any time o,

M(t1, t2) FF (1) = Ft (ts).

Such is not the case for the Liapunov vectors themselves, except for f(t1), since the tangent
resolvent M(t1,1;) does not generally preserve the orthogonality.

Froin the Oseledec theoremn, one also sees that the Liapunov vectors are the limits when
tz — oo of the forward singular vectors f;(¢1,1;). Therefore we have used the same symbol for
both (ouly dropping the depeudence on t; for the Liapunov vector). It is appropriate therefore
to call the f;"(¢;)’s forward Liapunov vectors as well. - o

Notice finally that the first forward Liapunov vector is not the direction of the fastest grow-
ing perturbation for large future time, since all perturbations contained within FFt)\F5 (1)
everitually grow at the same average rate A;. In other words, perturbatious starting fromn, say,
the subspace spanuved by ] (¢1) and f (¢;) are, in practice, not growing faster than almost any
randomn perturbation. This indicates that, for long-range forecasts, the use of singular vectors
for initial perturbations looses its relevance.

4.4 The far past limit

Another important corollary of the Oseledec theorem arises from the time symmetry. Whenever
the trajectory lies on the attractor, which is an invariant set of the nonlinear flow (1), the
theorein remains valid when the limit is #; — —oo while #5 is fixed and M(t1,29) (M(ty,12))* is
cousidered instead of (M(ty,2))* M(%1,%2). In that case, the Liapunov exponents are the same

as for the far future limit but the asymptotic eigenvectors of M(t1,13) (M(#1,13))* are now the
backward Liapunov vectors 7 (t3). A sequence of embedded subspaces

Fy () CFy (t2) C -+ C F () = R™

is again defined in such a way that on F7 (t2)\F._,(t2), initial perturbations (at time #3) grow
like —; when reversing time. :

As for the far future liinit case, the embedded subspaces do not depend on the scalar product,
but the backward Liapunov vector do, except the first one I (t2). The backward Liapunov
vectors ate the only orthonormal basis satisfying

Fr(t) = (1) &5 (1) © - ® 7 (12)..

To construct a complete basis of vectors that is independent of the scalar product, and
has desirable topological properties, one can (Eckmann and Ruelle, 1985) simply intersect the
subspaces F; (t) and F:'(t) at time ¢. When all exponents are distinct, this intersection is
of dimension 1, unless there are Lomoclinic tangencies, which are points where the stable and
uustable manifolds (see below) are tangent. The discussion of this pathological case which may
occur geuerically is beyond the scope of this article (but see Guckenheimer & Holmes, 1983, pp.
331-40). We restrict ourselves to the case whe a set of vectors g:(t) can be defined consistently
from these intersections, which are indepeudent of the scalar product, and have the following
property: -

Jm_ 2 1n MG g0 = X | an
[#|=eo0 T
This means that these vectors grow exponentially with exponent A; in the far future and with
exponent —JA; in the far past. To our knowledge, the relevauce of these characteristic vectors for
ensemble prediction has never been investigated.
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4.5 Stable and u,nstabie manifold

We define the stable manifold at #; as the set of perturbations which are damped as i, — oo.
In the analytical example, this set is generated by h} in the rotated space (cf section 2.2) and
by ha(t1) = Re, h} at location (¢1,0,0) in the original space. We define conversely the unstable
manifold at t; as the set of perturbations which are damped as t; — —oo0. In the analytical
example, this set is generated by h{ in the rotated space and by hl(tg) = thh'1 at location
(t2,0,0) in the original space. '

From the above discussion we see that the stable manifold is generated by F;' where 7~ is
the index of the algebraically largest negative Liapunov exponent and the unstable manifold is
generated by F~, i+ where j1 is the index of the algebraically smallest posmve Liapunov exponent
(usually j~ = ]‘" +2).

In the presence of nonlinearities and chaos, these manifolds are generally much more com-
plicated and exhibit a fine foliated structure. The very structure of the attractor is strongly
associated with that of the uustable manifolds. More precisely, an ergodic attractor is contained
within the unstable manifold of any of its points (e. g A110wsmlth and Place, 1990)

5 STANDARD CALCULATION OF LIAPUNOV EXPONENTS
AND VECTORS

From a practical viewpoint, it is not possible to calculate numerically M(iy,ts) for large t; — #;
and to diagonalize (M(4,2))*M(t1, t2), since this matrix contains exponentially diverging terms
that lead to nuinerical overflow and underflow. The infinite-timme Liapunov vectors cannot be
estiinated by any diagonalizatiou method. It is, however, possible to overcome this difficulty by
au indirect cousequence of the Osedelec theorem. It can be shown easily that as t3 — #; — o0,
any random perturbation e(t;) starting fromn time ¢; converges to f{ (3). The resolvent operator .
maps almost all the tangent space at timne #; ounto a small cone around the first backward
Llapun ov vector at time ¢2. In the saimne way, alinost all surfaces are mapped outo the subs pace

F3 (t2) spanued by f; (t;) and f; (t2), and almost all k-dimensional volumes are mapped onto
the subspace F; (t2). This leads to consider a Schmidt orthogonalization plocedule in 01de1 to
construct numerically the Liapunov vectors and the Liapunov exponents.

Let E(t1) be the n x k matrix having as its columus & pe1tu1batlons 1111tlallzed at time t1
Then at time 5, we have

E(tz) =1 (tl,tz) E(t).

The Schmidt orthonormallzatlon consists in performmg a polar decomp051t10n of E(tz)

E(t2) = Q(2)T(t2) , - SR kk(18)

where the columns of Q contain the k& orthonormal vectors, and T is a k x k upper triangu-
lar matrix with positive diagonal coefficients. For almost all initial sets of perturbations, the
colutans of the matrix Q(t2) couverge to the Liapunov vectors when ¢ —#; is large enough while
the diagonal elements of T give the k algebraically largest Liapunov exponents. In practice, the
orthonormalization is applied to E at regular intervals to avoid numerical problems, and the
integration restarts fromn the intermediate Schmidt vectors. The final result (18) is insensitive to
the frequency of orthonorinalization up to roundoff errors (see Goldhirsh et. al for a detailed de-
scription of the algorithm). This algorithm is much faster than any diagonalization, its cost being
O(k xn). At finite t; — 1, the columns of Q differs from the singular vectors but it can be shown
that the couvergence of the 4-th coluinn to the Llapunov vector f,” (tz) (provided it is smoothly
varying along the t1a3ectow) is exponential, with error O(max[eo‘ '—1_)(t2ft1) e(hiti— —Ai )(t"‘f'tl)])
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In order to obtain the forward Liapunov vectors, we use the property that almost any per-
turbation e*(2;) at time ¢; has an iinage at time #; by the adjoint (M(21,12))*, that is

e’(t1) = (M(t1,12))" € (t2) ,

which converges to the first forward Liapunov vector ] (¢;) as t; — ¢, is large. In the same way
almost all k-dinensional voluines are mapped onto the subspace spanned by fi" (t) ® f;' (t1) @
) fk+ (t1). Therefore the algorithm is now to integrate backward in time the linear equation
adjoint to (1), from ¢, to #;, that is

E*(t1) = (M(t1,12))" E*(%2) ,
and to orthonormalize E*(#1) in the same way as E(t;):
E*(t1) = Q7(0)T"(t) . (19)

Again, the orthonormalization process can be performed at regular intervals during the backward
integration of the adjoint and the integration restarts from the intermediate Schmidt vectors.
The diagonal elements of T* now couverge to the k algebraically smallest Liapunov expouents,
while the computational cost is still O(k x n). This procedure is, however, only valid when one
wants to estimate the Liapunov vectors, not the finite-time singular vectors.

Finally, it is also not difficult to prove that if we replace M* by M(t1,13)" " in (19), starting
from a random set of perturbations at timne #,, and using the Schinidt orthonormalization pro-
cedure as above, integrating backward iu time from t, to ¢;, oue would also obtain the forward
Liapunov vectors, but they would come up in reverse order.

6 NUMERICAL EXAMPLE

We use the classical 3-variable Lorenz system (1963) to illustrate numerically the previous sec-
tions in the case of chaotic dynainics. The Lorenz equations are iuitially integrated 500 time
units in order to remove trausient behavior. The forward Liapunov vectors are then calculated
using the backward Schinidt procedure described in section 5 with the adjoint equations, and a
relaxation period of 10 tiine units. The backward Liapunov vectors are calciilated in the same
way, but with the Schwidt orthouormalization applied to the direct tangent linear system (2).
Average growth rates are calculated over 1000 independent points on the attractor.

Figure 1a shows the backward f~ and forward f+ Liapunov vectors, and the characteristic g
vectors at an arbitrarily chosen point. The three-dimensional representation uses the backward
Liapuuov vectors (dashed lines) as a reference basis, with the choseu point as the origin. The
forward Liapunov vectors are drawn as the solid heavy lines. All calculated points belonging to
the attractor and coutained within the cube of size 4x 4 x 4 around the reference point are plotted
(light points) in this three-dimensional representation. The surface drawn is Fy =1 0f].
Figure 1b shows the saine data but seen from a point which has the same azimuth as figure 1a
but with a zero elevation, i.e. it is contained withiu F, . The Lorenz attractor is now seen as
a thin sheet (actually there are infinitely many sheets) to which F, is tangeut. The secoud
characteristic vector gy is displayed in figure 1a (thin solid line). The first one, gy, is identical to
7, and the third one, g3, is identical to f;' . In fact, g3 is the direction of the flow given by (1)
at time ¢t while Fit = f+ ©gy and Fy =1f] ©go are respectively the tangent planes to the stable
and the unstable manifolds. Notice that the stable manifold is transversal but not orthogonal
to the attractor. The main point is that fi and f; are divections within the attractor, while ff
and ;" are not. o

Figure 2a shows the average of ¢(t) = In ||M(t1,22) e(t1)]], as a function of 7 = 1, — 1y,
over 1000 independent initial states x(¢1), where e(t;) is equal in turn to 1 (t1), f5 (2), £ (1)

?
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a)

1‘_.-..-' W Bosid

Figure 1: Liapunov f* and characteristic g vectors. See text for details

(1), ff (t1) and ga(t;). The linear system (2) is integrated both forward and backward in
titne. As expected, the perturbation initiated fromn forward Liapunov vectors exhibit average
growth rates for positive times which are the Liapuuov expounents, Ay = 1, Ay = 0 aud Az = —14.
By ergodicity, one can show that the average growth rates at ¢, — ¢; = 0 are also the Liapunov
exponents (for both forward and backward vectors). Notice that the perturbation started along
the third forward Liapunov vector decays to zero withiu the siugle-precision of our calculatious
by the time that t; —#y ~ 1. At later times, round-off errors kick the perturbation off the stable
manifold, and the growth rate rapidly reaches the value of the first exponent. For negative
times, the average growtl rates of the forward Liapunov vectors are all close to +14. Similarly,
for positive timnes, the backward Liapunov vectors rapidly reacli a growth rate equal to the first
Liapunov exponent. For negative times, they grow as the opposite of the Liapunov expouents.
The first backward Liapunov vector remains numerically on the unstable manifold for a time
interval of 1 unit, and is then kicked off by round-off errors. Notice that the decay of the first
backward Liapunov vector is much less iinpressive than for the stable manifold and posmve
time, owing to the large ratio between |Az| and |Aq].

Figure 2b shows the average of ¢(t3)/7, as a function of 7, for perturbations initialized
with (i) the backward Liapunov vectors f; (#;) and (ii) the singular vectors f;(t1,t3) obtained
by a direct diagonalization of the matrix (M(t1,%2))*M(t1,3). It is clear that the average
initial growth rates of the backward Liapunov vectors are the Liapunov expouents. However,
when 7 is large, the growth rates all tend to the value of the first Liapunov exponent. This
demonstrates that backward vectors do not enjoy any special property in the far future. For
large 7, the growth rates of singular vectors are the Liapunov exponents. Nevertheless, MM?*
is so ill-conditioned that, iw inost cases, the third eigenvalue and the third eigetvector cannot
be estimated with accuracy for times larger than about 0.5 units. These results contrast with
the numerical efficiency of the Schinidt decowmnposition technique proposed in section 5 in order
to compute forward Liapunov vectors. An important poiut illustrated by figure 2b is that at

152



LEGRrAS, B. & VAUTARD, R.: A GUIDE TO LIAPUNOV VECTORS

4 AL
9 - a) \\ \’3} - l?”"!'!-——___:;‘
,a o N ey e, - ﬁﬁg::w oy, |
=] -2 L
2 1Y
'.a -4 ~%
L
g% ‘
R -8 "‘
S 10
’4 A
-12 “
-14 =
-16
20 15 1.0 05 00 05 1.0 15 20
Lt
4 N :
2 |
0 e e e R R T
% '2-rn‘/‘"’" -+
2 4
2 614
3
S -8t
O -10 4
12
\
-14 - )
-16 == : :
00 05 10 15 20 25 3.0 35 4.0
t-t

Figure 2: (a) Growth of the perturbation amplitude, when starting at time #; from the forward
Liapunov vectors ;" (#;)(heavy curves), the backward Liapunov vectors f; (21)(light curves) and
the second characteristic vector gy(?1). (light dotted curve). The first vectors in each case are
displayed as solid curves, the second vectors as the dashed curves with short dashes, and the
third vectors as the long-dashed curves. (b) Same as (a) but for the average forward growth
rates over finite times for perturbations equal initially to the finite-time singular vectors (heavy
curves) aud to the backward Liapunov vectors [as in (a)] (light curves).
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Figure 3: Average cosine of the angle between perturbed Liapunov vectors and the exact Li-
apunov vectors, as a function of the standard deviation of the initial condition error. Curve
patterns as in figure 2a. ' ‘

moderate “optimization times”, i.e. for moderate values of 7, the spectrum of the singular values
is much broader than that of the growth rates of backward Liapunov vectors. This explains one
of the figures presented by T. Palmer which raised considerable controversy. Our results are
corroborated by Trevisan & Pancotti (1996) who study the Liapunov vectors associated with
unstable periodic orbits of the Lorenz model. These authors recover transient and long-term
behavior for singular and Liapunov vectors which is the same as that shown in figure 2b.

In a practical situation, the initial state x(t) is not known exactly, and the calculation of
BGMs and SVs are based on erroneous trajectories of the model. This may have a significant
irnpact since, for the estimation of Liapunov vectors, the large-time limit has to be reached.
Hence it is necessary to check how seunsitive the calculated Liapunov vectors are to errors in
the estimate of the initial state. There is, to our knowledge, no theorem which guarantees the
coutinuity of Liapunov vectors. However, continuity seems to hold for the Lorenz system. To
demoustrate this, we perturb the trajectory by adding some random Gaussian noise of standard
deviation o to each variable. - Forward Liapunov vectors are then calculated by the adjoint
Schinidt technique described above, using the same parameters, but the reference trajectory is
now the trajectory starting from the perturbed initial state. Backward Liapunov vectors are
calculated by forward Schmidt orthonormalization, refreshing the perturbed reference trajectory
every 0.1 time units. Except for the fact that perturbations are still giown from the linear tangent
model, this method is similar to BGM, with a breeding cycle of 0.1 time units.

Figure 3 shows the average cosine (over 100 independent cases) of the angles between the
perturbed and the unperturbed grown vectors as a function of o. For comparison, a standard
deviation of o = 1 is-about one tenth of the variables’ standard deviation. It is clear that the’
Liapunov vectors are quite robust to perturbations of the initial data. One notices, however, that
sowne vectors are more robust than others. The third backward Liapunov vector is surprisingly
more robust than the first two. The same result holds for forward Liapunov vectors. We do not
have any explanation at hand. Another important feature is that forward Liapunov vectors are
apparently more robust than the backward ones. Should we conclude that SVs are more robust
than BGMs ? This would certainly be stretching the interpretation of results obtained here only
for the simple Lorenz system.
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7 DISCUSSION

Neither the BGMs of Toth and Kalnay (1994, 1996), nor the SVs of Buizza et al. (1993)
correspond rigorously to the Liapunov vectors discussed in the previous sections. The BGMs
are indeed “grown” fromn along past time interval, but take into account the nonlinear saturation
of small-scale couvective modes. If there truly were a clear physical and energy gap between
convectively and baroclinically unstable subsystems of the climate, BGMs would be simply in
the linear regiine at large scale and amplitude-saturated at convective scales. However, such a
gap has never been clearly identified. Therefore, one expects a rather progressive similarity of
the BGMs to the backward Liapunov vectors as spatial scale becomes larger.

By coutrast, the SVs are by definition linear perturbations, but are “grown” over finite
forward times. It is the large time limit of the SVs which equals the forward Liapunov vectors.
Despite these reservations, the mathematical theory presented in the previous sections clearly
shows that there is no reason to believe that BGMs and SVs bear, in general, any resemblance.
BGMs have no particular near- or far-future growth properties. They all grow, as lead time
goes to infinity, as the first Liapunov exponent, even when orthonormalized. However, they
are more likely to represent the actual initial error, since the BGM methodology is designed
to simulate the initial analysis errors. Their correspondence to the leading backward Liapunov
vectors leads them to project essentially onto the unstable manifold, which is consistent with
the theoretical result of Pires et al. (1995) for the errors of assimilated trajectories in chaotic
dynamical systemns. Possibly, one source of confusion arises from that “instability” refers to-past
behavior: the unstable manifold is the set of perturbations that have grown fastest in the past
(see section 4.5). Ou the contrary, the design of SVs relate them to future error growth, but
does not relate them to initial analysis error.

From our analysis, one is also led to conclude that forward singular or Liapunov vectors
are not tangent to the attractor, while the leading backward Liapunov vectors are tangent to
the attractor. This property results from the fact that the unstable manifold contains the -
attractor itself. If BGMs were constructed in a linear fashion, they would therefore characterize
perturbations tangent to the attractor.

The fact that BGMs do not, after a certain time, project mostly onto one direction, which
would be that of the first Liapunov vector, is a sign that nonlinearity acts significantly, and
therefore one should not expect the tangency either. However, nonlinearity may not be the only
factor responsible for the lack of directional convergence. In the BGM method, perturbations
are recycled by addition to successive analyses which themselves contain errors, while Liapunov
vectors are obtained by adding the perturbation to the reference “true” dynamical system tra-
jectory. The seusitivity of the computed Liapunov vectors to initial analysis errors has been
examined nurnerically in section 6 where it has been shown that the last backward Liapunov
vector is surprisingly more robust than the other ones. However, the leading forward singular
or Liapunov vectors turn out to be more robust than the correspouding backward vectors.
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