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Abstract

The purpose of this paper is to show how 1D-VAR may be formulated so that it better handles
the non-Gaussian error characteristics of the ATOVS (AMSU-A) satellite sounding observations.
The paper shows how a Gaussian transformation may be found for the observation error vector
based on the error statistics from a reference data set. The paper then demonstrates how this
transformation may be applied to the 1D-VAR minimization problem.

1. INTRODUCTION

The Norwegian Meteorological Institute (DNMI) receives ATOVS data over the North-Atlantic from
NOAA-15 through its local antenna. These data are processed with the EUMETSAT AAPP package,
and the AMSU-A data are used in a 1D-Var system based on that of Eyre et al (1993). This work (see
Breivik et al, 1999) is part of a project to assimilate ATOVS data in the HIRLAM (High Resolution
Limited Area Model) 3D-Var scheme.

The 1D-Var least squares estimator expressed in terms of quadratic cost terms is only optimal if
the observations (and also the parameters that are adjusted) all have Gaussian error characteristics.
However, this is usually not the case for the error characteristics of AMSU-A (ATOVS) satellite
sounding data. In particular, the effect of clouds and precipitation not accounted for in the forward
radiative transfer model (see Eyre, 1991) contributes to inflating the tail in the error probabilitjr
distribution.

In this paper we introduce a new approach to implicitly take care of the data control necessary
to deal with the cloud and precipitation contamination. The paper demonstrates how a control
variable transformation can be applied to the observation cost term and the background cost term in
order to bring the variables closer to following Gaussian error characteristics. The paper then shows
how the least squares estimator and 1D-Var may be applied to these transformed variables. This
approach ensures a better agreement with the Gaussian assumptions of the variational method. For

the observation term the method can also be applied in 3D- or 4D-Var systems.
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2. THE ORIGINAL APPVROACH

Variational schemes are based on minimization of cost functions with terms that can be derived from

probabilities (see e.g. Lorenc, 1986). The background cost term can be expressed as
Jp(x) = — lnP(x = Xtrue),

where P(x = Xyrye) i8 the a priori probability that the control variable x is near the true value, Xy

and the observation term is expressed as
Jo(x) = —In P(y|x = Xtrue), (1)

which is the probability of obtaining the observation y given that x is the true value of the control
variable.

If the above probabilities follow Gaussian distribution laws (multi-normal distributions), we obtain
the 1D-Var least squares estimator, and the scheme is then based on the minimization of quadratic

cost terms. The cost function can be written as
lop o1 1 T -1
J(0x) = §6x BT 0x+ §5y(5x) - 07" - 0y (dx) (2)
where

x = Xx—xX
Sy(6x) = y—H(x +6x)
= ((0%urue) - (0%trac)”)

= <(6Y(6Xtrue)) : (5Y(5xtrue))T>

6Xtrue = Xtrue — Xp (3)

where the bold symbols refer to vectors, the pointed brackets refer to the mean value over a large
reference data set. y refers to an observation (consisting of many channels), x refers to an estimate
of the atmospheric state, x; is a prognosis of the state (background). The forward model H takes a
given atmospheric state and estimates the corresponding observation value vector.

The least squares estimator gives the optimal solution of the problem if the statistical character-

istics of the two error functions 6x¢rye and 8y (6x¢rye) are Gaussian. The best estimate is found from
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the iterative equation (see Eyre et al 1993)

-1
6xjy1 = ox;+B-H] [H;.B-H] +0| -6y (sx;)
oH
R
® = (3), | oW

where the index J here refers to the iteration number. The idea is to apply the iterative Eq. (4) until
dx has converged. This solution is used together with the background field (xp) in Eq. (3) to get the

final estimate of the state of the atmosphere. This final estimate is usually referred to as the analysis.

3. THE GENERAL VARIABLE TRANSFORMATION

We want to make a transformation

0y = g(dy)
sy = g l(69).

so that the transformed quantity 6§ has a Gaussian probability distribution. We could also define a

similar transform for the background term,

5% = f(6x)
5x = f1(6%).

In fact, a stochastic vériable with any probability distribution can be transfbrmed into a variable
with Gaussian probability distribution by applying a change of variable based on the variable’s own
probability distribution. This is best expressed in terms of cumulative probabilities. If the vector
(0X1,6Xs5,...,6Xy) is a certain realization of the éx vector, the cumulative distribution F is defined

as the following simultaneous probability P,
F(éx) = P(6X; < 0z1,0X9 < bz9,...,0XNy < 0ry) .

A standard N-dimensional simultaneous Gaussian cumulative distribution for a vector with zero

means, unity standard deviations and zero covariances is defined by the equation

) 881 SEy 4 f:wi
2
@(N)(ai) = ¥ / [P / e k=1 dml...de_
(27!')—2—_00 —00
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We can define a transform dx ~» §% by requiring that
&) (5%) = F(x) ; (5)

is fulfilled. The procedure for §¥ is completely analogous.

A transform 6x ~» 6% defined by Eq. (5) is not unique when d% has more than one element, NV > 1,
>since only a Single requirement on a scalar function is to be fulfilled. Note that the equation can
even be satisﬁed using a 0% containihg only a single element, which then will have a one-dimensional
Gaussian probability distribution (NN _ 1). This reflects the fact that the observation cost term is
uniquely defined by a scalar probability as defined in Eq. 1. ’

However, such a transformation ﬁom a vector fo a scalar is cleariy not invertible, and we shall see
later on that it is only applicable to transforming the observation term in the cost function. Another
problem here is the determination of the cumulative distribution F. The observation vector used
at DNMI has dimension 10 (only 10 AMSU-A channels are used), which means that the available
dataset must be grouped into intervals along 10 different axes. If K intervals is used for subdivision
for counting of occupancies along each axis, this means that the data must be grouped into K 10 boxes.
For values of K large enough to give fairly détailed descriptions of the distribution, this means that
even for a very large dataset, there will be very few points in each box, and it is not realistic to
estimate the distribution this way. We shall below suggest an alternative and approximate approach

to making the transformation.

4. THE INDEPENDENT VARIABLE TRANSFORMATION

The transformation becomes particularly simple if the components of the variable §x are statistically
independent. The cumulative probability distribution may in this case be formulated as Fi(dz) =
P (60X, < dzx) where z refers to the particular variable. Each component can then be transformed
separately, and the transformation function f; depends only on one element.

The transformzitions are then written

89k = gk (0yx)

g (83 - (6)

Oy

In this equation k refers to a given element in the observation vector, and for the state vector trans-
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formation we get,

‘&i’k = fr(0zx)
bz = fi(62), (7)

where the index k refers to a given element in the atmospheric state vector.
We can transform each variable J:v'k' into a variable 6Z; with a standard one-dimensional (unity

standard deviation) normal distribution defined by the cumulative distribution

8y

:!22
@(Jz“k)=\/—1§_—7; / % ds.
—m R ’

We then simply require that ‘ ;
O(0a5k) = Fy(0zs).

For finding the transformation function fg aﬁd its inverse in Eq. (7), we only need the inverses of the
scalar functions Fy, and ® (which exist, since ’theyar’ek strictly growing functions), Fy ! and . The
® function and its inverse is independent of the problem, and can be tabulated based on the numerical
integration of the Gauss function. Fj is found empirically by making statistics for a large reference

data set. The transformation and its inverse is finally given by

6z = fr (0zg) = @71 (Fy (6z1))

bor = £ (68k) = Fyt (@ (624). (®)

The result can be implemented as a table with corresponding values of 6%y and dzj or, in the case
of the observation vector, corresponding values of d¢; and dyy ranging over all possible values that
these parameters may have. Note that you may ha\}e to smoothen this table slightly to ensure that the
gradient fi does not vary too much from one table element to the next. The purpose of smoothening
is to ensure that the least squares method does not become unstable. The reader should also note
that %% does not get any bias in this approach, regardless of the bias that may be present in §*x.
The simple procedure for independent variables outlined above can also be performed variable
by variable on correlated variables. However, separating the problem in such a way, does no longer
guarantee that Eq. (5) is fulfilled nor that the transformed variables have a multi-normal distribution
(which is assumed by the assimilation method). However, it is now realistic to estimate the required
distributions with a reference dataset, since distributions are only needed along one dy;, axis at a time,

and the full simultaneous distribution is not estimated.
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Figure 1: Distribution of the error statistics in AMSU-A channel 2, before (dy2) and after (6g2) the
transformation has been applied. The HIRLAM analysis has been used as reference (X¢rye)-

The hope is that such a simplified transform would be advantageous and bring the Gaussian error
assumption on the control variables closer to being fulfilled. In particular, one would hope that the
result of the least square minimization would be less sensitive to the contaminated observations, which
are usually found in the tails of the error distribution.

Fig. 1 shows the effect of the transformation to the distribution of dy; for AMSU-A channel 2
for the North-Atlantic for a period in October 1999. Note the secondary maximum at —20K in the
error distribution of the original variable, dyz. This maximum is probably caused by precipitation
contamination. We observe that the error distribution of the transformed variable, §Ji, is completely

Gaussian.
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5. APPLICATION TO THE LEAST SQUARES ESTIMATOR

We now formulate the least squares estimator using the procedure based on independent variables.

The cost function is re-defined to use the transformed variables,

J(6%) = -;-55{—” Bl 5%

_}_%g ((5}' (f—i (55&)))71 0—1 . g (Jy:(f—l (65’())) .

where we now have defined

]3 = <(f(5xtrue)) ) (f(‘sxtrue))T>
0 = <(g(5ythrue))) : (g(JY(‘Sxtrue)))T> . (9)

The iterative equations for the least squares estimator for this cost function, Egs. (4) are now replaced

by,

-1
55[]'4.1 = (Sﬁj +B- H’? [H’j -B- H’? + O] ‘g (Jy (CSX]'))

o (009) ., 8(6x)
5 = (5 H a(éfc)),-'

The interested reader should note that we do not actually need to know the function g1, unlike
f, g and f~1. As suggested earlier, the problem may therefore in theory also be solved by using
®(89) = G(dy), where G(dy) is the (non-invertible) cumulative distribution of 8y and 7 is a scalar.
The observation transformation is in this case given by §§ = g (Jy) = ®1(G (dy)). However, as
explained earlier, it is not possible to use this approach since the determination of G (0y) requires an

unrealistically large reference data set.

6. CONCLUSION

It is possible to formulate a Gaussian variable transformation of the observation error based on the
statistics of a large reference data set. The 1D-VAR problem may be reformulated using the trans-
formed observation error. The transformation ensures a better agreement with the Gaussian assump-
tions of the 1D-VAR method. Preliminary statistical results using 1D-Var on 3 to 9 hours HIRLAM
forecasts show that the proposed method makes the retrieved profiles verify better against independent

radiosonde data than without doing the transform.
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