
Part VI: Technical and Computational Procedures

IFS DOCUMENTATION – Cy37r2

Operational implementation 18 May 2011

PART VI: TECHNICAL AND

COMPUTATIONAL PROCEDURES

Table of contents

Chapter 1 Structure, data flow and standards

Chapter 2 Parallel implementation

Appendix A Structure, data flow and standards

Appendix B Message Passing Library (MPL)

Appendix C The TRANS package

Appendix D FullPos user guide

Appendix E FullPos technical guide

Appendix F Coding standards

Appendix G The Perforce source code management system user guide

c© Copyright 2012

European Centre for Medium-Range Weather Forecasts

Shinfield Park, Reading, RG2 9AX, England

Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not

to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate

non-commercial use will normally be granted under the condition that reference is made to ECMWF. The

information within this publication is given in good faith and considered to be true, but ECMWF accepts no

liability for error, omission and for loss or damage arising from its use.

IFS Documentation – Cy37r2 1





Part VI: Technical and Computational Procedures

Chapter 1

Structure, data flow and standards

Table of contents
1.1 Introduction

1.2 Configurations

1.3 Structure

1.4 Data flow

1.4.1 Input/Output

1.4.2 Major data structures

1.5 Coding standards and conventions

1.5.1 Style and layout

1.5.2 Variables

1.5.3 Banned features

1.5.4 I/O

1.5.5 Parallelisation

1.1 INTRODUCTION

Development of what is now called the ifs was started in 1987, with the aim of providing a single software
system delivering a state of the art forecast model with an integrated 4D-Var analysis scheme. Since
then the code has been in a state of continuous development, incorporating improvements to scientific
formulations, modifications to allow efficient utilisation of a range of High Performance Computer (HPC)
architectures, and technical changes to the structure and expression of the code to improve both its
efficiency and maintainability.

The ifs has, over time, grown to be a large and complex code. This chapter aims to give an overview
of the high level technical structure of the ifs, describing the configurations, control structure, data flow
and coding standards employed. More detailed technical information is given in the Appendices.

1.2 CONFIGURATIONS

The ifs contains many different functions within a single high level program structure, including:

• 2D and 3D model integrations;
• variational analysis (3D/4D-Var);
• adjoint and tangent linear models;
• calculation of singular vectors.

For any single execution of the program, the function is selected by means of a configuration parameter.
The value of this parameter may be supplied to the ifs on the command line option (using the “-n”
option, see Table A.1 on page 38), or by using the namelist variable NCONF in namelist NAMCT0 (see
Table A.3 on page 42). A detailed description of the recognised values of NCONF is given in Table A.11 on
page 47.

1.3 STRUCTURE

All ifs configurations share a single top-level call tree:

IFS Documentation – Cy37r2 3



Chapter 1: Structure, data flow and standards

MASTER � CNT0

The routine MASTER calls CNT0 after calling routines to initialise functions such as performance monitoring
and error trapping.

CNT0 reads the configuration information from the command line and namelists, and then uses the
value of NCONF to call the control routine appropriate for the configuration requested. Table A.11 on
page 47 describes which control routine is used for each configuration. Once the required configuration
has completed, CNT0 does any necessary housekeeping and clearing up, and after printing any requested
execution statistics, exits.

The top level calling tree of the forecast integration configuration looks like this:

MASTER � CNT0 � CNT1 � CNT2 � CNT3 � CNT4

where CNT4 repeatedly calls STEPO (which performs a single timestep of the forecast model) in a
timestepping loop. Other configurations will “hook” into this (and into each other) at an appropriate
level. For example, 4D-Var has the following calling tree:

MASTER � CNT0 � CVA1 � CVA2 � CONGRAD � SIM4D � CNT3

Here we see SIM4D called by the minimisation function CONGRAD, and SIM4D then performs a forecast
integration by calling it at level 3 (CNT3) since the previous control level was level 2 (CVA2).

A graphical representation of the ifs calling tree is shown in Figure 1.1. In this “treemap” diagram,
each box represents one subroutine (and all the subroutines called from it), and the size of the box is
representative of the number of lines of code it (and its children) contain. The colour of the box is a
function of the name of the routine, enabling identification of the same routine that is being called from
multiple locations. It can be seen from the treemap that although the forecast model integration (CNT1
and below) only form a small proportion of the code called from CNT0, it is actually called (at CNT3 level)
from many parts of the ifs.

1.4 DATA FLOW

The ifs stores fields using both spectral and grid-point representations. The main spectral state variables
are all stored in both a spectral representation and also in grid-point space, with both representations
held in memory concurrently throughout a model integration. Other variables are stored in a grid point
representation only.

1.4.1 Input/Output

For the forecast configuration (NCONF=1, see Section A.4 on page 47), the main state variables are read
in from the CSTA routine. This is called from “level 3” control, i.e.

MASTER � CNT0 � CNT1 � CNT2 � CNT3 � CSTA

For all other configurations, the main state variables are read in and/or initialised from the SUVAZX

routine, which reads the data into the control variable. This is called from “level 1” control, i.e.

MASTER � CNT0 � CNT1 � SU1YOM � SUVAZX

MASTER � CNT0 � CVA1 � SU1YOM � SUVAZX

Similarly, the observational data is also read in at control “level 1”, i.e.

MASTER � CNT0 � CVA1 � SUOBS � MKCMARPL

Postprocessing, diagnostic and coupling data is output from a model integration after the loop over model
timesteps in routine CNT4.

Details of the input data files used by the ifs can be found in Section A.5 on page 48.

4 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

MASTER

CNT0

SU0YOMB

CNT1

CNT2

CNT3

CUN3

CNT2

CNT3

SIM4D

CNT3

CNT4

CNT3AD

CNT3

CNT4

NALAN2

JACDAV

MORTHODM

OPM

SIM4D

CNT3

OPK

EOF_MATRIX

CNT3AD

OPM

SIM4D

CNT3

PCGBFGS

OPM

CHSYMEIG

OPK

EOF_MATRIX

CNT3AD

OPM

SIM4D

CNT3

OPM

SIM4D

CNT3

CNT3AD

CNT3AD

CVA1

CNT2

CNT3

FORECAST_ERROR

BGVECS

SIM4D

CNT3 CNT3AD

ADTEST

CNT3TL

CNT3AD

CONGRAD

SIM4D

CNT3 CNT3AD

OPK

CNT3AD

CNT3AD

OPM

SIM4D

CNT3

XFORMEV

TLTEST

CNT3

CVA2

SIM4D

CNT3 CNT3AD

ADTEST

CNT3TL

CNT3AD

CONGRAD

SIM4D

CNT3 CNT3AD

OPK

CNT3AD

CNT3AD

OPM

SIM4D

CNT3

XFORMEV

TLTEST

CNT3

CAD1

TESADJ

CNT3

CNT3AD

CTL1

CNT3

CNT4

TESTLI

CNT3

CNT4

CUN1

CNT2

CNT3

CUN2

CNT3

CNT4

OPK

EOF_MATRIX

CNT3AD

CNT3TL

CNT3AD

OPM

SIM4D

CNT3 CNT3AD

NALAN1

OPK

EOF_MATRIX

CNT3AD

OPM

SIM4D

CNT3

CONGRAD

SIM4D

CNT3

CNT3AD

OPK

CNT3AD

OPM

SIM4D

CNT3

CNT3AD

CNT4AD

BALANCED_REDUCTION

CNT3

CNT4

OPK

CNT3AD
OPM

SIM4D

CNT3

CGR1

CNT2

CNT3

SIM4D

CNT3 CNT3AD

Figure 1.1 Treemap of the ifs Calling Tree.

IFS Documentation – Cy37r2 5



Chapter 1: Structure, data flow and standards

1.4.2 Major data structures

The spectral fields are carried in the module YOMSP, in which the arrays SPA3 and SPA2 hold the 3D and
2D state variable spectral fields. Individual fields within these arrays are addressed via pointers which
are defined in the same module. The grid point fields have a much more flexible storage structure, which
was introduced at cycle 27, and is designed to allow the easy incorporation of new prognostic variables,
without the need to know about and modify a large number of routines through ifs. The basic concept is
that all the grid point variables are stored within a single structure, and that any routine which performs
a generic operation on grid-point data just loops over all the grid point fields within the structure. There
is, however, the potential to control action for individual fields by the use of a set of attributes which are
associated with each field in the structure.

There are two core data-structures:

GMV Contains prognostic variables involved in the semi-implicit (u, v, T , ps in the hydrostatic model).
This can be considered to be a “fixed” data structure, with little reason for modification. The
prognostic fields all have a spectral representation, and can be either two or three dimensional.
There are no attributes, apart from field pointers, associated with the GMV fields.

GFL Contains all the other variables (currently q, ql, qi, a, O3 in ecmwf’s operational model). This is
a more flexible structure that can be easily extended. All the fields are three dimensional, with
the vertical extent always the number of levels in the model. The fields may have a spectral
representation or be pure grid-point fields. A number of attributes are available to govern the
treatment of the field in question. All fields have two modes of being accessed; either as part of the
GFL structure, or as individual components.

More technical information of the implementation and usage of the GMV and GFL structures can be found
in Section A.6 on page 51.

1.5 CODING STANDARDS AND CONVENTIONS

There is a comprehensive document (see Appendix F) which gives a full and complete guide to the “coding
norms” to be used when writing and submitting code to the ifs system. In this section, brief highlights
of some of the most important features of the coding standards are given, but it is recommended that
anyone planning on writing any significant amount of code for IFS refers to the full Coding Standards
document in Appendix F.

1.5.1 Style and layout

• Each file should contain only one module or procedure. The filename should be the name (in
lowercase letters) of the procedure it contains, with an appropriate extension (eg. .F90 for
fortran 90).

• Executable lines should be written in uppercase characters, comments can use a mixture of case as
appropriate (but should be in English only). A consistent style should be maintained throughout a
subroutine or module.

• Use free-format fortran 90, starting in column 1, but keeping lines to within 80 characters per
line.

• Continuation lines are marked by the continuation character & at the end of each line to be continued
and the start of the continuation line. Use indentation and alignment to maintain readability of
long, broken lines.

• Use indentation (spaces only, no tab characters) to make the structure more obvious (ie. loops, IF
blocks).

• A procedure should have only one entry and one exit point (the bottom of the procedure). Abnormal
termination should be invoked with the ABOR1(‘Error Message’) routine.

• Each data module should begin with a description of the general content of the module and the
purpose of each declared variable (one line per variable).

• Each procedure should begin with comments describing:

6 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

– the purpose of the procedure;
– the interface details, describing the arguments in the same order they appear in the interface;
– the externals (other subroutines/functions called);
– the method used in the application;
– a reference to further documentation;
– the author and date of creation;
– details of any modifications since the creation, including the author and date.

• The first and last executable statement of every subroutine should be a conditional call to DR HOOK:
First: IF (LHOOK) CALL DR HOOK(’ROUTINE NAME’,0,ZHOOK HANDLE)

Last: IF (LHOOK) CALL DR HOOK(’ROUTINE NAME’,1,ZHOOK HANDLE)

• In a procedure, variables should be declared or USEd in the order:

– variables USEd from modules;
– dummy arguments (in the same order as they appear in the argument list), and using the

INTENT attribute;
– local variables.

• Loops should be written only using the DO ... ENDDO construct.
• Use the SELECT CASE construct in preference to IF/ELSEIF/ELSE/ENDIF statements.
• Use the fortran 90 comparison operators rather than the fortran 77 style operators (ie. “less

than” should be “<” rather than “.LT.”).

1.5.2 Variables

• The use of IMPLICIT NONE is mandatory.
• Each variable should be declared on a separate line, with declarations of variables with similar type

and attributes being grouped together. All the attributes of a given variable should be grouped
within the same instruction.

• Arrays should be declared using the DIMENSION attribute, with the shape and size of the arrays
being declared inside brackets after the variable name on the declaration statement.

• The use of array syntax is not recommended, except for simple operations such as the initialisation
of copying of whole arrays.

• Where a MODULE is used to import a variable into a subroutine, the ONLY attribute must be used,
so that only those variables actually used by the procedure are imported.

• Derived types should be declared in a module. Such a module should contain ONLY the declaration
of a single derived type (or a group of derived types if they are closely related), and any “primitive”
operations on the types (such as allocation/deallocation of its components).

• All INTEGER and REAL variables and constants must be declared using explicit KIND, using the
parameters defined in the modules PARKIND1 and PARKIND2. Table 1.1 shows the commonly used
KIND parameters.

• The first (or first two) letters of every variable name indicate its type and scope, as described in
Table 1.2. Prefixes shown in red and/or crossed out indicate those prefixes are not available for that
particular variable type/scope.

1.5.3 Banned features

• GO TO should not be used (use instructions such as DO WHILE, EXIT, CYCLE, SELECT CASE

instead).
• Use format descriptors rather than the obsolescent FORMAT statement.
• Use MODULEs rather than COMMON blocks.
• Do not change the shape or type of a variable when passing it to a subroutine.
• CHARACTER variables should be declared using the syntax CHARACTER(LEN=n) var name.
• Arrays must not be declared with implicit size (REAL(KIND=JPRB) :: A(*)) but can be declared

with implicit shape (REAL(KIND=JPRB) :: A(:)).

IFS Documentation – Cy37r2 7



Chapter 1: Structure, data flow and standards

Table 1.1 Commonly used KIND parameters.

KIND SELECTED * KIND Fortran 77 Range Precision
name value(s) equivalent Approx.

JPIS 4 INTEGER*2 ±215 –
JPIM 9 INTEGER*4 ±231 –
JPIB 12 INTEGER*8 ±263 –

JPIA1 9 or INTEGER*4 or ±231 or
–

12 INTEGER*8 ±263

JPRM (6,37) REAL*4 ±1037 10−7

JPRB (13,300) REAL*8 ±10307 10−15

JPRH2 (13,300) or REAL*8 or
±10307 10−15

(28,2400) REAL*16 10−31

1If 64 bit INTEGERs are available, then these are used, otherwise 32 bit INTEGERs are used.
2If 128 bit REALs are available, then these are used, otherwise 64 bit REALs are used.

Table 1.2 Variable Prefix Naming Convention.

Fortran Type

Scope INTEGER REAL LOGICAL CHARACTER Derived type

MODULE
M,N

A,B,E-H, L C Y

variable O,Q-X LD,LL,LP CD,CL,CP YD,YL,YP

Dummy
K P PP LD CD YD

argument
Local

I Z LL CL YL
variable
Loop

J JP - - - -
control
PARAMETER JP PP LP CP YP

1.5.4 I/O

• User supplied configuration variables should be access via a conventional formatted sequential file
containing namelists (Unit NULNAM=4).

• Each namelist should be contained is a specific include (.h) file, with the filename being the same
as the namelist name (in lowercase).

• Output messages should be written to unit NULOUT, error messages to unit NULERR. Do not explicitly
write to units 0,6 or “*”.

1.5.5 Parallelisation

• Only use MPL package for message passing, and set the CDSTRING to the name of the caller routine.

8 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Chapter 2

Parallel implementation

Table of contents
2.1 Introduction

2.1.1 High Performance Computing architecture

2.1.2 Overview of IFS parallelisation

2.1.3 IFS parallelisation issues

2.2 Grid point computations

2.2.1 Grid point dynamics and physics

2.2.2 EQ REGIONS

2.2.3 Radiation

2.2.4 Semi-Lagrangian advection

2.3 Fourier transform

2.4 Legendre transform

2.5 Semi implicit spectral calculations

2.1 INTRODUCTION

2.1.1 High Performance Computing architecture

Before we describe the ifs parallelisation and its associated code and data structures, it is useful to
understand the basic architectures used in a typical High Performance Computing (HPC) environment,
as it is these which have largely directed the design of these structures.

The obtainable performance of a Central Processing Unit (CPU) is ultimately constrained by a number
of factors; some technological such as the density of transistors on the silicon, thermal characteristics and
memory bandwidth, but also fundamental constraints such as the speed of light. To enable increasing
performance within current technological parameters, manufacturers have for many decades exploited
parallelisation as a cost effective solution, the basic concept being to replicate the basic processing unit
many times, having them act in parallel on the problem being solved.

Although the hardware technology and architectures have evolved considerably over the past decades,
compiler technology has not always kept pace with these changes. By and large, compilers still produce
code for a single processor, and any parallelisation has to be at least directed by, if not explicitly coded
by the programmer.

Today’s architectures typically contain multiple layers of parallelism, which are described below:

CPU
The basic computational unit will usually contain a small number of independent functional
units. Typically each unit will be capable of performing a small number of basic operations (for
example, a CPU may contain two functional units capable of doing add/multiply instructions, one
functional unit for divides and one for logical operations). The parallelisation is usually obtained by
“pipelining” these units. This can be thought of rather like cars on a conveyor belt in a production
line - the data passes from one functional unit to another as they apply their various operations as
required on the data. Once the pipeline has filled up, each functional unit will be operating on a
different piece of data in the stream, and a result will pop out of the pipeline after every clock tick.

There are two fundamental CPU architectures which it is useful to consider in a little more detail:

IFS Documentation – Cy37r2 9



Chapter 2: Parallel implementation

Scalar CPUs are the more traditional design of CPU, where the basic machine instruction operates
on single units of data at a time (eg. ADD Number A to Number B). Typically these CPUs
operate at high clock speeds, and their performance is limited by the speed at which data can
be fed from memory. To help remove this bottleneck, scalar CPUs have a high performance,
low latency memory cache, so that data which has been recently accessed can be accessed
again very quickly, without the CPU having to wait long for it to arrive from main memory.

With this design of CPU, the most efficient code is such that all the data accessed within an
inner loop can fit within cache - so all the functional units are kept busy, and the pipelines
do not have to stop because of delays caused by accessing relatively slow main memory. This
generally means the inner loop should be kept quite small (number of iterations).

Vector CPUs are more specialised CPUs, historically designed especially for HPC computer
systems, and therefore significantly more expensive than scalar CPUs. In a vector CPU,
the basic machine instruction operates on multiple units of data (vectors) at a time (eg.
ADD Vector A to Vector B). These typically have much more complex functional units, and
operate at slower clock speeds. It can take a while for a pipeline to fill up and start producing
results, but once it does, it is very efficient, performing many floating point operations every
clock cycle. The main performance limitation on a Vector CPU is short vectors, where the
startup costs dominate and the pipelines never really get a chance to be used efficiently.

With this design of CPU, the most efficient code is such that the inner loop (the vector length)
is as long (has as many iterations) as possible, so the pipeline startup costs are minimised.

The parallelisation within a CPU is generally largely exploited by the compiler. However, the
programmer does have some control over the efficiency of the parallelisation, as described above;
depending on the CPU architecture, the inner loop should perhaps be small or very large in order
to gain maximum performance. It is also sometimes necessary (usually more so for a vector CPU)
for the programmer to add directives (hints to the compiler, often describing data dependencies)
in the code to enable the compiler to make the correct decision on how to pipeline the work in the
inner loop.

Node
A node is a collection of CPUs which share a common memory. Any CPU in the node can access
any memory on the node without the explicit collaboration of any other CPU on the node.

Although some compilers will attempt to parallelise a code over nodes, a code as complex as ifs

needs a programmer to direct the parallelisation. The compiler needs to have identified to it, either:

• Chunks of code operating on independent data, so different CPUs on the same node
can perform different computations without having to worry about interactions (data
dependencies) with any other CPUs on the node.

• Independent iterations of a loop, so different CPUs on the same node can perform different
iterations (or more commonly subsets of the total iterations) of a loop, without having to worry
about interactions with any other CPUs on the node. This is the form of node parallelisation
commonly exploited in ifs.

This compiler direction is achieved using OpenMP1, which is a set of directives the programmer
inserts in the code to inform the compiler that it is safe to farm out subsets of a loop’s iterations
to different CPUs on the node.

Starting and completing a parallel OpenMP block of code carries a certain overhead, as the
operating system synchronises the CPUs and carries out any other necessary housekeeping. For
this reason, it is advantageous to minimize the number of OpenMP loops in a code. In practise,
this is achieved by keeping the OpenMP at a high level of the code - so instead of applying
OpenMP directives around each loop in a low level computational module, it is more efficient to
apply OpenMP around a loop in which this computational module is called (where the loop is over
independent data points).

1OpenMP is a portable open API available on all commercially available shared memory HPC systems. For further
information see http://www.openmp.org/.

10 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

OpenMP parallelisation is in some ways the easiest kind of parallelisation to implement as it
appears to require very little change to code and data structures. However, first appearances can
be deceptive, as the devil can be in the detail. A fundamental requirement for a correct and reliable
OpenMP parallelisation is that loop iterations are independent, and that the order of execution
of the iterations does not affect the final result. When a code can safely be run with different
numbers of processors in the OpenMP parallelisation, with reproducibly identical results, it is said
to be “Thread Safe”. It is usually easy to verify that a simple loop will be thread safe, but as
was just explained, ifs typically uses OpenMP at a very high level in the code - the code within
an OpenMP parallelised loop can often contain deeply nested subroutine calls to complex and
relatively unknown code. Verifying, debugging and fixing the thread safeness of such code is often
a non trivial exercise!

Distributed Memory
This is the “top level” of parallelisation, consisting of a number of nodes, where each node has its
own independent memory (shared amongst the CPUs in the node as described previously). If any
CPU needs to access memory on another node, then an explicit communication (Message Passing)
is required with a CPU on that remote node which has direct access to that memory.

Although a number of attempts have been made at automatically parallelising at this level, none
have been able to deliver high performance and reliable results, especially to complex codes such
as ifs, so programmer parallelisation is required.

Distributed Memory parallelisation requires a considerable knowledge of the dataflow and data
dependencies and potentially has a much larger code impact than the shared memory (node)
parallelisation:

• The full data structures need to be decomposed so that each node now has a data structure
which only holds a subsection of the total data being computed by the application, along with
additional metadata that allows a node to know about the subsection of data it has; such as
where it is in the total data space, and which nodes contain its neighbouring data.

• Code needs to recognise it is only dealing with a subsection of the data.
• Data dependencies need to be resolved by either communicating data between relevant

processors to resolve dependencies, or redecomposing (transposing) the data in such a way
that the dependencies can be satisfied by the subsection of data now on the node.

Communicating data between nodes is achieved using mpi (the Message Passing Interface), although
in the ifs this is hidden under an interface layer “mpl” (see Appendix B). In ifs this communication
mostly takes the form of transposing the data between different computational phases of the model,
and is described in more detail later in this chapter.

This communication strategy is an important characteristic of the ifs, and is a fundamental
property of the spectral transform method it employs. A purely grid point model, which has
data dependencies in many different dimensions during different phases of the model integration
typically requires explicit communication to be invasively added throughout the model code, and
generally requires special data structures with halo regions for finite difference calculations. In
contrast, the ifs already (before parallelisation) has a different data structure for each major
computational component of the integration, and in each phase this data structure has at least
one data independent dimension (that is, different elements of the given dimension(s) can be safely
computed in parallel as they are not interdependent). This means that (generally speaking) there
is no communication required within the main computational phases, and the communications
can be localised to the transpose/transform steps which move the data between the different data
structures/representations used for different phases of the integration.

2.1.2 Overview of IFS parallelisation

Having seen the various levels of architectural parallelisation that are available, we now consider how this
is applied to the ifs.

A meteorological model such as ifs may have a basic data structure for grid-point model data which is
of the form shown in Listing 2.1.

IFS Documentation – Cy37r2 11



Chapter 2: Parallel implementation

Listing 2.1 Basic model data structure.

REAL Model_Data ( 1:Horiz_i ,

1:Horiz_j ,

1:Levels_k ,

1:Fields )

Here we have shown a basic (regular) 3D grid-point field. The ifs of course, also contains reduced grid-
point, Fourier and spectral fields, but the same principles that are demonstrated here can also be extended
to such fields.

The first step is to consider the distributed memory parallelisation. We need to break up, or “decompose”
the data so that every node has a subset. Potentially we could decompose every dimension of
“Model Data”, and that is what we will consider here. Of course, it is unlikely that it is ever possible to
do this, as there will almost always be some kind of dependency in one or more dimensions, depending on
the computational algorithm that is being applied to the data. In this case, the dimension(s) containing
the dependency(s) would be left undecomposed (or possibly, if decomposition was unavoidable, extra
message passing would be introduced to satisfy the data dependencies).

So, decomposing the data in every dimension, we now have, on any one node, an array of the form shown
in Listing 2.2.

Listing 2.2 Decomposed data structure.

REAL Model_Data ( 1: Decomposed_Horiz_i ,

1: Decomposed_Horiz_j ,

1: Decomposed_Levels_k ,

1: Decomposed_Fields )

(NB This regular decomposition is actually a simplification of the decomposition actually used by
ifs which is described later in this chapter, but will serve to demonstrate the principles used in the
parallelisation.)

Of course, there will also be some additional variables associated with this which will describe this node’s
position in the decomposition, who its neighbours are and other such useful information.

We now come to consider the lower two levels of parallelisation; over the node (shared memory or
OpenMP parallelisation), and on the CPU.

The data structure we now have presents a problem. Both of these levels of parallelism are essentially at
the loop level. The CPU parallelisation will be over the innermost loop:
DO i = 1 , Decomposed Horiz i

whilst the node parallelisation will be at an outer loop (Decomposed Horiz j, Decomposed Levels k or
Decomposed Fields depending on the algorithm and its data dependencies).

An issue now arises, in that we have very little way of controlling the size of these loops, which is a problem
for both levels of parallelism. For the innermost loop (CPU parallelism) we would like some control over
the number of iterations to maximise the efficiency of the scalar or vector CPU architecture. For the
outer loop which is parallelised with OpenMP (and we try to ensure this is as outermost as possible
for the efficiency reasons described earlier), we need to ensure that there are at least as many iterations
as there are CPUs on the node (otherwise some CPUs would be left with nothing to do). Additionally,
we would prefer that there to be many more iterations than CPUs on a node - this will ensure a better
load balance of work across the CPUs on a node. (If each CPU only had one iteration of the loop, and
the iterations were not all of equal cost, then the total computational cost would be determined by the

12 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

slowest iteration. If each CPU is given a number of iterations, then the costs should average out across
the CPUs and a better load balance will be achieved.)

With this data structure, the size of the loops is determined by a function of the non-decomposed
dimension, and the decomposition in the dimension concerned, which may be different in different parts
of the code.

To avoid this performance limitation, the data structure is manipulated in ifs in such a way to give better
control over the loop lengths of these performance critical loops. Before we consider how this happens, we
will simplify the example, and bring it closer to the grid-point decomposition used in the ifs by removing
the decomposition over levels and fields (and replace the variables describing them with the variables
used if ifs). In the grid-point part of ifs there are too many dependencies in these dimensions to make
them suitable for decomposition. This means we have a structure as shown in Listing 2.3.

Listing 2.3 Simplified field structure with no decomposition over levels or fields.

REAL Model_Data ( 1: Decomposed_Horiz_i ,

1: Decomposed_Horiz_j ,

1:NFLEVG,

1: NFIELDS )

The first step of the manipulation is to merge the leading horizontal dimensions (i,j) into a single
dimension 1:Decomposed 2D Field which contains all the (decomposed) points for a single level of a field
on this node, as shown in Listing 2.4.

Listing 2.4 Merged Leading Dimensions.

REAL Model_Data ( 1: Decomposed_2D_Field ,

1:NFLEVG,

1: NFIELDS )

We now split the leading dimension (Decomposed 2D Field) in such a way that we introduce a new
(artificial) leading dimension which we can control the length of. In the physical parameterization and
Eulerian dynamics code of ifs this inner loop length is called NPROMA and the total Decomposed 2D Field

is broken up into NGPBLKS blocks. We now have the data structure shown in Listing 2.5.

Listing 2.5 NPROMA blocking.

REAL Model_Data ( 1:NPROMA,

1:NFLEVG,

1: NFIELDS

1: NGPBLKS )

The value of NPROMA is chosen by the user at run-time to suit the architecture of the CPU (small values,
typically a few 10’s for scalar CPUs, and larger values (100’s or 1000’s) for vector CPUs).

The innermost loop should perform well on the CPU (for scalar CPUs the data size should be small
enough to fit in cache, and for vector CPUs the vector will be long enough to minimise overheads), and
the outermost loop can be parallelised over the node using OpenMP, giving the typical code structure
shown in Listing 2.6.

IFS Documentation – Cy37r2 13



Chapter 2: Parallel implementation

Listing 2.6 Loop Parallelisation.

!$ DO PARALLEL

DO iBlock =1,NGPBLKS ! This loop is OpenMP’d

CALL ModelScience(Model_Data(:,:,iBlock ))

ENDDO

!$ END DO PARALLEL

SUBROUTINE ModelScience(Model_Data)

REAL Model_Data(NPROMA ,NFields)

DO fld=1,NFields

DO i=1,NPROMA

Model_Data(i,fld)=...

ENDDO

ENDDO

RETURN

2.1.3 IFS parallelisation issues

(a) IFS algorithmic structure

The remainder of this chapter will describe in further detail the parallelisation methodology and
implementation used within the ifs. It considers the four major algorithmic steps of ifs separately;
the parallelisation of each step applies the general principles expressed in this introductory section, but
with differences due to the data dependencies of the algorithm in question.

Figure 2.1 gives an overview of these algorithmic steps in a single timestep of an ifs model integration. A
timestep is represented by the cycle running around the perimeter of the figure, containing the two main
computational blocks, Grid Point Computations and Spectral Calculations, with a set of transpositions
and transformations between them. The blocks in the centre of the figure represent the data decomposition
employed at any step within the timestep, based on a very simple four node example.

From the figure, it can be seen that the transpose steps involve moving data between processors to
form a new decomposition, which enables the following transform or computational step to perform
its calculations with all a node’s data dependencies satisfied within that node, so that no further
communications are required within that step2.

Note that transpositions never involve global communication, but only communication within each
subset, e.g. between P1 and P2 and between P3 and P4, respectively. This improves the communication
performance significantly when a large number of processor is used.

(b) Overview of the “TRANS” package

This package lies at the heart of the ifs decompositions, and is fully described in Appendix C (starting on
page 73). The TRANS package is responsible for the necessary transposes and transforms that are needed
to move the model data between grid-point space and spectral space as shown in Figure 2.1. Although
the data is briefly in Fourier space, the ifs never has sight of this representation, as it is purely internal
to the TRANS package3.

The basic usage of the package is as follows:

2This is not completely correct, as the semi-Lagrangian step of the Grid Point Calculations performs some additional
communications to satisfy its dynamic data dependencies.

3The TRANS package does allow the data in Fourier space to be manipulated by an optional user supplied subroutine.

14 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

z

µ
λ

P1 P2

P4P3

z

µ
λ

P2

P1

P4

P3

P1
P2 P3 P4

m=0 m=3 m=4 m=1 m=2 m=5 m=6

z

m

n

Grid Point Computations

Fourier

Transform

Legendre

Transform

Spectral Computations

Inverse

Fourier

Transform

Inverse

Legendre

Transform

T
ra

n
s
p

o
s
e

g�
l

T
ra

n
s
p

o
s
e

l�
m

T
ra

n
s
p

o
s
e

m
�

s

T
ra

n
s
p

o
s
e

s
�

m

T
ra

n
s
p

o
s
e

m
�

l
T

ra
n

s
p

o
s
e

l�
g

P2

P1

P4

P3z

m

m=0 m=3 m=4 m=1 m=2 m=5 m=6

P1

P2

P3

P4

z

m

n

B

A

W

V

W

V

V

W

W

N N

µ

P1

P2

P3

P4

m=0 m=3 m=4 m=1 m=2 m=5 m=6

V

W

z

m

µ

Start of timestep

Figure 2.1 ifs Model Timestep, showing data decompositions.

IFS Documentation – Cy37r2 15



Chapter 2: Parallel implementation

Setup Phase
A call to SETUP TRANS0 is required to initialise the TRANS package. This is then followed by one
or more calls to SETUP TRANS - the arguments supplied describing the grid point and spectral
resolutions to be used, and flags describing how the data should be decomposed. The routine
TRANS INQ is then called, which returns, via optional arguments, a complete description of the
decomposition(s) used, so that each processor knows what data it is responsible for, and how and
who it is to communicate with.

Integration Phase
During the model integration, there are a small number of TRANS package routines available
for moving the data between grid-point and spectral spaced, based on the decompositions and
resolutions that were described with SETUP TRANS.

(c) Message passing communication

As was stated earlier, the message passing is achieved using mpi, which is encapsulated within the ifs

“mpl” library (see Appendix B). mpi allows a number of different blocking4 strategies. This is controlled
by the variable MP TYPE in MODULE YOMMP which can take the following values:

MP TYPE=1

Blocked mode communication using MPI SEND/MPI RECV. For a send operation, this means that the
program continues only once mpi guarantees that the array containing data to be sent is safe to be
overwritten or destroyed. There is no guarantee the data has safely arrived at its destination, only
that it has been copied out of the senders array. An MPI SEND is completely free to block until the
corresponding MPI RECV has been called on the receiving processor.

A blocking receive (MPI RECV) simply means that the program continues only when the message
being received has arrived and is contained in the receiving array specified.

MP TYPE=2

Buffered mode communication using MPI BSEND/MPI BRECV is a little more flexible. Outgoing
messages using MPI BSEND are buffered locally by mpi in a buffer of size MBX SIZE (defined in
module YOMMP), which means that an MPI BSEND call can return before the corresponding receive
has been called on the receiving processor. The sending array is safe to reuse/destroy as all the data
to be sent is safe in the mpi buffer.

MP TYPE=3

Immediate mode communication using MPI ISEND/MPI IRECV is the most flexible. Both send
and receive operations return control back to calling programming immediately, and all the
communication is performed in the background. Additional mpi calls are required to check or wait
for the completion of a communication. The program must be careful not to reuse or destroy the
sending array before mpi has confirmed that it is safe to do so, and not to use the data in the
receiving array before mpi has confirmed that the data has arrived there.

(d) Terminology: nodes, processors and CPUs

In the text that follows we often refer to nodes. This may not necessarily correspond to a physical hardware
node on an HPC system, but a subset of this node which is just a part of the total number of CPUs on
the hardware’s node. This sub-dividing of hardware nodes is usually done to maximise the efficiency of
the OpenMP parallelisation. For example, on some IBM systems with 32 CPUs on a hardware node, we
may choose to actually run some configurations of ifs with 4 CPUs per mpi task (so we have 32/4=8
mpi tasks, with each mpi task running with 4 OpenMP threads).

Unfortunately, there is sometimes some confusion between the use of the terms “node”, “processor” and
“CPU” in the code, variable names and documentation. This is because in the days when the distributed
memory version of the code was originally being developed, there was no concept of shared memory nodes

4Blocking refers to the behaviour whereby a SEND or RECEIVE action “blocks”, or waits to complete before allowing the
program to continue.

16 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

on such architectures, so the data distribution and message passing dealt with “processors” rather than
“nodes”. In today’s ifs the data distribution and message passing happens over and between mpi tasks
which are not usually just a single processor, but a group of processors each running a single OpenMP

thread, but this is not always obvious! For example, the variable “NPROC” which describes how many
mpi tasks are being used for the data decomposition, is NOT necessarily the total number of PROCessors
(CPUs) being used for the job, but the number of mpi tasks. The total number of processors (CPUs) is
the product of NPROC and the number of CPUs per mpi task.

In the following sections, the terms “mpi task” and “processor” are used interchangeably - this allows a
sensible correlation between the documentation and the code/variable names. The term “CPU” is used
for describing the individual CPUs within an mpi task.

2.2 GRID POINT COMPUTATIONS

In considering the parallelisation, it is helpful to classify the computations into four categories, each of
which has differing requirements, and is considered separately below.

2.2.1 Grid point dynamics and physics

These computations contain only vertical dependencies, so all grid columns can be considered to be
independent of each other, allowing an arbitrary distribution of columns to processors.

(a) Decomposition

The ifs allows a number of different decomposition strategies, which are selected based on the settings
of the YOMCT0 module variables described in Table 2.1. Two decomposition strategies are available, a 2D
scheme (the original strategy used in IFS, LEQ REGIONS=F) and the EQ REGIONS scheme which is
now the default scheme used (LEQ REGIONS=T).

Table 2.1 Variables controlling Grid Point decomposition.

Variable Description

NPROC Total number of processors to be used
LEQ REGIONS Logical controlling use of EQ REGIONS partitioning
NPRGPNS Number of processors in the North–South direction (LEQ REGIONS=F)
NPRGPEW Number of processors in the East–West direction (LEQ REGIONS=F)
LSPLIT Allows the splitting of latitude rows

The simplest (LEQ REGIONS=F) distribution is achieved by setting:

NPRGPEW = 1 ; NPRGPNS = NPROC ; LSPLIT = .FALSE.

which basically assigns a set of complete latitude rows to every processor. A good static load balance can
only be achieved for very specific values of NPROC and a particular model resolution, but even this becomes
difficult when the reduced model grid is used. The advantage of this distribution is that it matches the
distribution used by the Fourier transforms, so eliminates the transposition between these algorithmic
stages.

Some improvement to this distribution can be made by setting:

LSPLIT = .TRUE.

which allows a line of latitude to be split so that part of it is assigned to one processor and the remainder
is assigned to the next processor. This removes the load balance problems, but the amount of parallelism
remains limited by approximately 2/3 times the number of latitude rows owing to the FFT and Legendre
Transforms. There are also efficiency disadvantages in the semi-Lagrangian message passing, because the
long-thin shape of the decompositions results in a relatively large amount of communication required
with neighbouring processors.

IFS Documentation – Cy37r2 17



Chapter 2: Parallel implementation

The best distribution is obtained by setting:

NPRGPEW = x

NPRGPNS = y

where x * y = NPROC

which provides for considerably increased parallelism, and potentially (depending on the values of “x”
and “y”), a much “squarer” shape of domain, which results in a reduced communication volume in the
semi-Lagrangian scheme.

An example decomposition is shown in a number of figures. In this example, we have set:

NPRGPEW = 2

NPRGPNS = 3

LSPLIT = .TRUE.

The example shows the decomposition of a representative small reduced grid (this means there are less
points near the pole, with the number of grid points per latitude row increasing towards the equator),
which has 19 latitude rows5.

The calculation of the decomposition is carried out over two steps, which are illustrated in Figure 2.2.
In the first step, the total number of points in a field is split as equally as possible in the North–South
direction (the “A” set). In Figure 2.2 we see that a total of 152 points have been split between the
three “A” sets, giving two partitions with 51 points, and one with 50 points. As a consequence of setting
LSPLIT=.TRUE. there will be some latitude rows split between two “A” sets. This introduces a slight
complication in the addressing of some arrays where information is required about each latitude row, as
the split rows will appear in two “A” sets. We therefore introduce the concept of “latitude strips” - for
most rows, this is a full row of points, but for the split rows, there are two “strips”, one for the “A” set
with the first section of the row, and the other for the adjacent “A” set with the remaining section of the
row. Such arrays, instead of being dimensioned by the total number of latitude rows (NDGLG or NDGL) are
dimensioned by the maximum possible number of “latitude strips”, NDGLH + NPRGPNS - 1.

(1) 0 90 180 270

(2) 0 60 120 180 240 300

(3) 0 60 120 180 240 300

(4) 0 60 120 180 240 300

(5)
0

45 90 135 180

225

270 315

(6) 0 45 90 135 180 225 270 315

(7) 0 36 72 108 144 180 216 252 288 324

(8) 0 36 72 108 144 180 216 252 288 324

(9) 0 30 60 90 120 150 180 210

240

270 300 330

(10) 0

30

60 90 120 150 180 210 240 270 300

330

(11) 0 30 60 90 120 150 180 210 240 270 300 330

(12) 0 36 72 108 144 180 216 252 288 324

(13) 0 36 72 108 144 180 216 252 288 324

(14)
0

45 90 135 180

225

270 315

(15) 0 45 90 135 180 225 270 315

(16) 0 60 120 180 240 300

(17) 0 60 120 180 240 300

(18) 0 60 120 180 240 300

(19) 0 90 180 270

N
D
G
L
G
=
N
D
G
L
=
1
9

51

50

51

26

26

25

25

25 25

P1

P2

P3

P4

P5

P6

Figure 2.2 Grid point decomposition, showing the two stages of decomposition on 6 processors.

5Note, that although the ifs code for distributing grid points among processors is fully flexible as exemplified here with
Figure 2.2, it is actually used in a more restricted manner due to constrains of the spectral transform method and limitation
in the FFT transform routines (in ifs the number of latitude rows (NDGLG) must always be an even number).

18 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

The next step is the decomposition of each of the three “A” set partitions in the East–West direction (the
“B” set), in such a way that each subpartition of the “A” set contains an equal (or as equal as possible)
number of points. The algorithm used to achieve this selects points for a subpartition on the criteria that
the new point is the point on the partition with the smallest difference in longitude from the previous
point added. Again, this is illustrated in Figure 2.2, where each grid box’s longitude is shown.

The static distribution is fully described by the namelist variables in Table 2.1, which means that all the
required information about distributions and communications required for the various transpose steps can
be calculated in the setup phase, by the “TRANS” package, and stored in the ifs MODULE YOMMP. Some of
the more widely used variables describing the grid point decomposition are shown in Figures 2.3 and 2.4,
and described in Table 2.2.

NPRGPEW=2

MYSETB=

1 2G
l
o
b
a
l

A
r
r
a
y

I
n
d
e
x

N
P
T
R
L
A
T

L
o
c
a
l

A
r
r
a
y

I
n
d
e
x

L
S
P
L
I
T
A
T

M
Y
L
A
T
S

(1) 1 (1) F 1

(2) 2 (2) F 2

(3) 3 (3) F 3

(4) 4 1 (4) F 4

(5) 5 (5) F 5

(6) 6 (6) F 6

(7) 7 (7) F 7

(8) 8 (8) T 8

(8) 8 (1) T 8

(9) 10 (2) F 9

(10) 11 2 (3) F 10

(11) 12 (4) F 11

(12) 13 (5) T 12

(12) 13 (1) T 12

(13) 15 (2) F 13

(14) 16 (3) F 14

(15) 17 3 (4) F 15

(16) 18 (5) F 16

(17) 19 (6) F 17

(18) 20 (7) F 18

(19) 21 (8) F 19

N
P
R
G
P
N
S
=
3

M
Y
S
E
T
A
=

P1 P4

MYFRSTACTLAT=NFRSTLAT(1)=1
NFRSTLOFF=MYFRSTACTLAT-1=0

NPTRFRSTLAT(1)=1

MYLSTACTLAT=NLSTLAT(1)=8
NPTRLSTLAT(1)=8

NDGENL=8

P2 P5

MYFRSTACTLAT=NFRSTLAT(2)=8
NFRSTLOFF=MYFRSTACTLAT-1=7

NPTRFRSTLAT(2)=9

MYLSTACTLAT=NLSTLAT(1)=12
NPTRLSTLAT(2)=13

NDGENL=5

P3 P6

MYFRSTACTLAT=NFRSTLAT(3)=12
NFRSTLOFF=MYFRSTACTLAT-1=11

NPTRFRSTLAT(3)=14

MYLSTACTLAT=NLSTLAT(1)=19
NPTRLSTLAT(3)=21

NDGENL=8

N
D
G
L
G
=
N
D
G
L
=
1
9

Figure 2.3 Variables describing the Grid Point Decomposition.

IFS Documentation – Cy37r2 19



Chapter 2: Parallel implementation

Table 2.2 Variables describing the grid point decomposition.

Variable Array dimensions and description

LSPLITLAT (1:NDGENL)

Logical indicating whether a given row on the
“A” set is split with another “A” set.

MYFRSTACTLAT Scalar

The first latitude row (global index) on this
“A” set (1..NDGLG)
(Equivalent to NFRSTLAT(MYSETA))

MYLATS (1:NDGENL)

The latitude row (global index) a given row on
this “A” set corresponds to.

MYLSTACTLAT Scalar

The last latitude row (global index) on this
“A” set (1..NDGLG)
(Equivalent to NLSTLAT(MYSETA))

MYPROC Scalar

Logical processor ID (1 .. NPROC).
Note, processor numbering does not follow the
normal fortranarray ordering (row first), but
instead runs in a column first order, so
Processor “1” is in the North Western corner,
processor “2” is to the South of this and so on.

MYSETA Scalar

Which “A” set (North–South) this processor is in
(1..NPRGPNS).

MYSETB Scalar

Which “B” set (East–West) this processor is in (1..NPRGPEW).
NDGENL Scalar

Number of latitude rows handled by this “A” set.
NFRSTLAT (1:NPRGPNS)

The first latitude row (global index) for a
given “A” set. (1..NDGLG)

NFRSTLOFF Scalar

Offset of the first latitude row (global index).
(Equivalent to MYFRSTACTLAT-1)

NLSTLAT (1:NPRGPNS)

The last latitude row (global index) for a
given “A” set. (1..NDGLG)

NPTRFRSTLAT (1:NPRGPNS)

Index of the first latitude strip on the given
“A” set. (Used for indexing NSTA and NONL arrays)

NPTRLAT (1:NDGLG)

Index of the first latitude strip of the given
global latitude.(Used for indexing NSTA and NONL arrays)

NPTRLSTLAT (1:NPRGPNS)

Index of the last latitude strip on the given
“A” set. (Used for indexing NSTA and NONL arrays)

NSTA (1:NDGLG+NPRGPNS-1 , 1:NPRGPEW)

Number of grid points from Greenwich meridian at
the start of the given latitude strip on the given
“B” set. Counting starts at 1, so for a grid point
at the start of a row (ie. on the meridian) NSTA(Index,1)=1

NONL (1:NDGLG+NPRGPNS-1 , 1:NPRGPEW)

Number of grid points on this latitude strip within my “B” set.

20 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

NPRGPEW=2

MYSETB=

1 2G
l
o
b
a
l

A
r
r
a
y

I
n
d
e
x

L
S
P
L
I
T

N
P
T
R
F
S
T
L
A
T

N
S
T
A
/
N
O
N
L

I
n
d
e
x

(1) F 1

(2) F 2

(3) F 3

(4) F 1 4 1

(5) F 5

(6) F 6

(7) F 7

(8) T 8

(8) T 9

(9) F 10

(10) F 9 11 2

(11) F 12

(12) T 13

(12) T 14

(13) F 15

(14) F 16

(15) F 14 17 3

(16) F 18

(17) F 19

(18) F 20

(19) F 21

N
P
R
G
P
N
S
=
3

M
Y
S
E
T
A
=

P1 P4

P2 P5

P3 P6

N
D
G
L
G
=
N
D
G
L
=
1
9

NSTA(6,1)=1

NONL(6,1)=4
NSTA(7,2)=5

NONL(7,2)=6

NSTA(9,1)=4

NONL(9,1)=2

NSTA(9,2)=6

NONL(7,2)=5

NSTA(14,2)=9

NONL(14,2)=2NSTA(15,1)=1

NONL(15,1)=5

Figure 2.4 NSTA and NONL in the Grid Point Decomposition.

IFS Documentation – Cy37r2 21



Chapter 2: Parallel implementation

2.2.2 EQ REGIONS

Since the mid-90s IFS has used a 2-dimensional scheme for partitioning grid point space to MPI tasks.
While this scheme has served ECMWF well there has nevertheless been some areas of concern, namely,
communication overheads for IFS reduced grids at the poles to support the Semi-Lagrangian scheme;
and the halo requirements needed to support the interpolation of fields between model and radiation grids.

These issues have been addressed by the implementation of a new partitioning scheme called
EQ REGIONS which is characterised by an increasing number of partitions in bands from the poles to
the equator. The number of bands and the number of partitions in each particular band are derived so
as to provide partitions of equal area and small ’diameter’. The EQ REGIONS algorithm used in IFS is
based on the work of Paul Leopardi, School of Mathematics, University of New South Wales, Sydney,
Australia.

The differences between EQ REGIONS partitioning and 2D partitioning can be clearly seen in Figure 2.5
and Figure 2.6 for 256 MPI tasks, Figure 2.7 and Figure 2.8 for 512 tasks, and Figure 2.9 and Figure 2.10
for 1024 tasks.

From a code point of view the differences between the old 2D partitioning and the new EQ REGIONS
partitioning are relatively simple. For the 2D scheme, there were loops such as,

DO JB=1,NPRGPEW

DO JA=1,NPRGPNS

ENDDO

ENDDO

where, NPRGPEW and NPRGPNS are the number of EW and NS bands (or sets).

For EQ REGIONS partitioning loops were simply transformed into,

DO JA=1,N_REGIONS_NS

DO JB=1,N_REGIONS(JA)

ENDDO

ENDDO

where, N REGIONS NS is the number of N-S EQ REGIONS bands, and N REGIONS(:) and array
containing the number of partitions for each band.

In total some 100 IFS routines were modified with such transformations. It should be noted that the
above loop transformation supports both 2D and EQ REGIONS partitioning, i.e. to use 2D partitioning,
a simple namelist variable would be set LEQ REGIONS=F, which would result in the following
initialisation,

N_REGIONS_NS=NPRGPNS

N_REGIONS(:)=NPRGPEW

22 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Figure 2.5 2D partitioning, for 256 MPI tasks.

Figure 2.6 EQ REGIONS partitioning, for 256 MPI tasks.

IFS Documentation – Cy37r2 23



Chapter 2: Parallel implementation

Figure 2.7 2D partitioning, for 512 MPI tasks.

Figure 2.8 EQ REGIONS partitioning, for 512 MPI tasks.

24 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Figure 2.9 2D partitioning, for 1024 MPI tasks.

Figure 2.10 EQ REGIONS partitioning, for 1024 MPI tasks.

IFS Documentation – Cy37r2 25



Chapter 2: Parallel implementation

The description of the EQ REGIONS algorithm, and mathematical proof are described in great detail in
the original paper by Leopardi. This algorithm results in partitions of equal area and small ’diameter’.
However, this would not be sufficient for an IFS implementation, as the density of grid-points on the globe
varies with the latitude, the greatest density being at the poles and the least density at the equator. This
imbalance has been measured at 13% for a T799 model with 512 partitions when using the EQ REGIONS
algorithm to provide the bounds information (start/end latitude, start/end longitude) for each partition.

The solution to this imbalance issue was to use the EQ REGIONS algorithm to only provide the
band information, i.e. the number of N-S bands and the number of partitions per band. Then the IFS
partitioning code would use this information in a similar way to that used for 2D partitioning, resulting in
an equal number of grid-points per partition. With this approach there was only ONE new data structure
(N REGIONS(:)) used to store the number of partitions in each band.

The characteristic features of this partitioning approach are square-like partitions for most of the globe
and polar caps together with a significant improvement in the convergence at the poles.

2.2.3 Radiation

The radiation calculations are performed on a lower resolution grid, in order to reduce their computational
cost. The radiation grid is decomposed using the same algorithm as the “normal” grid, and the necessary
data is interpolated to and from this grid.

2.2.4 Semi-Lagrangian advection

(a) Introduction

The semi-Lagrangian calculations in the ifs consist of two parts called by routine CALL SL:

LAPINEA Computation of a trajectory from a grid point backwards in time to determine the departure
point.

LAPINEB Interpolation of various fields to the departure point.

For a distributed memory parallelisation both these parts require access to grid-point data held on
neighbouring processors and message passing is required to obtain these data.

The grid-column data that could potentially be required on a processor from neighbouring processors
(called the halo) is calculated from the model time step TSTEP and a conservative estimate of the global
maximum wind likely to be encountered (VMAX2 (m/sec)). Typical values for VMAX2 are 150-200 m/sec.
The advantage of using a fixed (large) VMAX2 is that semi-Lagrangian communication tables can be
calculated once and for all during the setup phase after the distribution of grid columns to processors has
been defined. This determines the width of the SL halo which is NSLWIDE.

This pre-determined pattern then allows efficient block transfers of halo data between processors. The
disadvantage is that a large amount of the halo data that is communicated may not really be required
because the wind speed may be much lower than VMAX2. This problem is addressed by an “on-demand”
scheme, in which only the data that will be required for the interpolations is exchanged before LAPINEB.
However, the full halos must be exchanged for the fields used for calculation of the departure points
before LAPINEA. The halo points required for the interpolations in LAPINEB are determined in LASCAW -
where a 2-D integer array called MASK SL is set for all points in the stencil round each departure point.

The semi-Lagrangian communication tables are calculated by the subroutine SLRSET called from SLCSET

within SUSC2.

A processor can have any continuous block of grid columns on the sphere (see Figure 2.11) and so a
processor’s halo cannot be described only with NSLWIDE. SLCSET is called on each processor to calculate
arrays which describe the halo of grid-point columns required by itself, based on VMAX2 and TSTEP and
on the additional stencil requirements of the semi-Lagrangian interpolation method. Once this is done,
SLRSET is called to exchange this halo information with other processors so that each processor knows

26 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

what data needs to be sent and received and which processors to communicate with. All this is done once
at initialization time.

L
o
c
a
l
A
r
r
a
y

I
n
d
e
x

N
S
L
S
T
A

N
S
L
O
N
L

N
S
L
O
F
F

(0) 3 4 0

(1) -1 8 4

(2) -1 8 12

(3) -1 8 20

(4) -1 8 28

(5) -1 8 36

(6) -1 8 44

P2

P3

P5

P6

NSLWIDE

NSLONL(5)

NGPTOT=

NASLB1= +

P1 P4
NSLSTA(0)

Figure 2.11 The semi-Lagrangian Halo (For processor 2).

For each model time step the full halo for the fields needed for calculation of the departure point in
LAPINEA is constructed by calling SLCOMM1 to perform the message passing and SLEXTPOL1 to initialize
those halo grid points that only require to be copied from other grid points held on the local processor.
To simplify the interpolation routines, halo points are cyclically mirrored for complete latitudes in the
east-west direction, and mirror-extended near the poles.

After the calculation of the departure point and before the interpolations in LAPINEB, SLCOMM2A is called
to perform the message passing to initialise the required halo points and SLEXTPOL2 called to initialise
the non-message passed part of the halo.

(b) SLCSET

SLCSET is called to set array variables to describe the SL halo for the local processor. NSLSTA, NSLONL and
NSLOFF, are dimensioned by the number of latitudes that cover the halo and core region (see Figure 2.11)
and are, briefly:

NSLSTA(JN) Starting grid point (most westerly relative to Greenwich) for halo on relative latitude JN

(is negative if the area starts west of Greenwich)

NSLONL(JN) Number of halo and core (i.e. belonging to this processor) grid points on relative latitude
JN

NSLOFF(JN) Offset from beginning of SL buffer to first halo grid point on relative latitude JN

The semi-Lagrangian buffer PB1 contains the variables needed for semi-Lagrangian interpolation. It
has a 1-dimensional data structure with the storage is organized from north towards south. The total
size is calculated in SLCSET and called NASLB1. To improve vector efficiency and cache performance the
“horizontal” collapsed dimension is the innermost loop in the semi-Lagrangian buffer. NASLB1 is just the
container size and it may be increased slightly in SLCSET to avoid bank conflicts on vector machines. The

IFS Documentation – Cy37r2 27



Chapter 2: Parallel implementation

second dimension represents the fields in the semi-Lagrangian buffer and will vary according to the chosen
semi-Lagrangian configuration. This strategy makes it simple to add new fields to the semi-Lagrangian
buffer - no changes in the message-passing routines are needed.

The calculation of the halo is done as follows.

For each latitude:

(1) The minimum (i.e. most westerly) and maximum (i.e. most easterly) angles on the sphere are
determined for the local processor’s core region by considering NSLWIDE latitudes to the north and
south.

(2) The angular distance a particle can travel on the sphere (given the maximum wind speed VMAX2 and
timestep TSTEP) is then subtracted and added respectively from the above minimum and maximum
angles.

(3) The angular distances are converted to grid points and at the same time a further grid point is
added to satisfy the requirements of the interpolation method used. For more complex interpolation
methods more points are required.

(4) NSLSTA, NSLONL and NSLOFF are then updated for this latitude, such that the number of grid points
required for the halo and core region is never greater than the number of grid points on the whole
latitude plus the extra points (IPERIOD) required for the interpolation. In addition, the NSLWIDE

latitudes at the north and south poles are forced to require full latitudes to simplify the design.

To aid debugging, space is also reserved on each latitude for NSLPAD grid points east and west of the
halo. As these points are initialized to HUGE, any attempt to use this data in an interpolation routine will
result in an immediate floating point exception, which can simplify the detection of programming errors
in SL interpolation routines. NSLPAD is 0 by default.

NSLCORE contains the position of each core point in the SL buffer.

NSLEXT is used to simplify a SL buffer (lat, lon) offset calculation in LASCAW. This reduces an “IF test”
(to account for phase change over poles) and a “modulo function”, to a simple array access. As a result
LASCAW becomes more efficient and more maintainable.

(c) SLRSET

SLRSET is called by SLCSET at initialization time to determine the detailed send- and receive-list
information that will be used later by SLCOMM1 and SLCOMM2A during model execution. This is achieved by
a global communication where send and receive lists are exchanged in terms of global (lat,lon) coordinates.

The data structures initialized by SLRSET are as follows:

NSLPROCS is a scalar which defines the number of processors that the local processor has to communicate
with during SL halo communication.

NSLCOMM contains the list of processors that the local processor has to communicate with, and is
dimensioned 1: NSLPROCS.

NSENDNUM, NRECVNUM contain the number of send and receive (lat, lon) pairs that the local processor has
to communicate. The difference between elements (N) and (N+1) contain the number of entries that
apply to processor N.

NRLSTLAT, NRLSTLON describe the global latitude and longitude of the grid-point columns to be received
during SL halo communication. Columns to be received from processor N start at entry NRECVNUM(N)

in these arrays.

NSLSTLAT, NSLSTLON describe the global latitude and longitude of the grid-point columns to be sent
during SL halo communication. Columns to be sent to processor N start at entry NSENDNUM(N) in
these arrays.

28 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

(d) SLCOMM1 and SLCOMM2A

SLCOMM1 and SLCOMM2A are called at each model time step to obtain grid-point halo data from
neighbouring processors for the semi-Lagrangian calculations.

SLCOMM1 communicates the full halo before the departure point calculations in LAPINEA.

SLCOMM2A uses an “on-demand” scheme to communicate only the required halo points for fields used in
the interpolations in LAPINEB.

The “on-demand” scheme in SLCOMM2A works by using a MASK SL array set in LASCAW which is non-zero
for all points needed in the interpolation. The MASK SL is stored as the superposition in the vertical of
all points required on each level - although different sets of points are needed for each level, having a
single horizontal mask considerably simplifies the buffer creation. Fields which have linear interpolation -
KFIELD TYPE=1 - communicate a 2 × 2 stencil and fields which have cubic interpolation - KFIELD TYPE=2

- communicate a 4 × 4 stencil.

The message passing in SLCOMM2A is in 2 steps: firstly a list of points required by “the processor” is
communicated to the surrounding processors, and then the required points are communicated back from
the surrounding processors to “the processor”.

The packing and unpacking of the message passing buffers is parallelised using OpenMP.

For LIMP NOOLAP=.T. the message passing is done with non-blocking MPI ISENDs, blocking MPI RECVs

followed by a MPI WAIT on the send requests and the message passing is not overlapped with the buffer
creation.

For LIMP NOOLAP=.F. the message passing is allowed to overlap with the buffer packing.

2.3 FOURIER TRANSFORM

For the Fast Fourier Transforms (FFTs), the Fourier coefficients are fully determined for each field from
the gridpoint data on a latitude. The individual latitudes are all independent as are the vertical levels and
the fields. In practice, independence across the fields is not exploited in the current code, so the quantity
of exploitable parallelism is limited to the product of the number of latitudes and the number levels. For
a typical operational resolution T511L60 configuration, this is tens of thousands. This approach allows
an efficient serial FFT routine to be used and precludes fine-grain parallelism which is unavoidable in
parallel FFT implementations.

The decomposition of latitude rows / zonal waves is described in Figure 2.12, where the rows are
distributed as equally as possible across the “W” set. The “W” set’s size, NPRTRW, is almost always
set equal to NPRGPNS, the size of the “A” set in gridpoint space. The distribution of rows over the “W”
set is similar to the distribution of rows over the “A” set in gridpoint space, the major difference being
that there is no concept of “split” rows in wave space, as the FFT algorithm requires a full row of data to
operate on. The variables used to describe the decomposition of latitude rows are detailed in Table 2.3.

Table 2.3 Variables describing the decomposition of Fourier latitudes.

Variable Array dimensions and description

MYSETW Scalar

Which “W” set (zonal waves) this processor is in
(1..NPRTRW)

NDGLL Scalar

Number of Fourier latitude on this processor.
NPROCL (1:NDGL)

The “W” set responsible for a given global Fourier latitude.
NPTRLS (1:NPRTRW)

Global index of first Fourier latitude for a given “W” set.

IFS Documentation – Cy37r2 29



Chapter 2: Parallel implementation

G
l
o
b
a
l
A
r
r
a
y

I
n
d
e
x

N
P
R
O
C
L

N
P
T
R
L
S

(1) 1 1

(2) 1

(3) 1 1

(4) 1

(5) 1

(6) 1

(7) 2 7

(8) 2

(9) 2 2

(10) 2

(11) 2

(12) 2

(13) 3 13

(14) 3

(15) 3 3

(16) 3

(17) 3

(18) 3

M
Y
S
E
T
W
=

N
P
R
T
R
W
=
3

N
D
G
L
L
=
6

N
D
G
L
L
=
6

N
D
G
L
L
=
6

N
D
G
L
G
=
N
D
G
L
=
1
8

P1

P2

P3

Figure 2.12 Decomposition of zonal waves in Fourier space. Shown here is a single (first) vertical level.

The decomposition over levels, which is also shared with the Spectral Transforms/Computations is
described in Figure 2.13, where the vertical levels are distributed as equally as possible across the “V”
set. The “V” set’s size, NPRTRV, is almost always set equal to NPRGPEW, the size of the “B” set in gridpoint
space. The variables used to describe the decomposition of vertical levels are detailed in Table 2.4.

2.4 LEGENDRE TRANSFORM

The spectral wave numbers are distributed in a round-robin fashion over the “W” set as shown in
Figure 2.14. The top half of the figure shows all the wave numbers for an example T21 representation,
with the colours of each zonal wavenumber m indicating which “W” it will belong to. The lower half of
the figure shows the decomposed spectral data (for a single level), with each “W” set having as equal as
possible number of spectral co-efficients.

The variables used to describe the decomposition of spectral wave numbers are shown in Table 2.5.

The spectral data for the Legendre transforms are decomposed vertically, with the same decomposition
as is employed for the FFTs, described in Figure 2.13 and Table 2.4.

In almost all parts of ifs, it is sufficient to have a subset of the spectral coefficients, namely the subset
this processor is responsible for (as shown in Figure 2.14). However, a global view is required when
initial data is read, when post processed spectral fields are gathered, and when the spectral cost function
contributions are accumulated. The global spectral data structure (see Figure 2.15) is designed so that
local parts from each processor (in processor order) within a “W” set are stored next to each other. To
avoid memory waste, the data are stored in a one-dimensional structure.

The variables used to describe this global data structure are shown in Table 2.6.

30 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

N
P
T
R
L
L

N
U
M
L
L

N
P
S
U
R
F

Level 1 NBSETLEB(1)=1 MYLEVS(1)=1 1

Level 2 NBSETLEV(2)=1 MYLEVS(2)=2

Level 3 NBSETLEV(3)=1 MYLEVS(3)=3

Level 4 NBSETLEV(4)=1 MYLEVS(4)=4

1 Level 5 NBSETLEV(5)=1 MYLEVS(5)=5 10 0

Level 6 NBSETLEV(6)=1 MYLEVS(6)=6

Level 7 NBSETLEV(7)=1 MYLEVS(7)=7

Level 8 NBSETLEB(8)=1 MYLEVS(8)=8

Level 9 NBSETLEV(9)=1 MYLEVS(9)=9

Level 10 NBSETLEV(10)=1 MYLEVS(10)=10

Level 11 NBSETLEV(11)=2 MYLEVS(1)=11 11

Level 12 NBSETLEV(12)=2 MYLEVS(2)=12

Level 13 NBSETLEV(13)=2 MYLEVS(3)=13

Level 14 NBSETLEV(14)=2 MYLEVS(4)=14

2 Level 15 NBSETLEV(15)=2 MYLEVS(5)=15 9 1

Level 16 NBSETLEV(16)=2 MYLEVS(6)=16

Level 17 NBSETLEV(17)=2 MYLEVS(7)=17

Level 18 NBSETLEV(18)=2 MYLEVS(8)=18

Level 19 NBSETLEV(19)=2 MYLEVS(9)=19

N
F
L
E
V
L
=
9

N
F
L
E
V
L
=
1
0

M
Y
S
E
T
V
=

N
F
L
E
V
G
=
1
9

N
P
R
T
R
V
=
2

P1

P4

Figure 2.13 Decomposition of vertical levels used in Fourier and spectral space. Shown here is a single
“W” set.

Table 2.4 Variables describing the decomposition of levels in Fourier and spectral space.

Variable Array dimensions and description

MYSETV Scalar

Which “V” set (Vertical levels) this processor is in
(1..NPRTRV)

NFLEVL Scalar

Number of vertical levels on this “V” set.
NPSP Scalar

Set to “1” on the “V” set member containing the
surface pressure (and any other surface fields) which take
part in the spectral transform.

NPSURF (1:NPRTRV)

Contains the value of NPSP for a given “V” set.
NPTRLL (1:NPRTRV+1)

The first level treated by a given “V” set.
(For coding simplicity, NPTRLL(NPRTRV+1) = NPTRLL(NPRTRV))

NUMLL (1:NPRTRV+1)

The number of levels treated by a given “V” set.
(For coding simplicity, NUMLL(NPRTRV+1) = 0)

IFS Documentation – Cy37r2 31



Chapter 2: Parallel implementation

Zonal Wave

Number “m” 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

NPROCM 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3

MYSETW=

1 2 3

MYMS 0 5 6 1
1

1
2

1
7

1
8 1 4 7 1
0

1
3

1
6

1
9 2 3 8 9 1
4

1
5

2
0

2
1

(Index)

(
0
)

(
5
)

(
6
)

(
1
1
)

(
1
2
)

(
1
7
)

(
1
8
)

(
1
)

(
4
)

(
7
)

(
1
0
)

(
1
3
)

(
1
6
)

(
1
9
)

(
2
)

(
3
)

(
8
)

(
9
)

(
1
4
)

(
1
5
)

(
2
0
)

(
2
1
)

NASM0 1 4
5

7
9

1
1
1

1
3
3

1
5
3

1
6
3

1 4
3

7
9

1
0
9

1
3
3

1
5
1

1
6
3

1 4
1

7
9

1
0
7

1
3
3

1
4
9

1
6
3

1
6
7

NUMPP 7 7 8

NPRTRW=3

NUMP=7

NPSPEC=85

NSPEC2=170

NSPEC2MX=170

NUMP=7

NPSPEC=84

NSPEC2=168

NSPEC2MX=170

NUMP=8

NPSPEC=84

NSPEC2=168

NSPEC2MX=170

P1 P2 P3

Figure 2.14 Distribution of zonal wave numbers (T21 spectral triangle).

32 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Table 2.5 Variables describing the decomposition of levels in Fourier and spectral space.

Variable Array dimensions and description

MYMS (1:NUMP)

Ordered list of the zonal wave numbers m on a given
“W” set.

MYSETW Scalar

Which “W” set (spectral waves) this processor is in
(1..NPRTRW)

NASM0 (1:NSMAX)

Address in spectral array of a given zonal wave number m.
For each “W” set, only the subset (NUMP) of wave
numbers on that “W” set are defined.

NPROCM (1:NSMAX)

Gives process which is responsible for Legendre transforms,
NMI and spectral space calculations for a given zonal wave
number m.

NSPEC Scalar
Number of real spectral coefficients on this “W” set.

NSPEC2 Scalar
Number of complex spectral coefficients on this “W” set.
(This is simply 2*NSPEC)

NSPEC2MX Scalar
Maximum number of complex spectral coefficients over the
“W” sets.

NUMP Scalar
Number of spectral wave numbers on this “W” set.

NUMPP (1:NPRTRW)

Number of spectral wave numbers on a given “W” set.

Table 2.6 Variables describing the global representation of spectral data.

Variable Array dimensions and description

NALLMS (1:NSMAX)

Gives the real spectral wave number for a given wave in
the global spectral wave structure.

NDIM0G (0:NSMAX-1)

Gives the index into the global spectral wave structure of
the first coefficient for a given spectral wave number.

NPOSSP (1:NPRTRW)

Gives the index into the global spectral wave structure of
the first wave number of a given “W” set.

NPTRMS (1:NPRTRW)

First wavenumber index of a given “W” set.

IFS Documentation – Cy37r2 33



Chapter 2: Parallel implementation

NALLMS 0 5 6 1
1

1
2

1
7

1
8 1 4 7 1
0

1
3

1
6

1
9 2 3 8 9 1
4

1
5

2
0

2
1

NPTRMS 1 8 1
5

(Index)
(
0
)

(
5
)

(
6
)

(
1
1
)

(
1
2
)

(
1
7
)

(
1
8
)

(
1
)

(
4
)

(
7
)

(
1
0
)

(
1
3
)

(
1
6
)

(
1
9
)

(
2
)

(
3
)

(
8
)

(
9
)

(
1
4
)

(
1
5
)

(
2
0
)

(
2
1
)

NDIM0G 1 4
5

7
9

1
1
1

1
3
3

1
5
3

1
6
3

1
7
1

2
1
3

2
4
9

2
7
9

3
0
3

3
2
1

3
3
3

3
3
9

3
7
9

4
1
7

4
4
5

4
7
1

4
8
7

5
0
1

5
0
5

NPOSSP 1

1
7
1

3
3
9

P1 P2 P3

Figure 2.15 Global representation of T21 spectral triangle.

2.5 SEMI IMPLICIT SPECTRAL CALCULATIONS

The semi implicit spectral calculation have only vertical dependencies so spectral coefficient columns can
be distributed without constraints amongst the NPRTRN(=NPRTRV) processors, as is shown in Figure 2.16.
Unlike the other transforms and transposes we have already discussed, the transpose required for the
semi implicit spectral calculations is not carried out within the TRANS package, but is coded directly in
ifs.

To achieve good load balance, spectral waves are usually cut in the middle (as shown in Figure 2.16).
However, for some configurations (where LIMPF=.TRUE.), there are dependencies between the total wave
number n within a zonal wave number m, and for these cases splitting in the middle of a wavenumber is
not possible, which restricts the load-balanced parallelism to one half of the spectral truncation.

The variables used to describe the decomposition of the semi implicit spectral calculations are shown in
Table 2.7.

34 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

MYSETW=

1 2 3

MYSETN= MYSETN= MYSETN=

1 2 1 2 1 2

MYSETN=1

NPTRSV
1 8
7

1
7
1

MYSETN=2

NPTRSV

1 8
5

1
6
9

NPRTRW=3

NSPEC2=170

P1 P2 P3P4 P5 P4
NSPEC2=168 NSPEC2=168

N
S
P
E
C
2
V
=
8
6

N
S
P
E
C
2
V
=
8
4

N
S
P
E
C
2
V
=
8
4

N
S
P
E
C
2
V
=
8
4

N
S
P
E
C
2
V
=
8
4

N
S
P
E
C
2
V
=
8
4

NPRTRN=2 NPRTRN=2 NPRTRN=2

Figure 2.16 Decomposition of spectral data for the semi implicit calculations.

Table 2.7 Variables describing the decomposition used for the semi implicit spectral calculations.

Variable Array dimensions and description

MYSETN Scalar

Which “N” set (spectral wave coefficients) this processor is in.
(1..NPRTRN)

NPTRSV (1:NPTRW+1

Pointer to first spectral wave column to be handled by each
“W” set.

NSPEC2 Scalar

Total number of complex spectral coefficients on this “W” set.
NSPEC2V Scalar

Number of complex spectral coefficients on this processor.
NVALUE (1:NSPEC2

n (total wave number) value for a given NSPEC2 coefficient on
this processor.

IFS Documentation – Cy37r2 35





Part VI: Technical and Computational Procedures

Appendix A

Structure, data flow and standards

Table of contents
A.1 Command line options

A.2 CDCONF settings

A.3 Control namelists

A.3.1 Index of namelists

A.4 NCONF: IFS configuration parameter

A.5 Initial data

A.6 GMV and GFL structures implementation and usage

A.6.1 GMV structure

A.6.2 GFL structure

A.1 COMMAND LINE OPTIONS

The primary way to control options within ifs is the namelist input file. However, since there are a
very large number of options, it is convenient to be able to specify certain standard configurations in a
simple way by supplying a small number of UNIX style flags on the command line. Any configuration
supplied via the command line will automatically override equivalent namelist supplied configuration.
The available flags are shown in Table A.1.

A.2 CDCONF SETTINGS

Within subroutines STEPO, STEPOAD and STEPOTL, extensive use is made of a character string CDCONF

for controlling the logic flow of transformations between spectral and grid-point space. CDCONF is a 9
character variable where each character controls a specific sub-area within ifs, as indicated in Table A.2.

IFS Documentation – Cy37r2 37



Appendix A: Structure, data flow and standards

Table A.1 Command line options.

Option Namelist Description
Variable

-c NCONF Job Configuration
(see Table A.11 on page 47)

-v LECMWF Model version:
ecmwf or meteo

-e CNMEXP Experiment identifier
(max 4 characters)

-t TSTEP Time step (seconds)
Default set according to model resolution and
advection scheme

-f NSTOP Forecast length:
dxxxxx - run for xxxxx days
hxxxxx - run for xxxxx hours
txxxxx - run for xxxxx timesteps

-a LSLAG / Advection scheme:
LSVENIN eul: Eulerian

sli: Interpolating semi-Lagrangian
slni: Non-interpolating in the vertical,
semi-Lagrangian

-m LUELAM Model type:
arpifs: arpege/ifs
aladin: aladin

Table A.2 CDCONF settings.

Character Sub-area Value Description
position (Description)

1........
IOPACK
(IO handling)

A Write out model level
post-processed data

B Retrieve trajectory information
C Write out pressure level

post-processed data
F “A”+“R”
I Store/write out increment

(incremental 3D/4D Var)
J Read increment (incremental

3D/4D Var)
L Lagged model level

post-processing
R Read restart file
T Store trajectory
V Read in the inputs for

sensitivity job
E,M,U,

Y,Z

FullPos

continued on next page . . .

38 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Table A.2 CDCONF settings (continued . . .).

Character Sub-area Value Description
position (Description)

.2.......

LTINV
(Inverse
Legendre
Transform)

A SPA3 Derivatives & Fourier
Data T0

B SPA5 Derivatives & Fourier
Data T0

C SPA7 Derivatives & Fourier
Data T0

D SPA3 Derivatives & Fourier
Data T5

E SPA5 Derivatives & Fourier
Data T5

F SPA7 Derivatives & Fourier
Data T5

G No SPA3 Derivatives & Fourier
Data T0

H No SPA5 Derivatives & Fourier
Data T0

I No SPA7 Derivatives & Fourier
Data T0

J No SPA3 Derivatives & Fourier
Data T5

K No SPA5 Derivatives & Fourier
Data T5

L No SPA7 Derivatives & Fourier
Data T5

P FullPos

..3......

FTINV
(Inverse
Fourier
Transform)

A T0 Derivatives & Fourier Data
T0

B No T0 Derivatives & Fourier
Data T0

C T5 Derivatives & Fourier Data
T5

D No T5 Derivatives & Fourier
Data T5

I No T1 Derivatives & Fourier
Data T0

P FullPos

...4.....
CPG
(Grid point
computations)

A “Normal” timestep
B Additional computations for

post-processing surface fields
E,F Adiabatic NNMI iteration
M,X NNMI iteration or initial fluxes

continued on next page . . .

IFS Documentation – Cy37r2 39



Appendix A: Structure, data flow and standards

Table A.2 CDCONF settings (continued . . .).

Character Sub-area Value Description
position (Description)

....5....
POS
(Post
processing)

A Pressure level post-processing
H Height (above orography) level

post-processing
T Potential temperature level

post-processing
V Potential vorticity level

post-processing
M Model level post-processing
S Eta level post-processing
L End of vertical post-processing

.....6...

OBS
(Comparison
with
observations)

A Add squares of grid-point values
(analyses error calculation)

B Subtract squares of grid-point
values (analyses error
calculation)

C,V Computation of observation
equivalents (GOM arrays)

G,W Normalisation by standard
deviations of background error

I Grid-point calculations for
canari

X Multiplication by standard
deviations of background error
(inverse of G,W)

Y Modifies the background errors
to have a prescribed global
mean profile and (optionally) to
be separable

Z Generate background errors of
humidity

......7..
FTDIR
(Direct Fourier
Transform)

A Standard transform
B Pressure level post-processing
C Model level post-processing
P FullPos

.......8.

LTDIR
(Direct
Legendre
Transform)

A Standard transform
B Pressure level post-processing
C Model level post-processing
P FullPos
T Tendencies (result in SPT ar-

rays)
G Similar to “A”, but goes from

vorticity and divergence in
Fourier space to spectral space,
instead of starting from the
wind components

continued on next page . . .

40 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Table A.2 CDCONF settings (continued . . .).

Character Sub-area Value Description
position (Description)

........9

SPC
(Spectral
space
computations)

A Semi-implicit and horizontal
diffusion

F Filtering of spectral fields
I Only semi-implicit (for NMI)
P Filtering of FullPos fields

IFS Documentation – Cy37r2 41



Appendix A: Structure, data flow and standards

A.3 CONTROL NAMELISTS

Namelist input is provided in a text file fort.4. Within this file, the namelists can be in any order. The
file is read multiple times to extract the namelist parameters in the order that the ifs code reads them.
All namelists must always be present in fort.4. However, it is permissible for a namelist to be empty
(see NAME2 in the example below). The general format is:

&NAME1

variable_name=value ,

..

/

&NAME2

/

A.3.1 Index of namelists

Tables A.3 to A.10 index the major namelists used by ifs. For further details of the contents of any of
the namelists described here, look in the following files in the ifs source repository:

namelist/na*<namelist name>.h: Definition of all the variables within a namelist.

module/yom<namelist name>.h: fortran module containing all the namelist variables associated with
a namelist, with a description of the purpose/usage of each variable.

Table A.3 Top Level Control Namelists.

Namelist Description Read in
Subroutine

NAMCT0 Control parameters, constant during
model run

SUCT0/SUMPINI

NAMCT1 Overriding control switches SU1YOM

NAMDIF Difference two model states SUDIF

NAMGFL GFL field descriptors SUDIM1

NAMMCC Climate version SUMCC/SUDIM
NAMRCF Restart control file RERESF/WRRESF
NAMRES Restart time parameters SURES

NAMTLEVOL Tangent linear perturbation evolution
switches

SUPHLI

42 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Table A.4 Physics / Radiation Namelists.

Namelist Description Read in
Subroutine

NAEPHY ecmwf Physics SU0PHY

NAERAD ecmwf Radiation SUECRAD

NAMCUMFS Simplified convection scheme SUCUMF

NAMDPHY Physics dimension SUDIM

NAMPHY arpege atmospheric physical
parameters

SU0PHY

NAMPHY0 arpege atmospheric physical
parameters

SUPHY0

NAMPHY1 arpege ground physics parameters SUPHY1

NAMPHY2 arpege vertical physics definition SUPHY2

NAMPHY3 arpege radiation physical constants SUPHY3

NAMPHYDS Physics fields setup SUPHYDS

NAMRAD15 arpege climate version of ecmwf

radiation
SUECRAD15

NAMRCOEF Radiation coefficients control SU0PHY

NAMSIMPH1 arpege linear physics
parameterisation

SU0PHY

NAMSTOPH Parameterisation top limits /
mesospheric drag parameters

SURAND1

NAMTOPH Mesospheric drag parameterisation
(arpege)

SUTOPH

NAMTRAJP ecmwf linear physics SU0PHY

NAMVDOZ arpege physics SUPHY1

NAPH1C Switch for simple physics SU0PHY

Table A.5 Dynamics / Numerics / Grids Namelists.

Namelist Description Read in
Subroutine

NAMCLTC Dimensions of the input grid for SST
NESDIS analysis

INCLITC

NAMDIM Dimension / truncation SUDIM

NAMDYN Dynamics and hyperdiffusion SUDYN

NAMDYNA Dynamics SUDYNA

NAMGEM Transformed sphere (geometry /
coordinate definition)

SUGEM1A/INCLIB

NAMRGRI Reduced grid description SURGRI

NAMSWE Shallow water configuration SUSPECB

NAMVV1 Vertical co-ordinate descriptor SUVERT

IFS Documentation – Cy37r2 43



Appendix A: Structure, data flow and standards

Table A.6 Assimilation / Initialisation / Observation Namelists.

Namelist Description Read in
Subroutine

NAMANCS Analysis constants SUEDFI

NAMDFI Digital filtering control SUEDFI

NAMDMSP Satellite data descriptor GETSATID

NAMGMS Satellite data descriptor GETSATID

NAMGOES Satellite data descriptor GETSATID

NAMHCP Hours of synoptic reference trajectory
corrections

SUHCP

NAMINI Overriding switches for initialization SUEINI

NAMJG Assimilation, first guess constraint SUJB

NAMJO Jo control DEFRUN

NAMLCZ Lanczos eigensystem SULCZ

NAMMETEOSAT Satellite data descriptor GETSATID

NAMMKODB Make ODB run parameters DEFRUN/OBADAT
NAMMODERR Model error coefficients SUDIM1

NAMMTS TOVS radiation SUMTS

NAMNASA NASA satellite IDs GETSATID

NAMNMI Normal mode initialisation SUNMI

NAMNN Neural network bias correction SUNNE

NAMNUD Nudging SUNUD

NAMOBS Observation control DEFRUN

NAMRINC Incremental Variational description SURINC

NAMSCC Observation screening control DEFRUN

NAMSENS Sensitivity job SUVAR

NAMSKF Simplified Kalman Filter SUSKF

NAMSSMI SSMI Parameters INISSMIP

NAMTESTVAR VAR test configuration TESTVAR

NAMTOVS Satellite data descriptor GETSATID

NAMVAR Variational assimilation SUVAR

NAMVARBC Variational bias correction parameters SUVARBC

NAMVFP Variable LARCHFP SUVAR

NAMVRT1 Switches for variational assimilation SUVAR

44 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Table A.7 Diagnostic / Post-Processing Namelists.

Namelist Description Read in
Subroutine

NAMAFN FullPos SUAFN

NAMCAPE FullPos CAPE calculation SUCAPE

NAMCFU Flux accumulation control SUCFU

NAMCHET Diagnostics on physical tendencies SUCHET

NAMCHK Grid -point evolution diagnostics SUECHK

NAMDDH Diagnostic (horizontal domain) SUNDDH

NAMFPC FullPos SUFPC

NAMFPD FullPos SUFPD

NAMFPDYH FullPos SUFPDYN

NAMFPDYP FullPos SUFPDYN

NAMFPDYS FullPos SUFPDYN

NAMFPDYT FullPos SUFPDYN

NAMFPDYV FullPos SUFPDYN

NAMFPF FullPos SUFPF

NAMFPG FullPos SUFPG1

NAMFPIOS FullPos SUFPIOS

NAMFPPHY FullPos SUFPPHY

NAMFPSC2 FullPos SUFPSC2

NAMPPC Post-processing control SUPP

NAMSCM Single Column Model profile
extraction

SUSCM

NAMSTA Temperature extrapolation
configuration

SUSTA

NAMXFU Instantaneous flux control SUXFU

Table A.8 I/O Namelists.

Namelist Description Read in
Subroutine

NAMFA GRIB packing options SUFA

NAMGRIB GRIB coding descriptor SUGRIB

NAMIOMI Minimisation I/O scheme SUIOS

NAMIOS I/O control SUIOS

NAMOPH Permanent file information SUOPH

NAMVWRK I/O scheme for trajectory SUVWRK

Table A.9 Computational Namelists.

Namelist Description Read in
Subroutine

NAM DISTRIBUTED VECTORS Initialize chunksize for
distributed vectors

SUMPINI

NAMPAR0 Parallel version control SUMPINI

NAMPAR1 Parallel version control SUMP0

IFS Documentation – Cy37r2 45



Appendix A: Structure, data flow and standards

Table A.10 Other Namelists.

Namelist Description Read in
Subroutine

NACOBS canari DEFRUN

NACTAN Analysis area for canari DEFRUN

NACTEX canari CANALI

NACVEG canari CANALI

NAIMPO canari CANALI

NALORI canari CANALI

NAM CANAPE canariCANAPE parameters CANALI

NAMCLA Climatological constants INCLI0

NAMCLI Climatological constants INCLI0

NAMCOK canari CANALI

NAMMCUF Digital filter specification SUMCUF

NAMPONG Vertical plane sponge configuration SUPONG

NAMPRE canari CANAMI

NAMRIP Real time parameters SURIP

NAMTRANS Transform configuration SUTRANS

46 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

A.4 NCONF: IFS CONFIGURATION PARAMETER

The NCONF parameter is supplied by the namelist namct0 (see Table A.3 on page 42), or this value can be
overridden on the command line (using the “-n” option, see Table A.1 on page 38). NCONF controls the
function of any single execution of the ifs. Table A.11 describes the valid values for NCONF. An “[O]” or
an “[R]” in the description indicates the configuration is routinely used in an Operational or Research
context respectively.

Table A.11 NCONF: ifs Configuration Parameter.

Configuration Control NCONF Model Description
(NCONF range) routine value

Integration
(0-99)

CNT1

1
[O] 3D primative equation (P.E.)
model

2
[O] 3D P.E. model and
comparison with observations
(LOBSC1=.TRUE.)

Variational Analysis
CVA1 131 [O] Incremental 3D/4D-Var

(100-199)

2D Integration
(200-299)

CNT1

201 [R] Shallow water model
202 Vorticity equation model
203 Linear gravity wave model

Test of the adjoint
(400-499)

CAD1

401 [R] Test of adjoint with
3D P.E. model

421 [R] Test of adjoint with
shallow water model

Test of the tangent
linear model
(500-599)

CTL1

501 [R] Test of tangent linear
with 3D P.E. model

521 [R] Test of tangent linear
with shallow water model

Eigenvalue / vector
CUN1 601

[O] Eigenvalue/vector solver
(singular vector comp.)

solvers for unstable
model (600-699)

canari Optimal
CAN1 701

Optimal interpolation with
canari

interpolation
(700-799)

Sensitivity
(800-899)

CGR1

801 [O] Sensitivity with 3D P.E. model

821
Sensitivity with shallow water
model

Preparation of
Initial Conditions /
Interpolations
(900-999)
(Météo-France only)

CPREP1 901 Converts GRIB file to FA file
CPREP5 903 Convert from MARS (un-gribbed)

to FA (unrotated)
CPREP1 911 Converts GRIB file to FA file
CPREP1 912 Converts GRIB file to FA file
INCLIO 923 Initialisation of climatological fields

926 Change of geometry
INCLITC 931 NESDIS sea surface temperature
CSEAICE 932 Compute Sea ice concentration field
CORMASS 940 Compute mass correction
CPREP2 951 Difference between two model states
CPREP3 952 Compute wind and grid-point fields
CPREPAD 953 Compute grid-point gradient fields

IFS Documentation – Cy37r2 47



Appendix A: Structure, data flow and standards

A.5 INITIAL DATA

The starting conditions are supplied to the ifs in a number of files which follow a specific naming
convention. The file names used and their contents vary according to the model configuration being run.
In the following descriptions an experiment identifier xxid consisting of any four alphanumeric characters
is used. Note that the arpege version of the ifs (LECMWF=.FALSE. in namelist NAMCT0) uses different file
names and file formats and is not documented here.

The initial fields are supplied in GRIB format and contained in the files described below.

ICMSHxxidINIT Contains upper-air spectral format fields on model levels

Individual fields are selected based on the GFL attribute, particularly the LSP and LGP attributes
which specifies if a given field is in grid point or spectral space (see Table A.16 on page 53).

These fields are read from the file in the routine SUSPECG.

Table A.12 ICMSHxxidINIT: Upper-air spectral format fields.

ECMWF IFS variable
GRIB code (GRIB name) Description Levels

129 NGRB<Z> Geopotential 1
152 NGRB<LNSP> Log surface pressure 1
130 NGRB<T> Temperature NFLEV
133 NGRB<Q> Specific humidity NFLEV
138 NGRB<VO> Vorticity (relative) NFLEV
155 NGRB<D> Divergence NFLEV
203 NGRB<O3> Ozone NFLEV

ICMGGxxidINIT Contains surface fields on the model Gaussian grid.

These fields are read from the file in the routine SUGRIDG.

Table A.13 ICMGGxxidINIT: Surface fields on model Gaussian grid.

ECMWF IFS variable
GRIB code (GRIB name) Description

27 NGRB<CVL> Low vegetation cover
28 NGRB<CVH> High vegetation cover
29 NGRB<TVL> Type of low vegetation
30 NGRB<TVH> Type of high vegetation
31 NGRB<CI> Sea-ice cover
32 NGRB<ASN> Snow albedo
33 NGRB<RSN> Snow density
34 NGRB<SSTK> Sea surface temperature
35 NGRB<ISTL1> Ice surface temperature: Layer 1
36 NGRB<ISTL2> Ice surface temperature: Layer 2
37 NGRB<ISTL3> Ice surface temperature: Layer 3
38 NGRB<ISTL4> Ice surface temperature: Layer 4
39 NGRB<SWVL1> Volumetric soil water: Layer 1
40 NGRB<SWVL2> Volumetric soil water: Layer 2
41 NGRB<SWVL3> Volumetric soil water: Layer 3
42 NGRB<SWVL4> Volumetric soil water: Layer 4

129 NGRB<Z>
Geopotential (at the surface
orography)
(If not provided in a spectral field)

continued on next page . . .

48 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Table A.13 ICMGGxxidINIT: Surface fields on model Gaussian grid. (continued . . .)

ECMWF IFS variable
GRIB code (GRIB name) Description

139 NGRB<STL1> Soil temperature: Layer 1
141 NGRB<SD> Snow depth

148 NGRB<CHNK>
Charnock parameter
(Coupled wave model only: LWCOU and
LWCOU2W)

159 NGRB<NGRBBLH> Boundary layer height
160 NGRB<SDOR> Standard deviation of orography
161 NGRB<ISOR> Anisotropy of sub-gridscale orography
162 NGRB<ANOR> Angle of sub-gridscale orography
163 NGRB<SLOR> Slope of sub-gridscale orography
170 NGRB<STL2> Soil temperature: Layer 2
172 NGRB<LSM> Land-sea mask
173 NGRB<SR> Surface roughness
174 NGRB<AL> Albedo
183 NGRB<STL3> Soil temperature: Layer 3
198 NGRB<SRC> Skin reservoir content
234 NGRB<LSRH> Logarithm of surface roughness length

for heat
235 NGRB<SKT> Skin temperature
236 NGRB<STL4> Soil temperature: Layer 4
238 NGRB<TSN> Temperature of snow layer

ICMGGxxidINIUA Contains upper air fields in grid point space.

All fields in this file have NFLEV levels.

Table A.14 shows only the “guaranteed” fields. The GFL fields are also included in this file, and are
read in as directed by the GFL attributes. For further details, see the routine SUGRIDUG where this
file is read in.

Table A.14 ICMGGxxidINIUA: Upper air fields in grid point space.

ECMWF IFS variable
GRIB code (GRIB name) Description

246 NGRB<CLWC> Cloud liquid water content
247 NGRB<CIWC> Cloud ice water content
248 NGRB<CC> Cloud cover

ICMCLxxidINIT Contains climate forcing surface fields on the model Gaussian grid.

These fields are used in “perfect surface” long (climate) integrations. In such integrations the surface
conditions subject to seasonal variations (which in a normal forecast integration would be defined
by the data assimilation and kept constant during the forecast) are changed regularly during the
integration, based on the values contained in the file.

Note that the fields in the file must follow a certain pattern, otherwise the model will fail in the
first time step. The fields must be in ascending time order, and the time spanned by them should
be large enough to cover the model integration period. Furthermore, they should come at regular
intervals, either every nth day (LMCCIEC1 =.FALSE., or every month (LMCCIEC=.TRUE.).

1LMCCIEC, defined in namelist NAMMCC (see Table A.3 on page 42) is set to .TRUE. (the default value) if the climate fields
are to be interpolated in time.

IFS Documentation – Cy37r2 49



Appendix A: Structure, data flow and standards

Routine SUMCC initialises switches for the climate configuration, and selects which fields will be
required, storing the required GRIB codes in the array NCLIGC (in module YOMMCC). Routine UPDCLIE
is called throughout the climate integration, and reads in the required fields from the file, and uses
them to update the model fields. Alternatively, if the oasis coupler is used, then the SST and sea
ice data are obtained from the oasis coupler rather than the file.

Table A.15 ICMCLxxidINIT: Climate surface fields on model Gaussian grid.

ECMWF
GRIB code GRIB name Description

31 CI Sea-ice fraction
139 STL1 Soil temperature: Layer 1
174 AL Albedo

50 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

A.6 GMV AND GFL STRUCTURES
IMPLEMENTATION AND USAGE

A.6.1 GMV structure

(a) GMV code implementation

There are three fortran modules used by the GMV implementation:

YOMGV Contains the main grid-point GMV arrays, which are all allocatable arrays with one of two different
layouts:

• Multilevel arrays, dimensioned: (NPROMA2, NFLEVG3, nflds4, NGPBLKS5):

GMV : Multilevel fields at t and t − dt

GMVT1 : Multilevel fields at t + dt

GMV5 : Multilevel fields trajectory

GMV DEPART : Multilevel fields departure (for 3D FGAT)

YT0, YT9, YT1, YPH9, YT5, YAUX : “pointers” to fields

• Single level arrays, dimensioned: (NPROMA, nflds, NGPBLKS) [all single level variable names end
in “S”]:

GMVS : Single level fields at t and t − dt

GMVT1S : Single level fields at t + dt

GMV5S : Single level fields trajectory

GMVS DEPART : Single level fields departure (for 3D FGAT)

TYPE GMVS Contains the type description of the user defined types used to address the GMV arrays (YT0,
YT9, YT1, YPH9, YT5 and YAUX).

GMV SUBS Contains subroutines used for setting up the GMV structure.

(b) GMV usage

The addressing of individual GMV fields is done using the user-defined types YT0, YT9, YT1, YPH9 and YT5

for the different time levels. The following code fragment taken from the time filtering for the Eulerian
model (GPTF1) illustrates its usage:

PGMV(JL,JK ,YT9%MU) = REPS1*PGMV(JL ,JK ,YT9%MU) + &

& ZREST*PGMV(JL ,JK ,YT0%MU)

PGMV(JL,JK ,YT9%MV) = REPS1*PGMV(JL ,JK ,YT9%MV) + &

& ZREST*PGMV(JL ,JK ,YT0%MV)

PGMV(JL,JK ,YT9%MDIV) = REPS1*PGMV(JL ,JK ,YT9%MDIV) + &

& ZREST*PGMV(JL ,JK ,YT0%MDIV)

The “pointers” MU, MV and MDIV point to u, v and divergence. The user-defined types YT0 and YT9 indicate
the time levels t and t − dt respectively. As this code is taken from a subroutine where a specific NPROMA

block of grid points has been passed down, the forth dimension of GMV (the block number) is absent.

A.6.2 GFL structure

(a) GMV code implementation

There are three modules used in the GFL implementation:

2NPROMA: Size of a “computational block” (see Chapter 2 for more details).
3NFLEVG: Number of vertical levels.
4nflds: Total number of fields stored within this array.
5NGPBLKS: Number of NPROMA blocks each level is split in to.

IFS Documentation – Cy37r2 51



Appendix A: Structure, data flow and standards

YOMGFL Contains the main grid-point GFL arrays, which are all allocatable arrays with the same layout:
(NPROMA , NFLEVG , nflds , NGPBLKS)
where only nflds varies from array to array. The spectral counterpart to the GFL grid-point array,
SPGFL can be found in module YOMSP.

GFL : GFL array for t and t − dt

GFLT1 : GFL array for t + dt

GFLSLP : GFL array used by semi-Lagrangian physics

GFL5 : GFL array for trajectory

GFL DEPART : GFL array for departures (3D FGAT)

TYPE GFLS Contains the type definitions for structures holding the GFL attributes. There are three type
definitions:

TYPE GFLD : Overall descriptor, dimensions etc.

TYPE GFL COMP : Individual field attributes

TYPE GFL NAML : Individual field attributes for NAMELIST input

GFL SUBS Contains the subroutines for setting up the GFL structure

YOM YGFL Contains the structures holding the GFL attributes. There is one, YGFL of type TYPE GFLD,
and a number of structures of type TYPE GFL COMP.

YGFLC : An array containing the descriptors of all GFL components. All other individual component
descriptors are pointers into this array

YQ : Specific humidity - q

YI : Ice water - qi

YL : Liquid water - ql

YA : Cloud fraction - a

YO3 : Ozone - O3

YEXT(:) : Extra variables

(b) GFL usage: attributes and pointers

One of the main concepts introduced with the GFL structure is the use of attributes to govern
the behaviour of the individual components contained within it. The intention is that the individual
components of GFL (i.e. ozone) should only be referred to when absolutely necessary, e.g. when calling
an ozone chemistry routine. In all other instances the following approach should be followed: loop over
all fields in the GFL structure and perform the action defined by the setting of the appropriate GFL
attribute. A typical example is shown below, taken from the Eulerian dynamics:

DO JGFL=1,YGFL%NUMFLDS ! All fields in the GFL

IF (YGFKC(JGFL)%LCDERS .AND. & ! horionztal derivs

& YGFKC(JGFL)%LADV) THEN ! advected field

DO JLEV=1,NFLEVG -1 ! Vertical levels

DO JROF=KSTART ,KPROF ! Horizontal dimension

ZDT=PDT*PVCASRSF(JROF ,JLEV)

PGFLT1(JROF ,JLEV ,YGFLC(JGFL)%MP1) = &

& PGFLT1(JROF ,JLEV ,YGFLC(JGFL)%MP1)-ZDT* &

& (PGFL(JROF ,JLEV ,YGFLC(JGFL)%MPL)*PUT0(JROF ,JLEV) &

& +PGFL(JROF ,JLEV ,YGFLC(JGFL)%MPM)*PVT0(JROF ,JLEV))

ENDDO

ENDDO

ENDIF

ENDDO

52 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Here, the two attributes LCDERS (field has horizontal derivatives) and LADV (field to be advected) are
tested in order to decide whether to horizontally advect the field or not. The advantage of this approach
is twofold; when a new component is introduced the routine in question does not have to be modified
and the coding becomes more compact.

The above example also shows the use of the GFL field “pointers” where the following pointers have been
used:

YGFLC(JGFL)%MP1 : Points to the location of field JGFL in the t + dt GFL array (PGFLT1)

YGFLC(JGFL)%MPL : Points to the location of the zonal derivative of field JGFL in the main GFL array
(PGFL)

YGFLC(JGFL)%MPM : Points to the location of the meridional derivative of field JGFL in the main GFL
array (PGFL)

The use of these pointers is compulsory as the layout of the different GFL arrays is different and often
contains more fields than there are components in the GFL structure.

The following tables show the general attributes (Table A.16) and pointers (Table A.17). When it is
realised that the existing attributes and/or pointers are not sufficient for a piece of code it is important
that a new attribute/pointer is added rather than relying on some other ad. hoc. switch, or writing
code for a specific component of GFL, when (theoretically) the same code could apply to other GFL
components.

Table A.16 GFL attributes.

Attribute Description

CNAME arpege field name
CSLINT Semi-Lagrangian interpolation “type”
IGRBCODE Gribcode of the field
LACTIVE True if field is in use
LADJUST0 True if field is thermodynamically adjusted at t

[LAM specific (arome/aladin)]
LADJUST1 True if field is thermodynamically adjusted at t + dt

[LAM specific (arome/aladin)]
LADV True if field is to be advected
LBIPER True if the field must be biperiodised inside the

transforms [LAM specific (arome/aladin)]
LCDERS True if derivatives are required
LCOUPLING True if field is to be coupled by Davies relaxation

[LAM specific (arome/aladin)]
LGP True if field is a grid-point field
LGPINGP True if grid-point field input as grid-point
LREQIN True if field required in input
LSP True if field is a spectral field
LSLP True if field has S.L. physics representation
LT1 True if field has t + dt representation
LT5 True if field forms part of trajectory
LT9 True if field has t − dt representation

(c) Adding a new attribute

(i) Add the attribute to the type definition (TYPE GFL COMP in module TYPE GFLS).

IFS Documentation – Cy37r2 53



Appendix A: Structure, data flow and standards

Table A.17 GFL pointers.

Pointer Description

MP Basic field
MPL Zonal derivative
MPM Meridional derivative
MPSLP Semi-Lagrangian physics
MPSP Spectral space
MP1 Field at t + dt
MP5 Trajectory
MP5L Zonal derivative - trajectory
MP5M Meridional derivative - trajectory
MP9 Field at t − dt
MP SPL Spline interpolation
MP SL1 Field in SLBUF1

(ii) Update one of the setup routines (DEFINE GFL COMP or SET GFL ATTR in module GFL SUBS). It is
preferable to use routine SET GFL ATTR unless the attribute has to be known very early in the setup
stage.

(iii) Use the attribute.

(d) Adding a new component

(i) Add the new component in module YOM YGFL

(ii) Decide the required attributes and setup the component by adding calls to routines
DEFINE GFL COMP and SET GFL ATTR for the new component.

(e) Time stepping

The time stepping of the variables with a spectral representation (all GMV prognostic variables and
optionally part of GFL) takes place implicitly during the spectral transforms. The input for the inverse
transforms are the spectral arrays (SPA3 and SPA2) and the output is the t part of GMV and GFL. The
t + dt GMV and GFL arrays (GMV1, GMVT1S and GFLT1) are created in grid-point space and transformed
back to spectral space (SPA3 and SPA2) by the direct transforms. The time stepping of the pure grid-point
GFL variables takes place at the end of SCAN2MDM (a simple copy from GFLT1 to GFL).

54 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Appendix B

Message Passing Library (MPL)

Table of contents
B.1 Introduction

B.2 MPL ABORT

B.3 MPL BARRIER

B.4 MPL BROADCAST

B.5 MPL BUFFER METHOD

B.6 MPL COMM CREATE

B.7 MPL END

B.8 MPL INIT

B.9 MPL MESSAGE

B.10 MPL MYRANK

B.11 MPL NPROC

B.12 MPL PROBE

B.13 MPL RECV

B.14 MPL SEND

B.15 MPL WAIT

B.1 INTRODUCTION

In the past, it has proved very beneficial to have a subroutine layer between the application code and the
message passing library calls themselves. Benefits include:

• Some details (e.g. error handling) can be hidden.
• Flexibility is enhanced since changes can be made (e.g. vendor specific code) without impacting the

application code.

mpl supersedes the original mpe library developed for IFS use. It provides for greater flexibility and
future enhancement. In particular, it provides support for several different flavours of mpi point-to-point
message-passing techniques. This version supports:

• Blocking-standard.
• Blocking-buffered.
• Non-blocking-standard.

Several fortran 90 language features are utilised:

• By using MODULEs, optional keyword parameters allow subroutine parameter lists to be considerably
shortened without losing flexibility.

• Data is passed as a fortran 90 object so that the type and length of the message content is
deduced by the routine. The following data types are supported:

IFS Documentation – Cy37r2 55



Appendix B: Message Passing Library (MPL)

REAL*4 : 1 or 2 dimensional arrays

REAL*8 : 1 or 2 dimensional arrays

INTEGER 1 : Scalar

All routines which wish to call MPL routines must contain:

USE MPL MODULE

This permits errors in the calling sequence to be identified at compile time.

The process numbering convention used in the application is assumed to begin with 1. mpi uses a
numbering convention commencing with 0. Therefore, all mpl routines which refer to a process number
subtract one from the user supplied value before passing to the relevant MPI routine.

In the following descriptions of mpl parameters, the interface description includes only the required
parameters. Keywords are in UPPER CASE, user supplied values are in lower case.

The choice of keywords follows the source code naming conventions used within ifs for subroutine
parameters (see Table 1.2 on page 8):

• INTEGERs commence with K

• REAL commence with P

• CHARACTER commence with CD

• LOGICAL commence with LD

1All references to type INTEGER in this appendix refer to the default INTEGER type for the particular platform being used.

56 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

B.2 MPL ABORT

Aborts from a parallel environment with an (optional) message

Purpose

Called to terminate a parallel execution and print a suitable message.

Interface

CALL MPL ABORT

Input Arguments

Required
None

Optional

CDMESSAGE

Character string to be printed

Output Arguments

Required
None

Optional
None

IFS Documentation – Cy37r2 57



Appendix B: Message Passing Library (MPL)

B.3 MPL BARRIER

Barrier synchronisation

Purpose

Blocks the caller until all group members have called it

Interface

CALL MPL BARRIER

Input Arguments

Required
None

Optional

KCOMM

Communicator number if different from MPI COMM WORLD or from that established as the
default by an mpl communicator routine

CDSTRING

Character string for ABORT messages used when KERROR is not provided

Output Arguments

Required
None

Optional

KERROR

Return error code
If not supplied, MPL BARRIER aborts when an error is detected.

58 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

B.4 MPL BROADCAST

Message Broadcast

Purpose

Broadcasts a message from the process with rank KROOT to all processes in the group.
NOTE: Unlike MPI BCAST, only the KROOT process sends the message.
Messages are sent assuming a process numbering convention of 1 to N unless an alternative has
been supplied to MPL BUFFER METHOD (KPROCIDS=...)

Interface

CALL MPL BROADCAST (buffer,KTAG=itag,KROOT=iroot)

Alternatives are: PBUF=buffer, or KBUF=ibuffer

Input Arguments

Required

PBUF

Buffer containing message
(may be type (REAL*4), REAL*8 or INTEGER).

KTAG

Message tag.

KROOT

Root process number.

Optional

KCOMM

Communicator number if different from MPI COMM WORLD or from that established as the
default by an mpl communicator routine

CDSTRING

Character string for ABORT messages used when KERROR is not provided

Output Arguments

Required
None

Optional

KERROR

Return error code
If not supplied, MPL BROADCAST aborts when an error is detected.

IFS Documentation – Cy37r2 59



Appendix B: Message Passing Library (MPL)

B.5 MPL BUFFER METHOD

Establish message passing default method

Purpose

Optional Routine
Override the message passing default method and allocate an attached buffer if required.

Interface

CALL MPL BUFFER METHOD (KMP TYPE=itype)

Input Arguments

Required

KMP TYPE

Buffering type, possible values (defined as parameters in MPL DATA MODULE) are :

• JP BLOCKING STANDARD (default for VPP platforms)
• JP BLOCKING BUFFERED (default for all other platforms)

Optional

KMBX SIZE

Size (in bytes) of attached buffer
(Only if KMP TYPE= JP BLOCKING BUFFERED)

KPROCIDS

Array of processor identifiers.
For use if the application uses a processor numbering convention different from 1 to N.

Output Arguments

Required
None

Optional

KERROR

Return error code
If not supplied, MPL BUFFER METHOD aborts when an error is detected.

60 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

B.6 MPL COMM CREATE

Create a new communicator

Purpose

Create a new communicator and set as default

Interface

CALL MPL COMM CREATE

DEFERRED IMPLEMENTATION

IFS Documentation – Cy37r2 61



Appendix B: Message Passing Library (MPL)

B.7 MPL END

Terminate a parallel execution

Purpose

Cleans up all of the mpi state.
Subsequently, no other mpi routine can be called.
(MPL END may be called more than once.)

Interface

CALL MPL END

Input Arguments

Required
None

Optional
None

Output Arguments

Required
None

Optional

KERROR

Return error code
If not supplied, MPL END aborts when an error is detected.

62 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

B.8 MPL INIT

Initialises the Message passing environment

Purpose

Must be called before any other mpl routine.
(MPL INIT may be called more than once.)

Interface

CALL MPL INIT

Input Arguments

Required
None

Optional

KOUTPUT

Level of printing for mpl routines:

=0 : None

=1 : Intermediate (Default)

=2 : Full trace

KUNIT

fortran unit to receive printed trace.

Output Arguments

Required
None

Optional

KERROR

Return error code
If not supplied, MPL INIT aborts when an error is detected.

KPROCS

Number of processes which have been initialised in the MPI COMM WORLD communicator.

IFS Documentation – Cy37r2 63



Appendix B: Message Passing Library (MPL)

B.9 MPL MESSAGE

Prints message

Purpose

Creates an ascii message for printing and optionally aborts.
(Used from within other mpl routines.)

Interface

CALL MPL MESSAGE(CDMESSAGE=’.....’)

Input Arguments

Required

CDMESSAGE

Character string containing message

Optional

KERROR

Error number

CDSTRING

Optional additional message prepended to CDMESSAGE.

LDABORT

Forces ABORT if .TRUE.

Output Arguments

Required
None

Optional
None

64 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

B.10 MPL MYRANK

Find rank in current communicator

Purpose

Returns the rank of the calling process in the currently active communicator.

Interface

IRANK = MPL MYRANK()

Input Arguments

Required
None

Optional
None

Output Arguments

Required
None

Optional
None

IFS Documentation – Cy37r2 65



Appendix B: Message Passing Library (MPL)

B.11 MPL NPROC

Find number of processors in current communicator

Purpose

Returns the number of processes in the currently active communicator.

Interface

INUMP = MPL NPROC()

Input Arguments

Required

KCOMM

Communicator number if different from MPI COMM WORLD.

Optional
None

Output Arguments

Required
None

Optional
None

66 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

B.12 MPL PROBE

Check for incoming message.

Purpose

Look for existence of an incoming message.

Interface

CALL MPL PROBE

Input Arguments

Required
None

Optional

KSOURCE

Rank of process sending the message.
(Default is MPI ANY SOURCE.)

KTAG

Tag of incoming message.
(Default is MPI ANY TAG.)

KCOMM

Communicator number.
(Default is MPI COMM WORLD.)

LDWAIT

C

ontrols the blocking behaviour:

=.TRUE. : Waits for a message to be available (Default).

=.FALSE. : Return immediately and set LDFLAG to indicate if a message exists.

CDSTRING

Character string for ABORT messages used when KERROR is not provided.

Output Arguments

Required
None

Optional

KERROR

Return error code
If not supplied, MPL PROBE aborts when an error is detected.

LDFLAG

Must be supplied if LDWAIT=.TRUE.
Returns .TRUE. if a message exists.

IFS Documentation – Cy37r2 67



Appendix B: Message Passing Library (MPL)

B.13 MPL RECV

Receive a message

Purpose

Receive a message from a named source into a buffer.
The data may be:

• Scalar REAL or INTEGER.
• 1D Array of REAL*4, REAL*8 or INTEGER.
• 2D Array of REAL*4 or REAL*8.

Interface

CALL MPL RECV(buffer)

Alternatively, PBUF=buffer or KBUF=ibuf.

Input Arguments

Required

PBUF

Buffer to receive the message.
(Can be of type REAL*4, REAL*8 or INTEGER.)

Optional

KTAG

Message tag.
(Default is MPI ANY TAG.)

KCOMM

Communicator tag.
(Default is MPI COMM WORLD.)

KMP TYPE

Buffering type.
(Default is the value provided to MPL BUFFER METHOD.)

KSOURCE

Rank of process sending the message.
(Default is MPI ANY SOURCE.)

CDSTRING

Character string for ABORT used when KERROR is not provided.

Output Arguments

Required
None

Optional

KREQUEST

Communication request identifier (required when buffering type is non-blocking).

KFROM

Rank of process sending the message.

KRECVTAG

Tag of received message.

68 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

KOUNT

Number of items in received message.

KERROR

Return error code
If not supplied, MPL RECV aborts when an error is detected.

IFS Documentation – Cy37r2 69



Appendix B: Message Passing Library (MPL)

B.14 MPL SEND

Send a message

Purpose

Send a message to a named source from a buffer.
The data may be:

• Scalar REAL or INTEGER.
• 1D Array of REAL*4, REAL*8 or INTEGER.
• 2D Array of REAL*4 or REAL*8.

Interface

CALL MPL SEND(buffer,KTAG=itag,KDEST=iproc)

Alternatively, PBUF=buffer or KBUF=ibuffer.

Input Arguments

Required

PBUF

Buffer containing message.
(Can be of type REAL*4, REAL*8 or INTEGER.)

KTAG

Message tag.

KDEST

Rank of process to receive the message.

Optional

KCOMM

Communicator tag.
(Default is MPI COMM WORLD or the default established by an mpl communicator routine.)

KMP TYPE

Buffering type.
(Default is the value provided to MPL BUFFER METHOD.)

CDSTRING

Character string for ABORT used when KERROR is not provided.

Output Arguments

Required
None

Optional

KREQUEST

Communication request identifier (required when buffering type is non-blocking).

KERROR

Return error code
If not supplied, MPL SEND aborts when an error is detected.

70 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

B.15 MPL WAIT

Waits for completion

Purpose

Returns control when the operation(s) identified by the request is completed.
Normally used in conjunction with non-blocking buffering type.

Interface

CALL MPL WAIT(buffer,KREQUEST=ireq)

Alternatively, PBUF=buffer or KBUF=buffer.

Input Arguments

Required

PBUF

Array with same size and shape as buffer.
Used for MPL SEND or MPL RECV.

KREQUEST

Scalar or array containing communication request identifier(s) as provided by MPL SEND

or MPL RECV.

Optional

CDSTRING

Character string for ABORT used when KERROR is not provided.

Output Arguments

Required
None

Optional

KOUNT

Number of items in received message.

KERROR

Return error code
If not supplied, MPL WAIT aborts when an error is detected.

IFS Documentation – Cy37r2 71





Part VI: Technical and Computational Procedures

Appendix C

The TRANS package

Table of contents
C.1 Introduction

C.2 SETUP TRANS0

C.3 SETUP TRANS

C.4 DIR TRANS

C.5 DIR TRANSAD

C.6 INV TRANS

C.7 INV TRANSAD

C.8 TRANS END

C.9 TRANS INQ

C.10 Examples

C.1 INTRODUCTION

As from cycle 23r4 the spectral transforms have been broken out of the ifs to form a separate library
(libtrans), the source residing in its own VOB (trans). There are several reasons for this change. One
is to make the ifs more modular, the transforms form a non-scientific part that could easily be separated
from the rest. Another reason is to make the efficient spectral transforms previously buried within the
ifs usable by other codes.

The routines in the transform package are divided into two groups, externally callable routines and
internal routines. The internal routines are all fortran 90 module procedures and are not described in
this documentation. The externally callable routines are not module procedures but an explicit interface
block is needed in order to call them. This makes it possible to use fortran 90 features like assumed
shape arrays and optional arguments. The interface blocks can all be found in the trans VOB (in the
interface directory). The assumed shape arrays are used to avoid having to pass dimensions and to ensure
that arrays are dimensioned correctly. When calling a transform routine it always transforms the whole
of the arrays passed, e.g.
CALL INV TRANS(PSPSCALAR=SPEC,PGP=GP)

would transform all the fields of SPEC into GP. The spectral array passed into the transform routines must
be of rank 2, the first dimension for the number of fields and the second for the spectral coefficients.

In the following description of the individual routines, where arguments are arrays, “(:,...)” is used
to show the rank of the array. Following ifs coding norms argument names starting with “K” denotes
integer arguments, starting letter “P” indicates real arguments and “L” logical arguments. Arguments
names in italics indicate that the argument in question is only of interest in the case of using more than
one processor. When the word “GLOBAL” is used in the following documentation it refers to viewing
the data as a whole, not the part of it that is available on an individual processor in the distributed case.

Some examples are given after the description of the routines to demonstrate their typical usage.

IFS Documentation – Cy37r2 73



Appendix C: The TRANS package

C.2 SETUP TRANS0

General setup routine for transform package.

Purpose

Resolution independent part of setup of transform package. Must be called before SETUP TRANS.

Interface

CALL SETUP TRANS0(...)

Input Arguments

Required
None

Optional

KOUT

Unit number for listing output. (Default : 6 )

KERR

Unit number for error messages. (Default : 0 )

KPRINTLEV

Level of output to KOUT:
0 : No output
1 : Normal output
2 : Debug output
(Default : 0 )

KMAX RESOL

Maximum number of different resolutions for this run. (Default : 1 )

KPRGPNS

Number of processors in N–S direction in grid-point space. (Default : 1 )

KPRGPEW

Number of processors in E–W direction in grid-point space. (Default : 1 )

KPRTRW

Number of processors in wave direction in spectral space. (Default : 1 )

KCOMBFLEN

NSize of communication buffer (in 8 byte words). (Default : 1800000 )

LDIMP

Use immediate message passing. (Default : .FALSE. )

LDIMP NOOLAP

Use immediate message passing with no overlap between communications and
computations. (Default : .FALSE. )

LDMPOFF

Switch off message passing. (Default : .FALSE. )

Output Arguments

Required
None

Optional
None

The total number of (mpi) processors has to be equal to KPRGPNS*KPRGPEW.

74 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

C.3 SETUP TRANS

Setup transform package for specific resolution.

Purpose

Setup for making spectral transforms. Each call to this routine creates a new resolution up
to a maximum of KMAX RESOL as set up in SETUP TRANS0. You need to call SETUP TRANS0 before
this routine can be called. The optional parameter KRESOL used in subsequent calls to other
transform routines refers to the nth defined resolution.

Interface

CALL SETUP TRANS(...)

Input Arguments

Required

KSMAX

Spectral truncation required.

KDGL

Number of Gaussian latitudes.

Optional

KLOEN(:)

Number of points on each Gaussian latitude. (Default : 2*KDGL )

LDSPLIT

True if split latitudes in grid-point space. (Default : .FALSE. )

LDLINEAR GRID

True if linear grid. (Default : .FALSE. )

KAPSETS

Number of apple sets in the distribution (Default : 0 )

KTMAX

Truncation order for tendencies (Default : KSMAX)

Output Arguments

Required
None

Optional

KRESOL

The resolution identifier.

KSMAX, KDGL, KTMAX and KLOEN are GLOBAL variables describing the resolution in spectral and grid-point
space.

IFS Documentation – Cy37r2 75



Appendix C: The TRANS package

C.4 DIR TRANS

Direct spectral transform (from Gaussian grid to spectral space).

Purpose

Interface routine for the Direct Spectral Transform.

In the following description “NF UV G” is the GLOBAL number of u/v type fields and NF SCALARS G

is the GLOBAL number of scalar valued fields. When the fields are not distributed over processors,
NF UV G is given by the length of PSPVOR and PSPDIV and NF SCALARS G by the length of
PSPSCALAR. If the fields are distributed over processors (the case where KPRTRW < KPRGPNS*KPRGPEW

in SETUP TRANS0), the arguments KVSETUV and KVSETSC describing the distribution have to be
present and their respective lengths give NF UV G and/or NF SCALARS G.

There are two alternative ways of specify the grid point fields. The original way is to use the PGP

array. The alternative way is to use a combination of the PGPUV, PGP3A, PGP3B and PGP2 arrays. The
reason for introducing these alternative ways of calling DIR TRANS is to avoid unnecessary copies
where your data structures don’t fit in to the “PSPVOR, PSPDIV, PSPSCALAR, PGP” layout. The use
of any of these precludes the use of PGP and vice versa.

Interface

CALL DIR TRANS(....)

Input Arguments

Required

PGP(:,:,:)

Grid point fields.
PGP must be dimensioned (KPROMA,NF GP,NGPBLKS) where KPROMA is the blocking
factor(see below), NF GP the total number of fields in gridpoint space and NGPBLKS the
number of KPROMA blocks. The default for KPROMA is the total number of gridpoints on a
processor in which case NGPBLKS is 1.
The ordering of the output fields is as follows (all parts are optional depending on the
input switches):

u : NF UV G fields (if PSVOR and PSPDIV present)

v : NF UV G fields (if PSVOR and PSPDIV present)

scalar fields : NF SCALARS G fields (if PSPSCALAR present)

or a combination of the following arrays:

PGPUV(:,:,:,:)

The “u-v” related grid-point variables in the order described for PGP. The second
dimension of PGPUV should be the same as the GLOBAL first dimension of PSPVOR,
PSPDIV (in the ifs this is the number of levels). PGPUV need to be dimensioned
(NPROMA,ILEVS,IFLDS,NGPBLKS) where IFLDS is the number of “variables” (u,v).

PGP3A(:,:,:,:)

Grid-point array directly connected with PSPSC3A dimensioned
(NPROMA,ILEVS,IFLDS,NGPBLKS) where IFLDS is the number of “variables” (the same as
in PSPSC3A).

PGP3B(:,:,:,:)

Grid-point array directly connected with PSPSC3B dimensioned
(NPROMA,ILEVS,IFLDS,NGPBLKS) where IFLDS is the number of “variables” (the same as
in PSPSC3B).

76 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

PGP2(:,:,:)

Grid-point array directly connected with PSPSC2 dimensioned (NPROMA,IFLDS,NGPBLKS)

where IFLDS is the number of “variables” (the same as in PSPSC2).

Optional

KRESOL

Resolution identifier which is to be used (Default : First defined resolution)

KPROMA

Requested blocking factor for gridpoint output. Used to divide the gridpoint array in
chunks of a size suitable for further computations (to control memory usage,
vectorization etc.)
(Default : Number of gridpoints on processor (KGPTOT from TRANS INQ))

KVSETUV(:)

Indicating which “field-set” in spectral space owns a vor/div field. Equivalent to
NBSETLEV in the ifs. The length of KVSETUV should be the GLOBAL number of u/v
fields which is the dimension of u and v related fields in grid-point space.

Either

KVESETSC(:)

Indicating which “field-set” in spectral space owns a scalar field. As for KVSETUV this
argument is required if the total number of processors is greater than the number of
processors used for distribution in spectral wave space.

Or a combination of KVSETSC3A(:)

As KVESETSC for PSPSC3A (distribution on first dimension).

KVSETSC3B(:)

As KVESETSC for PSPSC3C (distribution on first dimension).

KVSETSC2(:)

As KVESETSC for PSPSC2 (distribution on first dimension).

Output Arguments

Required Either PSPVOR and PSPDIV or PSPSCALAR (or as an alternative to PSPSCALAR a
combination of PSPSC3A, PSPSC3B and PSPSC2) has to be present (see below).

Optional

PSPVOR(:,:)

Spectral vorticity.

PSPDIV(:,:)

Spectral divergence.

Either

PSPSCALAR(:,:)

Spectral scalar valued fields.

Or a combination of

PSPSC3A(:,:,:)

Alternative to use of PSPSCALAR, see PGP3A above.

PSPSC3B(:,:,:)

Alternative to use of PSPSCALAR, see PGP3B above.

PSPSC2(:,:)

Alternative to use of PSPSCALAR, see PGP2 above.

For PSPVOR, PSPDIV and PSPSCALAR the first dimension is the field dimension and the second is
for the spectral coefficients. In the case of one processor the ordering of the spectral coefficients
is the same as the one obtained when decoding/encoding a grib field using the gribex routine.

IFS Documentation – Cy37r2 77



Appendix C: The TRANS package

C.5 DIR TRANSAD

Adjoint of direct spectral transform.

See DIR TRANS. Only differences are that PGP becomes an output argument and PSPVOR, PSPDIV and
PSPSCALAR become input arguments.

78 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

C.6 INV TRANS

Inverse spectral transform (spectral to gridpoint).

Purpose

Interface routine for the inverse spectral transform. Also for computing gridpoint u and v
from vorticity and divergence and for computing N–S and E–W derivatives of fields.

In the following description “NF UV G” is the GLOBAL number of u/v type fields and NF SCALARS G

is the GLOBAL number of scalar valued fields. When the fields are not distributed over processors,
NF UV G is given by the length of PSPVOR and PSPDIV and NF SCALARS G by the length of
PSPSCALAR. If the fields are distributed over processors (the case where KPRTRW < KPRGPNS*KPRGPEW

in SETUP TRANS0), the arguments KVSETUV and KVSETSC describing the distribution have to be
present and their respective lengths give NF UV G and/or NF SCALARS G.

There are two alternative ways of specify the grid point fields. The original way is to use the PGP

array. The alternative way is to use a combination of the PGPUV, PGP3A, PGP3B and PGP2 arrays. The
reason for introducing these alternative ways of calling DIR TRANS is to avoid unnecessary copies
where your data structures don’t fit in to the “PSPVOR, PSPDIV, PSPSCALAR, PGP” layout. The use
of any of these precludes the use of PGP and vice versa.

Interface

CALL INV TRANS(...)

Input Arguments

Required
None

Optional

PSPVOR(:,:)

Spectral vorticity.

PSPDIV(:,:)

Spectral divergence.

Either

PSPSCALAR(:,:)

Spectral scalar valued fields.

Or a combination of

PSPSC3A(:,:,:)

Alternative to use of PSPSCALAR, see PGP3A below.

PSPSC3B(:,:,:)

Alternative to use of PSPSCALAR, see PGP3B below.

PSPSC2(:,:)

Alternative to use of PSPSCALAR, see PGP2 below.

FSPGL PROC

External procedure to be executed in Fourier space before transposition.

LDSCDERS

Indicating if derivatives of scalar variables are required. (Default : .FALSE. )

LDVORGP

Indicating if grid-point vorticity is required. (Default : .FALSE. )

LDDIVGP

Indicating if grid-point divergence is required. (Default : .FALSE. )

IFS Documentation – Cy37r2 79



Appendix C: The TRANS package

LDUVDER

Indicating if E–W derivatives of u and v are required. (Default : .FALSE. )

KPROMA

Required blocking factor for gridpoint output. Used to divide the gridpoint array in
chunks of a size suitable for further computations (to control memory usage,
vectorization etc.) Default : Total number of gridpoints for one field.

KVSETUV(:)

Indicating which “field-set” in spectral space owns a vor/div field. Equivalent to
NBSETLEV in the ifs. The length of KVSETUV should be the GLOBAL number of u/v
fields which is the dimension of u and v related fields in grid-point space.

Either

KVESETSC(:)

Indicating which “field-set” in spectral space owns a scalar field. As for KVSETUV this
argument is required if the total number of processors is greater than the number of
processors used for distribution in spectral wave space.

Or a combination of

KVSETSC3A(:)

As KVESETSC for PSPSC3A (distribution on first dimension).

KVSETSC3B(:)

As KVESETSC for PSPSC3C (distribution on first dimension).

KVSETSC2(:)

As KVESETSC for PSPSC2 (distribution on first dimension).

KRESOL

Resolution identifier which is required. (Default : First defined resolution .)

Output Arguments

Required

PGP(:,:,:)

Grid point fields.
PGP must be dimensioned (KPROMA,NF GP,NGPBLKS) where KPROMA is the blocking
factor(see above), NF GP the total number of fields in gridpoint space and NGPBLKS the
number of KPROMA blocks. The default for KPROMA is the total number of gridpoints on a
processor in which case NGPBLKS is 1.
The ordering of the output fields is as follows (all parts are optional depending on the
input switches):

vorticity : NF UV G fields (if PSVOR / PSPDIV present and LDVORGP).

divergence : NF UV G fields (if PSVOR / PSPDIV present and LDDIVGP).

u : NF UV G fields .(if PSVOR / PSPDIV present)

v : NF UV G fields (if PSVOR / PSPDIV present).

scalar fields : NF SCALARS G fields (if PSPSCALAR present).

N–S derivative of scalar fields : NF SCALARS G fields (if PSPSCALAR present and
LDSCDERS.)

E–W derivative of u : NF UV G fields (if PSVOR / PSPDIV present and LDUVDER.)

E–W derivative of v : NF UV G fields (if PSVOR / PSPDIV present and LDUVDER.)

E–W derivative of scalar fields : NF SCALARS G fields (if PSPSCALAR present and
LDSCDERS.)

or a combination of the following arrays:

80 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

PGPUV(:,:,:,:)

The “u-v” related grid-point variables in the order described for PGP. The second
dimension of PGPUV should be the same as the GLOBAL first dimension of PSPVOR,
PSPDIV (in the ifs this is the number of levels). PGPUV need to be dimensioned
(NPROMA,ILEVS,IFLDS,NGPBLKS) where IFLDS is the number of “variables” (u,v).

PGP3A(:,:,:,:)

Grid-point array directly connected with PSPSC3A dimensioned
(NPROMA,ILEVS,IFLDS,NGPBLKS) where IFLDS is the number of “variables” (the same as
in PSPSC3A).

PGP3B(:,:,:,:)

Grid-point array directly connected with PSPSC3B dimensioned
(NPROMA,ILEVS,IFLDS,NGPBLKS) where IFLDS is the number of “variables” (the same as
in PSPSC3B).

PGP2(:,:,:)

Grid-point array directly connected with PSPSC2 dimensioned (NPROMA,IFLDS,NGPBLKS)

where IFLDS is the number of “variables” (the same as in PSPSC2).

Optional
None

IFS Documentation – Cy37r2 81



Appendix C: The TRANS package

C.7 INV TRANSAD

Adjoint of inverse spectral transform (spectral to gridpoint).

See INV TRANS. Only differences are that PGP becomes an input argument and PSPVOR, PSPDIV and
PSPSCALAR become output arguments.

82 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

C.8 TRANS END

Terminate transform package.

Purpose

Terminate transform package and release all allocated arrays.

Interface

CALL TRANS END

Input Arguments

Required
None

Optional
None

Output Arguments

Required
None

Optional
None

IFS Documentation – Cy37r2 83



Appendix C: The TRANS package

C.9 TRANS INQ

Extract information from the transform package.

Purpose

Interface routine for extracting information from the Transform Package.

Interface

CALL TRANS INQ(...)

Input Arguments

Required
None

Optional

KRESOL

Resolution identifier for which info is required. (Default : First defined resolution)

Output Arguments

Required
None

Optional

Spectral Space

KSPEC

Number of complex spectral coefficients on this processor.

KSPEC2

2*KSPEC (for use as second dimension of PSPVOR etc.)

KSPEC2G

Global KSPEC2

KSPEC2MX

Maximum KSPEC2 among all processors.

KNUMP

Number of spectral waves handled by this processor.

KGPTOT

Total number of grid columns on this processor.

KGPTOTG

Total number of grid columns on the globe.

KGPTOTMX

Maximum number of grid columns on any of the processors.

KGPTOTL(NPRGPNS:NPRGPEW)

Number of grid columns on each processor.

KMYMS(:)

This processor’s spectral zonal wavenumbers.

KASM0(0:)

Address in a spectral array of (m, n=m).

KUMPP(:)

Number of wave numbers each wave set is responsible for.

84 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

KPOSSP(:)

Defines partitioning of global spectral fields among processors.

KPTRMS(:)

Pointer to the first wave number of a given “A” set.

KALLMS(:)

Wave numbers for all wave-set concatenated together to give all wave numbers in
wave-set order.

KDIM0G(0:)

Defines partitioning of global spectral fields among processors.

Grid-point Space

KFRSTLAT(:)

First latitude of each “A” set in grid-point space.

KLSTTLAT(:)

Last latitude of each “A” set in grid-point space.

KFRSTLOFF

Offset for first lat of own “A” set in grid-point space.

KPTRLAT(:)

Pointer to the start of each latitude.

KPTRFRSTLAT(:)

Pointer to the first latitude of each “A” set in NSTA and NONL arrays.

KPTRLSTLAT(:)

Pointer to the last latitude of each “A” set in NSTA and NONL arrays.

KPTRFLOFF

Offset for pointer to the first latitude of own “A” set NSTA and NONL arrays, i.e.
NPTRFRSTLAT(MYSETA)-1.

KSTA(:,:)

Position of first grid column for the latitudes on a processor. The information is
available for all processors. The “B” sets are distinguished by the last dimension of
NSTA(). The latitude band for each “A” set is addressed by NPTRFRSTLAT(JASET),
NPTRLSTLAT(JASET), and NPTRFLOFF=NPTRFRSTLAT(MYSETA) on this processors “A”
set. Each split latitude has two entries in NSTA(,:) which necessitates the rather
complex addressing of NSTA(,:) and the overdimensioning of NSTA by NPRGPNS-1.
For further details, see the discussion on the grid point decomposition in Section (a)
on page 17.

KONL(:,:)

Number of grid columns for the latitudes on a processor. Similar to NSTA() in data
structure and addressing.

LDSPLITLAT(:)

.TRUE. if latitude is split in grid point space over two “A” sets.

Fourier Space

KULTPP(:)

Number of latitudes for which each “A” set is calculating the FFT’s.

KPTRLS(:)

Pointer to first global latitude of each “A” set for which it performs the Fourier
calculations.

Legendre Polynomials

PMU(:)

sin(Gaussian latitudes).

IFS Documentation – Cy37r2 85



Appendix C: The TRANS package

PGW(:)

Gaussian weights.

PRPNM(:,:)

Legendre polynomials on this processor.

KLEI3

First dimension of Legendre polynomials.

KSPOLEGL

Second dimension of Legendre polynomials.

KPMS(0:NSMAX)

Address for Legendre polynomial for a given m.

86 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

C.10 EXAMPLES

Both the following examples are for running on a single processor only. For more complex examples see
the ifs code (CY23R4 or later), routines SUTRANS, SUMP, TRANSINV MDL, TRANSDIR MDL etc.

To compile a program similar to these examples you need to have the directory containing the
interface blocks visible with a view corresponding to the version of the trans library you are using
and this directory added to your search path for include files. To load you need to load with
-ltrans -lifsaux -lmpi serial (and your own libraries) and a suitable load path.

The example shown in Listing C.1 transforms 10 spectral fields into grid-point. The routines INI NLOEN,
READSPEC and WRITEGRID are user routines (not shown).

Listing C.1 Transforms 10 fields from spectral to grid point.

PROGRAM EXAMPLE1

IMPLICIT NONE

INTEGER NLOEN (320) ,IFLDS

REAL ,ALLOCATABLE :: SPEC(:,:),GP(:,:,:)

INTERFACE

#include "setup_trans0.h"

#include "setup_trans.h"

#include "trans_inq.h"

#include "inv_trans.h"

END INTERFACE

CALL INI_NLOEN(NLOEN) ! Initialize array describing

! reduced grid

CALL SETUP_TRANS0

CALL SETUP_TRANS(KSMAX =319,KDGL=320, KLOEN=NLOEN)

CALL TRANS_INQ(KSPEC2=NSPEC2 ,KGPTOT=NGPTOT)

IFDLS =10

ALLOCATE(SPEC(IFLDS ,NSPEC2 ))

CALL READSPEC(SPEC ,IFLDS ,NSPEC2) ! Read in spectral

! fields

ALLOCATE(GP(NGPTOT,IFLDS ,1))

CALL INV_TRANS(PSPSCALAR=SPEC ,PGP=GP)

CALL WRITEGRID(GP,IFLDS) ! Write out gridpoint fields

END

The second example, shown in Listing C.2 transforms grid-point u and v fields into spectral vorticity
and divergence. Note the dimension of GP as 2*IFLDS to accommodate u followed by v. The routines
INI NLOEN, READGRID and WRITESPEC are user routines (not shown).

IFS Documentation – Cy37r2 87



Appendix C: The TRANS package

Listing C.2 Transforms grid point u and v to spectral vorticity and divergence.

PROGRAM EXAMPLE2

IMPLICIT NONE

INTEGER NLOEN (320) ,IFLDS

REAL ,ALLOCATABLE :: SPECVOR(:,:),SPECDIV ,GP(:,:,:)

INTERFACE

#include "setup_trans0.h"

#include "setup_trans.h"

#include "trans_inq.h"

#include "dir_trans.h"

END INTERFACE

CALL INI_NLOEN(NLOEN) ! Initialize array describing

! reduced grid

CALL SETUP_TRANS0

CALL SETUP_TRANS(KSMAX=319, KDGL=320, KLOEN=NLOEN)

CALL TRANS_INQ(KSPEC2=NSPEC2,KGPTOT=NGPTOT)

IFDLS =10

ALLOCATE(GP(NGPTOT ,2*IFLDS ,1))

CALL READGRID(GP ,IFLDS) ! Read in u and v

! gridpoint fields

ALLOCATE(SPECVOR(IFLDS ,NSPEC2 ))

ALLOCATE(SPECDIV(IFLDS ,NSPEC2 ))

CALL DIR_TRANS(PSPVOR=SPECVOR ,PSPDIV=SPECDIV ,PGP=GP)

! Write out spectral fields

CALL WRITESPEC(SPECVOR ,SPECDIV ,IFLDS ,NSPEC2)

END

88 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Appendix D

FullPos user guide

Author: R. El Khatib
METEO-FRANCE - CNRM/GMAP

Table of contents
D.1 Introduction

D.1.1 Organisation of this manual

D.1.2 Reporting bugs

D.1.3 Summary of features

D.1.4 Acknowledgements

D.2 Basic usage

D.2.1 Getting started

D.2.2 Leading namelists and variables

D.2.3 Output files handling

D.3 Advanced usage

D.3.1 Scientific options

D.3.2 Optimizing the performance

D.3.3 Output fields conditioning

D.3.4 Selective namelists

D.3.5 Miscellaneous

D.4 The family of configurations 927

D.4.1 What it is

D.4.2 How it works

D.4.3 Namelists parameters

D.4.4 Bogussing

D.5 Expert usage

D.5.1 Appending fields to a file

D.5.2 Derivatives on model levels

D.5.3 3D physical fluxes

D.5.4 Free-use fields

D.6 Field descriptors

D.6.1 Upper air dynamic fields descriptors

D.7 Selection file example

D.8 Making climatology files

D.9 Spectral filters

D.10 Optimization of the performance

D.10.1 Communications

D.10.2 Segmentation

IFS Documentation – Cy37r2 89

mailto:ryad.elkhatib@meteo.fr
http://www.meteo.fr
http://intra.cnrm.meteo.fr/gmap/index.html


Appendix D: FullPos user guide

D.1 INTRODUCTION

fullpos is a powerful and sophisticated post-processing package. It is intended to be used for operation
and research as well.

fullpos has two main parts: the vertical interpolations, then the horizontal interpolations. In between,
a spectral treatment is sometimes possible for the dynamic fields.

D.1.1 Organisation of this manual

This manual contains information about the installation, the use and the management of the code of
fullpos.

It is assumed that the user has some familiarity with the configuration 001 of arpege/ifs or aladin

and understands the basic features of post-processing operations.

Much of the information presented in this document is also available inside the code via the comments,
especially in the data modules.

D.1.2 Reporting bugs

If you find any bugs or deficiencies in this software, then please write a short report and send it to the
author.

fullpos has so many features that it is difficult to validate all the possible namelists configurations.

If you have wishes for further developments inside fullpos, then please write a short report as well, that
could be discussed.

D.1.3 Summary of features

fullpos is a post-processing package containing many features. The following is just a small list of the
main available features:

• Multiple fields from the dynamics, the physics, the cumulated fluxes or the instantaneous fluxes.
• Post-processing available on any pressure level, height (above output orography) level, potential

vorticity level, potential temperature level or model level.
• Multiple latitudes X longitudes output subdomains, or one Gaussian grid with any definition, or

one grid of kind ’aladin’, with any definition.
• Multiple possible optimisations of the memory or the CPU time used, through specific I/O schemes,

vectorisation depth, distribution and various other segmentations.
• Possible spectral treatment for all the fields of a given post-processing level type.
• Customization of the names of the post-processed fields.
• Support for computing a few other fields without diving deeply into the code of fullpos.
• Ability to perform post-processing in-line (ie: during the model integration) or off-line (out of the

model integration).
• Ability to make arpege or aladin history files, starting from a file arpege or a file aladin

(processes “927”, “E927” and “EE927”).

D.1.4 Acknowledgements

Thanks to Alain Joly who invented first the “French POS” concept which became fullpos, and to Jean-
François Geleyn who has adopted my point of view about this internal new post-processing. Credit and
thanks to Jean Pailleux who convinced ECMWF to let METEO-FRANCE implement this software in
arpege/ifs; to Mats Hamrud for his advice on vertical scannings, his help for long distance debugging
and the re-usable code he has written on I/O scheme, spectral transforms and horizontal scanning; to
Vincent Cassé for these long talks about interpolations and how the so-called “semi-Lagrangian buffers”
work; to Jean-Marc Audoin and Eric Escalière who helped me to write a part of the code; to Patrick
Le Moigne and Jean-Daniel Gril who spent time to let me try to understand the geometry of aladin.
Congratulations and thanks to Gabor Radnoti who managed in the huge task to implement fullpos

90 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

inside aladin to Jaouad Boutahar and Mehdi Elabed for their debugging in fullpos. Many thanks to
Jean-Noël Thépaut who believed in the use of fullpos for the incremental variational analysis. Thanks
to you all who will use fullpos and be happy of it (. . . and maybe find out residual bugs?).

Special thanks to the workstation “Nout”, to Edit file and the mouse on NOS-Ve with which the code is
typed, and to the user friendly Crisp editor under UNIX environment, with which this manual has been
typed.

IFS Documentation – Cy37r2 91



Appendix D: FullPos user guide

D.2 BASIC USAGE

D.2.1 Getting started

(a) Installing the software

fullpos is embedded in the software arpege/ifs/aladin. It needs the auxiliary library for the I/Os
and some low-level calculations, and the external spectral transforms packages TFL and TAL (the last
one is needed for running fullpos aladin only).

(b) Preparing the namelists file

The namelists file should correspond to the arpege/ifs/aladin cycle you are running.

fullpos is using a few specific namelists which are: NAMAFN, NAMFPC, NAMFPD, NAMFPG, NAMFPF, NAMFPIOS,
NAMFPSC2, NAMFPEZO NAMCAPE.

All these namelists are specific to fullpos, except NAMAFN which is a little bit more general.

fullpos is also using model variables from the namelists NAMCT0 NAMDIM NAMDYN NAMPAR0 NAMPAR1

NAMOPH NAMFA NAMCT1.

Furthermore it is indirectly interfaced with the model via the namelists NAMPHY, NAMDPHY, NAMINI, NAMCFU
and NAMXFU.

(c) Running the software

To run the software anyhow, you have to control that the next basic namelist variables are properly set:

NCONF :

Definition : General configuration of the arpege/ifs/aladin software. This parameter is also
accessible as a command line option: -c

Scope : Integer which must be 1 to enable the post-processing.

Default value : in namelist the default value is 1; if the command line option is used there is no
default value.

Namelist location : NAMCT0

CNMEXP :

Definition : Name of the experiment. This parameter is also accessible as a command line option:
-e

Scope : string of 4 characters.

Default value : in namelist the default value is ’0123’; if the command line option is used there
is no default value.

Namelist location : NAMCT0

LECMWF :

Definition : Control of setup version. (Set .TRUE. for ecmwf setup and .FALSE. for Météo-

France setup). This parameter is also accessible as a command line option: -v

Scope : in namelist: boolean; in command line: character string which can be either ’ecmwf’ (for
LECMWF=.TRUE.) or ’meteo’ (for LECMWF=.FALSE.).

Default value : in namelist the default value is .TRUE.; if the command line option is used there
is no default value.

Namelist location : NAMCT0

92 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

LELAM :

Definition : Control of the limited area vs. global version of the model. (Set .TRUE. for aladin

and .FALSE. for arpege/ifs). This parameter is also accessible as a command line option: -m

Scope : in namelist: boolean; in command line: character string which can be either ’arpifs’ (for
LELAM=.FALSE.) or ’aladin’ (for LELAM=.TRUE.).

Default value : in namelist the default value is .FALSE.; if the command line option is used the
default value is ’arpifs’.

Namelist location : NAMCT0

LFPOS :

Definition : Main control of fullpos software; set LFPOS=.TRUE.— to activate it.

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMCT0

N1POS :

Definition : Post-processing outputs control switch. Set N1POS=1 to switch on, and N1POS=0 to
switch off.

Scope : Integer between 0 and 1.

Default value : 1

Namelist location : NAMCT1

NFRPOS, NPOSTS :

Definition : Post-processing outputs monitor, working as follows:

• if NPOSTS(0) = 0 then the post-processing runs every NFRPOS time steps (including
time 0).

• if NPOSTS(0) > 0 then NPOSTS(0) is the number of post-processing events and
the post-processing runs on the time steps NPOSTS(1)*NFRPOS, NPOSTS(2)*NFRPOS,
. . . NPOSTS(NPOSTS(0))*NFRPOS.

• if NPOSTS(0) < 0 then -NPOSTS(0) is the number of post-processing events and
the post-processing runs on the hours -NPOSTS(1)*NFRPOS, -NPOSTS(2)*NFRPOS,
. . . -NPOSTS(NPOSTS(0))*NFRPOS.

Scope : Respectively positive integer, and integer array sized 0 to 240.

Default value : If LECMWF=.FALSE. and NCONF=1 and the command line is used then NFRPOS=1

and NPOSTS is set for output at hours 0, 6, 12, 18, 24, 30, 36, 48, 60 and 72. Else NFRPOS=NSTOP
and NPOSTS(:)=0 (outputs at first and last time step).

Namelist location : NAMCT0

If you do not specify anything else, then fullpos will run, but you will not get any output file since you
did not ask for any output field!

Imagine now that you add in the namelist NAMFPC the following variables:

CFP3DF=’GEOPOTENTIEL’,’TEMPERATURE’,

RFP3F=50000.,85000.,

then you will get a post-processing file which will contain the geopotential and the temperature at 500
hPa and 850 hPa on the model grid (stretched Gaussian grid in the case of arpege, geographical “C+I”
grid in the case of aladin. The output file will be a file arpege/aladin named PF${CNMEXP}000+nnnn,
where ${CNMEXP} is the name of the experiment (CNMEXP(1:4)), and nnnn the forecast range.

IFS Documentation – Cy37r2 93



Appendix D: FullPos user guide

D.2.2 Leading namelists and variables

The namelists variables and the set-up have been built in order to use the namelists default values as far
as possible, and to respect a hierarchy.

This section will describe the purpose of the main post-processing namelists and will detail the basic
variables in these namelists.

(a) NAMFPC

This is the main namelist for the post-processing. It contains the list of the fields to post-process, the
format of the output subdomain(s) (spectral coefficients, Gaussian grid, lam grid or lat × lon grids),
and various options of post-processing.

CFPFMT :

Definition : format of the output files.

Scope : character variable which can be either ’MODEL’, ’GAUSS’, ’LELAM’ or ’LALON’ respectively
for spectral coefficients, a global model grid, a lam grid a set of lat × lon grids.

Default value : ’GAUSS’ in arpege/ifs ’LELAM’ in aladin.

CFPDOM :

Definition : names of the subdomains.

Scope : array of 10 characters; if CFPFMT is ’MODEL’, ’GAUSS’ or ’LELAM’ then you can make only
one output domain; otherwise you can make up to 15 subdomains.

Default value : CFPDOM(1)=’000’; CFPDOM(i)=’ ’ for i greater than 1. This means that by
default, you ask for only one output (sub-)domain.

CFP3DF :

Definition : arpege names of the 3D dynamics fields.

Scope : array of 12 characters, maximum size: 98 items. The reference list of these fields is written
in Section D.6.1 on page 127.

Default value : blank strings (no 3D dynamics fields to post-process).

CFP2DF :

Definition : arpege names of the 2D dynamics fields.

Scope : array of 16 characters, maximum size: 78 items. The reference list of these fields is written
in Section (a) on page 128.

Default value : blank strings (no 2D dynamics fields to post-process).

CFPPHY :

Definition : arpege names of the surface grid-point fields from physical parameterisations.

Scope : array of 16 characters, maximum size: 328 items. The reference list of these fields is written
in Section (b) on page 129.

Default value : blank strings (no surface fields to post-process).

CFPCFU :

Definition : arpege names of the cumulated fluxes.

Scope : array of 16 characters, maximum size: 63 items. The reference list of these fields is written
in Section (c) on page 130.

Default value : blank strings (no cumulated fluxes to post-process).

94 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

CFPXFU :

Definition : arpege names of the instantaneous fluxes.

Scope : array of 16 characters, maximum size: 63 items. The reference list of these fields is written
in Section (d) on page 132.

Default value : blank strings (no instantaneous fluxes to post-process).

RFP3P :

Definition : post-processing pressure levels.

Scope : array of real values, maximum size: 31 items. Unit: Pascal.

Default value : None.

RFP3H :

Definition : post-processing height levels above orography.

Scope : array of real values, maximum size: 127 items. Unit: meter.

Default value : None.

RFP3TH :

Definition : post-processing potential temperature levels.

Scope : array of real values, maximum size: 15 items. Unit: Kelvin.

Default value : None.

RFP3PV :

Definition : post-processing potential vorticity levels.

Scope : array of real values, maximum size: 15 items. Unit: Potential Vorticity Unit.

Default value : None.

NRFP3S :

Definition : post-processing eta levels.

Scope : array of real values, maximum size: 200 items. Unit: adimensional.

Default value : None.

Notice:

• If you ask for fluxes you do not need to specify anything particular in the namelists NAMCFU or
NAMXFU: these namelists will be automatically modified by fullpos in order to get the required
fluxes.

• If you ask for spectral coefficients then the upper air grid-point fields, the surface grid point fields
and the fluxes will be written on the model Gaussian grid.

(b) NAMFPD

This namelist defines the boundaries and the horizontal dimensions of each output subdomain. Many
default values are available through a clever use of the previous namelist NAMFPC.

Note that if you ask for the model horizontal geometry (CFPFMT=’MODEL’), all these parameters will be
reset by the program; so you should not try to choose them yourself.

IFS Documentation – Cy37r2 95



Appendix D: FullPos user guide

NLAT, NLON :

Definition : respectively number of latitudes and longitudes for each output (sub-)domain
(corresponding respectively to the variables NDGLG and NDLON of a model grid).

Scope : arrays of integers.

Default value : It depends on the variables CFPFMT and LELAM as shown in Table D.1 on page 96.

RLATC, RLONC :

Definition : respectively latitude and longitude of the center of each output (sub-)domain (if
CFPFMT=’GAUSS’ then these variables are useless).

Scope : arrays of reals; unit: degrees.

Default value : It depends on the variable CFPFMT.

If CFPFMT=’LALON’ then refer to Table D.2 on page 97;
elseif CFPFMT=’LELAM’ then refer to Table D.3 on page 98.

RDELY, RDELX :

Definition : respectively the mesh size in latitude and longitude for each output
(sub-)domain (if
VarValCFPFMT’GAUSS’ then these variables are useless).

Scope : arrays of reals; unit: degrees if CFPFMT=’LALON’, meters if CFPFMT=’LELAM’.

Default value : It depends on the variable CFPFMT.
If CFPFMT=’LALON’ then refer to Table D.2 on page 97;
elseif CFPFMT=’LELAM’ then refer to Table D.3 on page 98.

NFPGUX, NFPLUX :

Definition : respectively number of geographical latitude rows and longitude rows for each output
(sub-)domain (these variables are useful only if CFPFMT=’LELAM’: they correspond to the
definition of the so-called “C+I” area while NLAT and NLON are corresponding to the area
“C+I+E”).

Scope : arrays of integers.

Default value : It depends on the variable FPDOM. Refer to Table D.3 on page 98.

Table D.1 Default values for NLAT and NLON according to CFPFMT and LELAM.

(NLAT,NLON) CFPFMT ’GAUSS’ LELAM ’LALON’
LELAM

.FALSE. (NDGLG,NDLON) See Table D.3 See Table D.2
.TRUE. (32,64) (NFPGUX,NFPLUX) See Table D.2

96 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Table D.2 Default values for lat × lon subdomains according to the value of CFPDOM.

CFPDOM NLAT NLON RLATC RLONC RDELY RDELX

’HENORD’ 60 180 45. 179. 1.5 2.
’HESUDC’ 60 180 -45. 179. 1.5 2.
’HESUDA’ 30 90 -45. 178. 3. 4.
’ATLMED’ 65 129 -48.75 -20. 0.75 1.
’EURATL’ 103 103 45.75 2. 0.5 2/3
’ZONCOT’ 81 81 48.75 0. 0.375 0.5
’FRANCE’ 61 61 45.75 2. 0.25 1/3
’GLOB15’ 121 240 0. 179.25 1.5 1.5
’EURAT5’ 105 149 46. 5. 0.5 0.5
’ATOUR10’ 81 166 40. -17.5 1. 1.
’EUROC25’ 105 129 48. 1. 0.25 0.25
’GLOB25’ 73 144 0. 178.75 2.5 2.5
’EURSUD’ 41 54 38.25 -19/3 0.5 2/3
’EUREST’ 39 73 50.75 16/3 0.5 2/3
’GRID25’ 21 41 50. 0. 2.5 2.5
’MAROC’ 158 171 31.05 -6.975 23.7/157 25.65/170

’OCINDIEN’ 67 89 -16.5 66. 1.5 1.5
’REUNION05’ 61 141 -20. 65. 0.5 0.5

else - case arpege 0 0 0. 0. 0. 0.
else - case aladin NDGUXG NDLUXG computed computed computed computed

IFS Documentation – Cy37r2 97



Appendix D: FullPos user guide

Table D.3 Default values for lam subdomains according to the value of CFPDOM.

CFPDOM NLAT NLON RLATC RLONC

’BELG’ 61 61 50.44595488554766 4.90727841961041
’SLOV’ 37 37 46.05017943078632 13.52668207859151
’MARO’ 149 149 31.56059442218072 -7.00000000285346
’OPMA’ 97 97 31.56059442218072 -7.00000000285346
’LACE’ 181 205 46.24470063381371 16.99999999944358
’ROUM’ 61 61 44.77301981937139 25.00000000483406
’FRAN’ 189 189 45.31788242335041 1.27754303826285

else - case arpege 169 169 46.46884540633992 2.57831063089259
else - case aladin NDGUXG NDLUXG EDELY EDELX

CFPDOM NFPGUX NFPLUX RDELY RDELX

’BELG’ 61 61 12715.66669793411 12715.66669793552
’SLOV’ 37 37 26271.55175398597 26271.55175829969
’MARO’ 149 149 18808.17793051683 18808.17792427479
’OPMA’ 97 97 31336.13991686922 31336.13988918715
’LACE’ 181 205 14734.91380550296 14734.913810093
’ROUM’ 61 61 33102.6285617361 33102.62857952392
’FRAN’ 189 189 12715.67301977791 12715.66779231173

else - case arpege 169 169 12715.6635946432 12715.66736292664
else - case aladin NDGUXG NDLUXG EDELY EDELX

CFPDOM FPLON0 FPLAT0

’BELG’ 2.57831001 46.46884918
’SLOV’ 17.0 46.24470064
’MARO’ -7.0 31.56059436
’OPMA’ -7.0 31.56059436
’LACE’ 17.0 46.24470064
’ROUM’ 25.0 44.77301983
’FRAN’ 25.0 44.77301983

else - case arpege 2.57831001 46.46884918
else - case aladin ELON0 ELAT0

98 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

(c) NAMFPG

This namelist defines the geometry of the output subdomain(s). It is used mostly when the output
geometry is a Gaussian grid or a lam grid. Default geometry is the model geometry.

Note that if you ask for the model horizontal geometry (CFPFMT=’MODEL’), all these parameters will be
reset by the program; so you should not try to choose them yourself.

NFPMAX :

Definition : A truncation order which definition depends on the variable CFPFMT:

• If CFPFMT=’GAUSS’ it is the truncation order of the output grid.
• If CFPFMT=’LELAM’ it is the meridional truncation order of the output grid.
• If CFPFMT=’LALON’ it is the truncation used to filter in spectral space the post-processed

fields.

Scope : array of integers. Maximum size 15 items.

Default value :

• If CFPFMT=’GAUSS’ then NFPMAX is computed like for a quadratic grid:
so that 3*NFPMAX(:)+1 ≥ NLON(:)

• If CFPFMT=’LELAM’ then NFPMAX is computed like for a quadratic grid:
so that 3*NFPMAX(:)+1 ≥ NLAT(:)

• If CFPFMT=’LALON’ NFPMAX is computed like for a quadratic grid:
so that 3*NFPMAX(:)+1 ≥ min(NLAT(:), NLON(:))

NMFPMAX :

Definition : Truncation order in the zonal direction (used only if CFPFMT=’LELAM’).

Scope : integer.

Default value : If; else if CFPFMT=’LELAM’ then NMFPMAX is computed like for a quadratic grid: so
that 3*NMFPMAX+1 ≥ NLON(1)

FPMUCEN, FPLOCEN :

Definition : respectively Sine of the latitude, and longitude of either the pole of interest if
CFPFMT=’GAUSS’, or the location of the observed cyclone (for bogussing purpose — refer to
Section D.4.4 on page 122 —) if CFPFMT=’LELAM’. This variable is useless if CFPFMT=’LALON’.

Scope : reals; unit: adimentional for FPMUCEN, and radians for FPLOCEN

Default value : in arpege/ifs respectively RMUCEN and RLOCEN. In aladin respectively
sin(ELAT0))— and ELON0.

NFPHTYP :

Definition : reduction of the Gaussian grid. Used only if CFPFMT=’GAUSS’.

Scope : Integer which value can be either 0 (for a regular grid) or 2 (for a reduced grid).

Default value : NFPHTYP=NHTYP in arpege/ifs if NLAT(1)=NDGLG; otherwise NFPHTYP=0.

NFPRGRI :

Definition : number of active points on each parallel of a Gaussian grid. Used only if
CFPFMT=’GAUSS’. Reduced grids can be computed thanks to the procedure surgery1.

Scope : Integer array to be filled from subscript 1 to NLAT(i)/2 (Northern hemisphere only):
subscript 1 corresponds to row the nearest to the pole; subscript NLAT(i)/2 corresponds to
the row the nearest to the equator. Both hemisphere are assumed to be symmetric.

Default value : NFPRGRI(1:(NLAT(1)+1)/2)=NRGRI(1:(NDGLG+1)/2) if NLAT(1)=NDGLG; else
NFPRGRI(1:NLAT(1))=NLON(1).

1http://intra.cnrm.meteo.fr/gmod/modeles/procedures/surgery.html

IFS Documentation – Cy37r2 99

http://intra.cnrm.meteo.fr/gmod/modeles/procedures/surgery.html


Appendix D: FullPos user guide

FPSTRET :

Definition : stretching factor. Used only if CFPFMT=’GAUSS’.

Scope : Real value. Unit: adimensional.

Default value : FPSTRET=RSTRET in arpege/ifs FPSTRET=1. in aladin.

NFPTTYP :

Definition : Transformation type (used to rotate or deform model fields). This variable is useless
if CFPFMT=’LALON’.

• If NFPTTYP=1 then the pole of interest is at the North pole of the geographical Earth.
• If NFPTTYP=2 and CFPFMT=’GAUSS’ in arpege/ifs then the pole of interest is anywhere

else on the geographical Earth.
• If NFPTTYP=2 and CFPFMT=’LELAM’ in aladin the cyclone is moved to the location of the

observed cyclone (for bogussing purpose — refer to Section D.4.4 on page 122 —).

Scope : Integer which value can be only 1 or 2.

Default value : In arpege/ifs and if CFPFMT=’GAUSS’: NFPTTYP=NSTTYP. In all other cases
NFPTTYP=1.

FPNLGINC :

Definition : non-linear grid increment. Used only if CFPFMT=’GAUSS’ to compute the value:
NLON(1)-1)/NFPMAX(1).

Scope : Real value between 2. (linear grid) and 3. (quadratic grid).

Default value : FPNLGINC=1.

FPLAT0, FPLON0 :

Definition : respectively the geographic latitude and longitude of reference for the projection (used
only if CFPFMT=’LELAM’).

Scope : Real values. Unit: degrees.

Default value : It depends from the variable CFPDOM. Refer to Table D.3 on page 98.

NFPLEV :

Definition : number of vertical levels.

Scope : Integer between greater or equal to 1, and limited to 200.

Default value : NFPLEV=NFLEVG

FPVALH, FPVBH :

Definition : respectively the “A” and “B” coefficients of the vertical coordinate system.

Scope : real arrays. Unit: FPVALH is in Pascal; FPVBH is adimensional.

Default value : if NFPLEV=NFLEVG then
FPVALH(1:NFPLEV)=VALH(1:NFLEVG) and
FPVBH(1:NFPLEV)=VBH(1:NFLEVG) (model levels). Else the program will attempt to recompute
FPVALH and FPVBH to fit with NFPLEV, using vertical levels that may have been used in
operations in the past.

FPVP00 :

Definition : Reference pressure.

Scope : real value. Unit: Pascal.

Default value : FPVP00=VP00.

100 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

D.2.3 Output files handling

(a) File structure

Output files are arpege/aladin files.

• If you ask for a Gaussian grid in output (CFPFMT=’GAUSS’) you will get a file arpege.
• If you ask for a lam grid (CFPFMT=’LELAM’) you will get a file aladin.
• If you ask for lat × lon grids (CFPFMT=’LALON’) you will get files aladin with the only

particularity that the output geometry is not projected.
• If you ask for the model geometry (CFPFMT=’MODEL’) you can get either spectral or gridpoint data.

Notice: to plot lam or lat × lon grids you can use the graphic procedure chagal2.

(b) File name

There is one post-processing file for each post-processing time step and each (sub-)domain.

The output files are named: PF${CNMEXP}${CFPDOM}+nnnn , where:

PF is a prefix

$CNMEXP is the so-called “name of the experiment” (value: CNMEXP(1:4))

$CFPDOM is the name of the output (sub-)domain (CFPDOM)

nnnn is the time stamp.

Example: if you ask for post-processing at time 0, with CNMEXP=’FPOS’ and CFPDOM’ANYWHERE’, then
the output file will be named: PFFULLANYWHERE+0000.

(c) File content

To read a field in an output file, you have to specify through the subroutine FACILE the name of the field
you wish to get.

For a “surface” field, this name is the arpege field name that has been defined in the namelist NAMFPC;
it is a string of 16 characters.

For an upper air field, this name is also the arpege field name that has been defined in the namelist
NAMFPC (string of 12 characters), but furthermore, you must specify the kind of post-processing level
(“prefix” of the field) and the value of this level. There are 5 possibilities, according to the level type as
shown in Table D.4 on page 101.

Table D.4 Prefix, unit and number of letters to write upper air fields prefix.

Level type Prefix Unit Number of letters for level value

Pressure P Pascal 5
Height H Meter 5

Potential vorticity V deciPVU 3
Potential temperature T Kelvin 3

Eta S - 3

Example: temperature at 2 PVU is V020TEMPERATURE

Warning: fields on pressure levels bigger or equal to 1000 hPa are written out with truncated names; for
example, temperature at 1000 hPa is P00000TEMPERATURE while P00500TEMPERATURE could be as well
the temperature at 5 hPa or the temperature at 1005 hPa!

2http://www.cnrm.meteo.fr/aladin/concept/Chagal0.html

IFS Documentation – Cy37r2 101

http://www.cnrm.meteo.fr/aladin/concept/Chagal0.html


Appendix D: FullPos user guide

D.3 ADVANCED USAGE

The purpose of this chapter is to describe supplementary namelists variables which users may need, but
which are either too complex, or too rarely needed to warrant complicating the previous chapter.

D.3.1 Scientific options

(a) Spectral fit on dynamic fields

If you wish to post-process surface dynamic fields or upper air dynamic fields on pressure levels, potential
temperature levels or potential vorticity levels, it is possible to perform a spectral fit between the vertical
interpolations and the horizontal interpolations. The spectral fit will remove the nemerical noise which
has been generated by the vertical interpolation and which is beyond the model truncation.

LFITP :

Definition : Spectral fit of post-processed fields on pressure levels.

Scope : Boolean.

Default value : .TRUE.

Namelist location : NAMFPC

LFITT :

Definition : Spectral fit of post-processed fields on potential temperature levels.

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMFPC

LFITV :

Definition : Spectral fit of post-processed fields on potential vorticity levels.

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMFPC

LFIT2D :

Definition : Spectral fit of 2D post-processed fields.

Scope : Boolean.

Default value : .TRUE.

Namelist location : NAMFPC

Notice:

• If you wish to post-process upper air dynamic fields on height levels or hybrid levels, it is not
possible to apply such spectral fit because the horizontal interpolations are performed before the
vertical interpolation in order to respect the displacement of the planetary boundary layer.

• If you post-process dynamic fields which are not represented by spectral coefficients in the model,
then these fields will not be spectrally fitted, even if the corresponding key LFITxx is .TRUE. In the
same way, if you post-process a specific dynamic field which is represented by spectral coefficients
in the model, then this field will be spectrally fitted whenever the corresponding key LFITxx is
.TRUE.. However it is possible to change the native representation of a field: refer to Section (a) on
page 111.

102 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

(b) Tuning of the spectral filters

Several fields can be smoothed via tunable filters activated in spectral space (refer to Section D.9 on
page 136 for the formulation of these filters). These parameters are contained in the specific namelist
NAMFPF.

LFPBED, RFPBED :

Definition : Respectively switch and intensity of the filter on the so-called “derivative” fields, that
is: horizontal derivatives or those which are built after horizontal derivatives (absolute and
relative vorticites, divergence, vertical velocity, stretching and shearing deformations, potential
vorticity and all fields interpolated on potential vorticity levels).

Scope : Respectively boolean and real. Unit: adimensional.

Default value : LFPBED=.TRUE.; RFPBED—≈3.083 in arpege/ifs, RFPBED=6. in aladin.

NFMAX :

Definition : Truncation threshold of each (sub-)domain for the filter on the so-called “derivative”
fields (used only in arpege/ifs if the model is stretched).

Scope : Integer array. Maximum size: 15 items.

Default value : If CFPFMT=’GAUSS’ then NFMAX(1)=NFPMAX(1)*FPSTRET.
Else if CFPFMT=’MODEL’ then NFMAX(1)=NFPMAX(1)*FPSTRET which means that the fields will
never be filtered.
Else NFPMAX is computed like for a quadratic grid:
so that 3*NFMAX(:)+1 ≥ min(NLAT(:),NLON(:)

LFPBEG, RFPBEG :

Definition : Respectively switch and intensity of the filter on geopotential.

Scope : Respectively boolean and real. Unit: adimensional.

Default value : LFPBEG=.TRUE.; RFPBEG=4. in arpege/ifs, RFPBEG=6 in aladin.

LFPBET, RFPBET :

Definition : Respectively switch and intensity of the filter on temperature.

Scope : Respectively boolean and real. Unit: adimensional.

Default value : LFPBET=.TRUE.; RFPBET=4. in arpege/ifs, RFPBET=6 in aladin.

LFPBEP, RFPBEP :

Definition : Respectively switch and intensity of the filter on medium sea level pressure.

Scope : Respectively boolean and real. Unit: adimensional.

Default value : LFPBEP=.TRUE.; RFPBEP=4. in arpege/ifs, RFPBEP=6. in aladin.

LFPBEH, RFPBEH :

Definition : Respectively switch and intensity of the filter on relative humidity.

Scope : Respectively boolean and real. Unit: adimensional.

Default value : LFPBEH=.TRUE.; RFPBEH=4. in arpege/ifs, RFPBEH=6. in aladin.

Notice:

• Only one filter can be appled to a given field; consequently, in case of ambiguity in the choice of
filter (example: geopotential on an iso-PV surface), only the “derivative” filter is applied.

• Filters are applied even if the post-processed fields should be represented in spectral coefficients.

3This odd value stands here for a historical continuity reason.

IFS Documentation – Cy37r2 103



Appendix D: FullPos user guide

(c) Climatology

In horizontal interpolations the usage of auxiliary climatology data improves the accuracy of the upper
air fields when interpolated on surface-dependent levels, and of several surface fields. Section D.8 on
page 135 explains how to make such files.

NFPCLI :

Definition : Usage level for climatology data:

• If NFPCLI=0 climatology data are not used.
• If NFPCLI=1 the horizontal interpolations use the surface geopotential and the land-sea

mask of a target climatology file. In this case the climatology file name in the local script
should be: “const.clim.CFPDOM(i)” where i is the (sub-)domain subscript.

• If NFPCLI=3 the horizontal interpolations use a larger set of climatology surface fields,
including constant and monthly values. In this case two climatology files are used: one
with the source geometry and one with the target geometry. In the local script the source
climatology file name should be: “Const.Clim” while the target climatology file name
should be: “const.clim.CFPDOM(i)” where i is the (sub-)domain subscript.

Table D.5 on page 104 lists the climatology fields read in function of the namelist keys.

Scope : Integer which value can be only 0, 1 or 3.

Default value : NFPCLI=0

Namelist location : NAMFPC

Table D.5 Climatology fields read in function of the namelist keys.

Field Namelist keys

surface geopotential NFPCLI ≥ 1
land-sea mask NFPCLI ≥ 1 and (LMPHYS or LEPHYS)

surface temperature NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
relative surface wetness NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
deep soil temperature NFPCLI ≥ 3 and (LMPHYS or LEPHYS)

relative deep soil wetness NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
snow depth NFPCLI ≥ 3 and (LMPHYS or LEPHYS)

albedo NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
emissivity NFPCLI ≥ 3 and (LMPHYS or LEPHYS)

standard deviation of surface geopotential NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
percentage of vegetation NFPCLI ≥ 3 and (LMPHYS or LEPHYS)

roughness length NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
anisotropy coefficient of topography NFPCLI ≥ 3 and (LMPHYS or LEPHYS)

direction of the main axis of topography NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
type of vegetation NFPCLI ≥ 3 and (LMPHYS or LEPHYS)

minimum stomatal resistance NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
percentage of clay NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
percentage of sand NFPCLI ≥ 3 and (LMPHYS or LEPHYS)

root depth NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
leaf area density NFPCLI ≥ 3 and (LMPHYS or LEPHYS)

thermal roughness length NFPCLI ≥ 3 and (LMPHYS or LEPHYS)
surface snow albedo NFPCLI ≥ 3 and (LMPHYS or LEPHYS) and LVGSN

surface snow density NFPCLI ≥ 3 and (LMPHYS or LEPHYS) and LVGSN

104 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

RFPCORR :

Definition : Critical difference of surface geopotential between the model and the source
climatology in order to correct surface temperature through the standard vertical profile.

Scope : Real. Unit: J/kg.

Default value : 300.*g.

Namelist location : NAMFPC

RFPCSAB :

Definition : Critical difference of sand percentage between the model and the source climatology
in order to compute the relative soil moisture.

Scope : Real. Unit: adimensional.

Default value : 0.01.

Namelist location : NAMFPC

RFPCD2 :

Definition : Critical difference of depth between the model and the source climatology in order to
compute the relative soil moisture.

Scope : Real. Unit: m.

Default value : 0.001 m.

Namelist location : NAMFPC

LFPMOIS :

Definition : Month selected while using climatology data (used only if NFPCLI ge 3):

• if LFPMOIS=.FALSE. then the month is the one of the model (forecast).
• if LFPMOIS=.TRUE. then the month is the one of the input initial file. This option should

lead to less accurate fields but it enables in-line post-processing4.

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMFPC

(d) Optional pronostic fields

The model is able to run with optional pronostic fields. These fields would be interpolated by the post-
processing if they are declared as present in the model. But if they are not, then the post-processing
would create and fulfill them as it can.

NFPASS :

Definition : Number of spectral passive scalars in the model.

Scope : Integer between 0 and 5.

Default value : 0

Namelist location : NAMDIM

LNHDYN :

Definition : Control of the non-hydrostatic model; if LNHDYN=.TRUE. then pressure departure
and vertical divergence fields are read in and thus interpolated. Else pressure departure and
vertical divergence are created. Pressure departure field is then fulfilled with zero, while vertical
divergence is diagnosed.

Scope : Boolean. To run the model with this option you need the aladin software.

Default value : .FALSE.

Namelist location : NAMCT0
4The post-processing is performed during the direct model integration.

IFS Documentation – Cy37r2 105



Appendix D: FullPos user guide

LSPQ, LGPQ :

Definition : Respectively spectral and gridpoint atmospheric specific humidity represented as
pronostic variables in the model.

Scope : Boolean. Possible values: any pair of booleans except (.TRUE.,.TRUE.).

Default value : if LECMWF=.TRUE. then (LSPQ,LGPQ)=(.FALSE.,.TRUE.).
Else (LSPQ,LGPQ)=(.TRUE.,.FALSE.).

Namelist location : NAMDIM

LSPL, LGPL :

Definition : Respectively spectral and gridpoint atmospheric liquid water represented as pronostic
variables in the model.

Scope : Boolean. Possible values: any pair of booleans except (.TRUE.,.TRUE.).

Default value : if LECMWF=.TRUE. then (LSPL,LGPL)=(.FALSE.,.TRUE.)

Else (LSPL,LGPL)=(.FALSE.,.FALSE.).

Namelist location : NAMDIM

LSPI, LGPI :

Definition : Respectively spectral and gridpoint atmospheric solid water (ice) represented as
pronostic variables in the model.

Scope : Boolean. Possible values: any pair of booleans except (.TRUE.,.TRUE.).

Default value : if LECMWF=.TRUE. then (LSPI,LGPI)=(.FALSE.,.TRUE.)

Else (LSPI,LGPI)=(.FALSE.,.FALSE.).

Namelist location : NAMDIM

LSPA, LGPA :

Definition : Respectively spectral and gridpoint cloud fraction represented as pronostic variables
in the model.

Scope : Boolean. Possible values: any pair of booleans except (.TRUE.,.TRUE.).

Default value : if LECMWF.TRUE. then (LSPA,LGPA)=(.FALSE.,.TRUE.)

Else (LSPA,LGPA)=(.FALSE.,.FALSE.).

Namelist location : NAMDIM

LSPO3, LGPO3 :

Definition : Respectively spectral and gridpoint ozone mixing ratio represented as pronostic
variables in the model.

Scope : Boolean. Possible values: any pair of booleans except (.TRUE.,.TRUE.).

Default value : (.FALSE.,.FALSE.).

Namelist location : NAMDIM

106 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

(e) Adiabatic post-processing

To run the post-processing in the adiabatic model, you should carefully remove the physical fields from
the model, by setting the following variables in namelists:

/NAMPHY

LSOLV=.FALSE.,

LFGEL=.FALSE.,

LFGELS=.FALSE.,

LMPHYS=.FALSE.,

LNEBN=.FALSE.,

/END

/NAMDPHY

NVSO=0,

NVCLIV=0,

NVRS=0,

NVSF=0,

NVSG=0,

NCSV=0,

NVCLIN=0,

NVCLIP=0,

/END

(f ) Horizontal interpolations

It is possible to control the kind of horizontal interpolations, for dynamic fields on one side, and for
physical fields and fluxes on the other side:

NFPINDYN :

Definition : control of horizontal interpolations for dynamic fields:

• NFPINDYN=12: quadratic interpolations
• NFPINDYN=4: bilinear interpolations
• NFPINDYN=0: to adopt the nearest point rather than interpolating.

Scope : Integer which value can be only 0, 4 or 12.

Default value : 12

Namelist location : NAMFPC

NFPINPHY :

Definition : control of horizontal interpolations for physical fields and fluxes:

• NFPINPHY=12: quadratic interpolations
• NFPINPHY=4: bilinear interpolations
• NFPINPHY=0: to adopt the nearest point rather than interpolating.

Scope : Integer which value can be only 0, 4 or 12.

Default value : 12

Namelist location : NAMFPC

Notice: setting NFPINPHY=NFPINDYN=0 enables to run the post-processing without any climatology, even
when any ISBA field is requested.

(g) The problem of lakes and islands

When the output resolution is so that a single gridpoint lake or island is created, the horizontal
interpolations taking into account the land/sea nature will not work properly since no neighbouring

IFS Documentation – Cy37r2 107



Appendix D: FullPos user guide

points will be of the same nature as the target point; hence all the neighbouring points will be used in
the interpolation process. This can lead to irrealistic temperatures or water contents.

To avoid this, an alternative option has been developed:

LFPLAKE :

Definition : Special treatment for lake and islands; when it is set to .TRUE. the surface and deep
soil temperatures and water contents will be modified as follows:

• values on isolated lakes or islands gridpoint created by the interpolations will be
overwritten by the climatology data

• values on any lake gridpoint, as identified by the climatology, will be overwritten by the
climatology data (to improve the existing quality of the climatology data over lakes, when
it is possible).

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMFPC

Notice: the positive impact of the feature still need be proved.

(h) Computation of CAPE

The computation of the Convective Available Potential Energy (CAPE) is widely tunable:

NFPCAPE :

Definition : Kind of computation:

• NFPCAPE=1: computation starts from the lowest model level
• NFPCAPE=2: computation starts from the most unstable model level
• NFPCAPE=3: computation starts from the recomputed temperature and relative moisture

at 2 meters
• NFPCAPE=4: computation starts from the analysed temperature and relative moisture at 2

meters.

Scope : Integer which value can be only 1,2 3 or 4.

Default value : 2

Namelist location : NAMFPC

NCAPEITER :

Definition : Number of iterations in the Newton’s loops.

Scope : Integer.

Default value : 2

Namelist location : NAMCAPE

NETAPES :

Definition : Number of intermediate layers used for calculation of vertical ascent between two
model pressure levels.

Scope : Integer.

Default value : 2

Namelist location : NAMCAPE

108 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

GCAPEPSD :

Definition : Depth of layer above the ground in which most unstable parcel is searched for (used
with NFPCAPE=2 only).

Scope : Real. Unit: Pascal.

Default value : 30000 Pa.

Namelist location : NAMCAPE

GCAPERET :

Definition : Fraction of the condensate which is retained (ie: which does not precipitate).

Scope : real value between 0. and 1.

Default value : GCAPERET=0. (“irreversible” or pseudo-adiabatic moist ascent: clouds condensates
precipitate instantaneously and thus does not affect the buoyancy).

Namelist location : NAMCAPE

(i) Miscellaneous

LFPQ :

Definition : To control the interpolation of relative versus specific humidity on height or eta levels.
Relative humidity is considered to have better conservative properties through interpolations
than mixing ratio, even if it is not a conservative quantity. If LFPQ=.FALSE. the relative
humidity is interpolated then the specific humidity is deducted. If LFPQ=.TRUE. the specific
humidity is interpolated then the relative humidity is deducted.

Scope : Boolean.

Default value : .FALSE. (this is the recommended value).

Namelist location : NAMFPC

RFPVCAP :

Definition : Minimum pressure of model level to provide an equatorial cap for fields computed on
potential vorticity levels.

Scope : Real. Unit: Pascal.

Default value : if LECMWF=.TRUE. then RFPVCAP=8900. Pa; else RFPVCAP=15000. Pa

Namelist location : NAMFPC

NDLNPR :

Definition : Discretization of δ (ln p). Set NDLNPR=1 to adopt the proper discretization to conform
the non-hydrostatic model or whenever you post-process on “non-hydrostatic” field (pressure
departure, vertical divergence or true vertical velocity). orticity levels.

Scope : Integer which value can be only 0 or 1.

Default value : 1

Namelist location : NAMDYN

D.3.2 Optimizing the performance

NPROMA :

Definition : working length of the model data rows. Refer to Section D.10.2 on page 138 for more
information.

Scope : positive or negative integer but not zero nor a power of 2, and limited (in absolute value) to
the biggest helpful value (ie: the number of model gridpoints in the current processor). When
it is negative the absolute value is used; when it is positive the program will try to increase it
in the limit of 10 % in an attempt to improve even more the optimization.

Default value : if LECMWF=.TRUE. then NPROMA=2047, else NPROMA=67.

Namelist location : NAMDIM

IFS Documentation – Cy37r2 109



Appendix D: FullPos user guide

NFPROMAG :

Definition : working length of the post-processing data rows. Refer to Section D.10.2 on page 138
for more information.

Scope : positive integer but not zero nor a power of 2, and limited to the biggest helpful value (ie:
the number of post-processing gridpoints in the current processor).

Default value : internally computed as the mean of the helpful values gathered among all
processors.

Namelist location : NAMFPSC2

NFPROMEL :

Definition : working length of the post-processed extension zone data rows. Refer to Section D.10.2
on page 138 for more information.

Scope : positive integer but not zero nor a power of 2, and limited to the biggest helpful value (ie:
the number of gridpoints in the post-processed extension zone of the current processor).

Default value : internally computed as the biggest helpful value.

Namelist location : NAMFPEZO

NPROC :

Definition : Number of processors used for the distribution per nodes.

Scope : Integer between 1 and the maximum number of processors of the machine.

Default value : 0 (So this parameter must be set explicitly!)

Namelist location : NAMPAR0

LMPOFF :

Definition : Control of message passing libraries. Set LMPOFF=.TRUE. to avoid entering message
passing subroutines when NPROC=1.

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMPAR0

NPRTRW, NPRTRV :

Definition : Numbers of processors used respectively for the waves distribution and the vertical
distribution in spectral space.

Scope : Integers greater than zero and so that NPRTRW*NPRTRV=NPROC. For the time being the
vertical distribution is not working, so (NPRTRW,NPRTRV) must be (NPROC,1).

Default value : 0 (So these parameters must be set explicitly!)

Namelist location : NAMPAR0

NPRGPNS, NPRGPEW :

Definition : Numbers of processors used respectively for the North–South and East–West gridpoint
distributions.

Scope : Integers greater than zero and so that NPRGPNS*NPRGPEW=NPROC.
For the time being the East–West distribution is not working in arpege/aladin, so
(NPRGPNS,NPRGPEW) must be (NPROC,1).

Default value : 0 (So these parameters must be set explicitly!)

Namelist location : NAMPAR0

110 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

NSTRIN, NSTROUT :

Definition : Numbers of processors used respectively for unpacking input data from file and for
packing output data to file.

Scope : Integers between 1 and NPROC. The best performance in arpege/aladin is obtained with
NSTRIN=NPROC and NSTROUT≈NPROC/2.

Default value : if LECMWF=.TRUE. then (NSTRIN,NSTROUT)=(1,0).
Else (NSTRINNSTROUT)=(NPROC,1).

Namelist location : NAMPAR1

NSTREFP :

Definition : Number of processors used for the distribution of the post-processed extension zone
(for lam outputs only).

Scope : Integer between 1 and NPROC.

Default value : 1

Namelist location : NAMFPEZO

LSPLIT :

Definition : Control of latitude row splitting. set LSPLIT=.TRUE. to improve the balance of
distribution.

Scope : Boolean. This option does not work in aladin (LSPLIT must be .FALSE.).

Default value : .TRUE.

Namelist location : NAMPAR1

NFPXFLD :

Definition : Chunk size of global fields while gathering the post-processed distributed fields before
writing out to output files. Refer to Section D.10.1 on page 138 for more information.

Scope : Integer greater than zero and limited to the biggest helpful value (ie: the number of post-
processed fields).

Default value : internally computed as the biggest helpful value.

Namelist location : NAMFPIOS

D.3.3 Output fields conditioning

(a) Horizontal representation of dynamic fields

For any post-processed dynamic field it is possible to choose the horizontal representation (spectral or
gridpoint), providing the field can be computed in both representation. This is independent from the
representation of the field in the model. So it is a way to convert fields from spectral space to gridpoint
space or vice-versa):

TFP {*}%LLGP :

Definition : Horizontal representation of fields: .TRUE. for gridpoint, .FALSE. for spectral.

Scope : Boolean. “{*}” represents the field generic identificator (there is one variable per dynamic
field).

Default value : Refer to Section D.6.1 on page 127 for upper air fields, and to Section (a) on
page 128 for 2D fields.

Namelist location : NAMAFN

IFS Documentation – Cy37r2 111



Appendix D: FullPos user guide

LFITS :

Definition : Spectral fit of post-processed fields on eta levels. This key is active only if
CFPFMT=’MODEL’ (ie: spectral coefficients in output). Setting LFITS=.FALSE. enables to write
out all upper air dynamic fields in gridpoints.

Scope : Boolean. This key is getting obsolescent.
Better use the individual keys TFP {*}%LLGP.

Default value : .TRUE.

Namelist location : NAMFPC

(b) Encoding data in output file

NBITPG :

Definition : Default number of bits for packing fields.

Scope : Integer which value can be either -1, or any positive number between 1 and 64. If NBITPG=-1
then the default value is internally computed by the fa (File arpege) software.

Default value : 24; if NBITPG=-1 the actual default value will be 16.

Namelist location : NAMFA

NSTRON :

Definition : Default threshold for the truncation beyond which the spectral fields are packed.

Scope : Integer which value can be either -1, or any positive number between 1 and the model
truncation NSMAX.

Default value : 10; if NSTRON=-1 the actual default depends on the model truncation NSMAX.

Namelist location : NAMFA

NPULAP :

Definition : “Dolby exposant” for the packing of spectral fields.

Scope : Integer between -5 and +5.

Default value : 1

Namelist location : NAMFA

NB{*} :

Definition : Number of bits for packing physical fields and fluxes.

Scope : Integer. “{*}” represents the field generic identificator (there is one variable per field).

Default value : Refer to Section (b) on page 129. Notice: surface geopotential should not be
packed in the model in order to keep consistency between spectral and gridpoint orography.

Namelist location : NAMAFN

TFP {*}%IBITS :

Definition : Number of bits for packing dynamic fields.

Scope : Integer. “{*}” represents the field generic identificator (there is one variable per dynamic
field).

Default value : Refer to Section D.6.1 on page 127 for upper air fields, and to Section (a) on
page 128 for 2D fields. Notice: surface geopotential should not be packed in the model in order
to keep consistency between spectral and gridpoint orography.

Namelist location : NAMAFN

112 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

NFPGRIB :

Definition : griblevel for fields encoding in the post-processing arpege/aladin files:

• NFPGRIB=0: no packing at all. This value has priority over the numbers of bits for packing.
• NFPGRIB=1: standard gribencoding.
• NFPGRIB=2: a modified gribencoding for arpege/aladin files.

Refer to the documentation on the arpege/aladin files for more information (available in
French5 or in English6).

Scope : Integer between 0 and 2.

Default value : 2

Namelist location : NAMFPC

(c) Customized complexions

NCADFORM :

Definition : Auto-documentation format for the aladin files: set NCADFORM=0 for the EGGX new
style format and NCADFORM=1 for the EGGX old style format.

Scope : Integer which value can be only 0 or 1.

Default value : 0

Namelist location : NAMOPH

LFPRH100 :

Definition : Representation of relative humidity: set LFPRH100=.TRUE. to get a percentage rather
than a ratio.

Scope : Boolean.

Default value : LFPRH100=LECMWF

Namelist location : NAMFPC

LFPLOSP :

Definition : Representation of surface pressure: set LFPLOSP=.TRUE. to fill surface pressure with
its logarithm.

Scope : Boolean.

Default value : if LECMWF=.TRUE. then LFPLOSP=.FALSE.; else LFPLOSP=.FALSE. except for the
so-called configurations ((e)e)927 (See Chapter D.4 on page 118).

Namelist location : NAMFPC

D.3.4 Selective namelists

In normal use, at each post-processing time step all the post-processing fields are written out at all
post-processing levels and for all output (sub-)domains. However it is possible to specify a more selective
list of fields to write out, by choosing for each field the exact list of post-processing levels, and for each
post-processing level of each field the exact list of (sub-)domains.

This is achieved by filling a specific namelist file currently named the selection file. In the local script
the selection file should write: “xxtDDDDHHMM” where DDDD, HH and MM specify respectively the day (on 4
digits), the hour (on 2 digits) and the minute (on 2 digits) of the forecast. Furthermore in the local script
the working directory should contain a file named dirlst listing the content of the working directory (as
generated by the command ls).

The selection files should contain the following namelist blocks:

5http://intra.cnrm.meteo.fr/gmod/modeles/Tech/fa/synopsis.html
6http://intra.cnrm.meteo.fr/gmod/modeles/Tech/fa/manual.html

IFS Documentation – Cy37r2 113

http://intra.cnrm.meteo.fr/gmod/modeles/Tech/fa/synopsis.html
http://intra.cnrm.meteo.fr/gmod/modeles/Tech/fa/manual.html


Appendix D: FullPos user guide

(i) NAMFPPHY

(ii) NAMFPDY2

(iii) NAMFPDYP

(iv) NAMFPDYH

(v) NAMFPDYV

(vi) NAMFPDYT

(vii) NAMFPDYS

Finally the following variables should be documented:

CNPPATH :

Definition : directory where the selection files stand.

Scope : string of 120 characters.

Default value : blank string (no selection files).

Namelist location : NAMCT0 in the namelist file.

CLPHY :

Definition : selected physical fields names.

Scope : array of 16 characters, maximum size: 328 items. All the selected fields should be present
in the array CFPPHY.

Default value : blank string (no fields).

Namelist location : NAMFPPHY in the selection file.

CLDPHY :

Definition : selected subdomains for each selected physical field.

Scope : array of (( 15 *( 10 + 1 ))-1) characters. Maximum size: 328 items. It should contain for
each selected physical field the list of selected subdomains separated with the character “:”.
All the selected subdomains should be present in the array CFPDOM.

Default value : blank string (ALL subdomains).

Namelist location : NAMFPPHY in the selection file.

CLCFU :

Definition : selected cumulated fluxes names.

Scope : array of 16 characters, maximum size: 63 items. All the selected fields should be present
in the array CFPCFU.

Default value : blank string (no fields).

Namelist location : NAMFPPHY in the selection file.

CLDCFU :

Definition : selected subdomains for each selected cumulated flux.

Scope : array of (( 15 *( 10 + 1 ))-1) characters. Maximum size: 63 items. It should contain for
each selected cumulated flux the list of selected subdomains separated with the character “:”.
All the selected subdomains should be present in the array CFPDOM.

Default value : blank string (ALL subdomains).

Namelist location : NAMFPPHY in the selection file.

114 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

CLXFU :

Definition : selected instantaneous fluxes names.

Scope : array of 16 characters, maximum size: 63 items. All the selected fields should be present
in the array CFPXFU.

Default value : blank string (no fields).

Namelist location : NAMFPPHY in the selection file.

CLDXFU :

Definition : selected subdomains for each selected instantaneous flux.

Scope : array of (( 15 *( 10 + 1 ))-1) characters. Maximum size: 63 items. It should contain for
each selected instantaneous flux the list of selected subdomains separated with the character
“:”. All the selected subdomains should be present in the array CFPDOM.

Default value : blank string (ALL subdomains).

Namelist location : NAMFPPHY in the selection file.

CL2DF :

Definition : selected dynamic 2D fields names.

Scope : array of 16 characters, maximum size: 78 items. All the selected fields should be present
in the array CFP2DF.

Default value : blank string (no fields).

Namelist location : NAMFPDY2 in the selection file.

CLD2DF :

Definition : selected subdomains for each selected dynamic 2D field.

Scope : array of (( 15 *( 10 + 1 ))-1) characters. Maximum size: 78 items. It should contain for
each selected dynamic 2D field the list of selected subdomains separated with the character
“:”. All the selected subdomains should be present in the array CFPDOM.

Default value : blank string (ALL subdomains).

Namelist location : NAMFPDY2 in the selection file.

CL3DF :

Definition : selected upper air dynamic fields names.

Scope : array of 12 characters, maximum size: 98 items. All the selected fields should be present
in the array CFP3DF.

Default value : blank string (no fields).

Namelist location : NAMFPDYP for pressure levels, NAMFPDYH for height levels, NAMFPDYV for
potential vorticity levels, NAMFPDYT for isentropic levels and NAMFPDYS for eta levels. All in
the selection file.

IL3DF :

Definition : the subscripts of the selected post-processing levels for each selected upper air dynamic
field.

Scope : integer array of strictly positive values, maximum size: 98 items. All the selected subscripts
should correspond to an effective post-processing level.

Default value : 0

Namelist location : NAMFPDYP for pressure levels, NAMFPDYH for height levels, NAMFPDYV for
potential vorticity levels, NAMFPDYT for isentropic levels and NAMFPDYS for eta levels. All in
the selection file.

IFS Documentation – Cy37r2 115



Appendix D: FullPos user guide

CLD3DF :

Definition : selected subdomains for each selected level of each selected upper air dynamic field.

Scope : bi-dimensional array of (( 15 *( 10 + 1 ))-1) characters. Maximum size: ( 200 , 78 ) items.
It should contain for each selected level of each selected upper air dynamic field the list of
selected subdomains separated with the character “:”. All the selected subdomains should be
present in the array CFPDOM.

Default value : blank string (ALL subdomains).

Namelist location : NAMFPDYP for pressure levels, NAMFPDYH for height levels, NAMFPDYV for
potential vorticity levels, NAMFPDYT for isentropic levels and NAMFPDYS for eta levels. All in
the selection file.

Section D.7 on page 133 shows an example of selection file.

D.3.5 Miscellaneous

(a) Customization of names

CN{*} :

Definition : arpege/aladin field names for each surface fields or fluxes.

Scope : String of 16 characters. “{*}” represents the field generic identificator (there is one variable
per field).

Default value : Refer to Section (b) on page 129.

Namelist location : NAMAFN

TFP {*}%CLNAME :

Definition : arpege/aladin field names for dynamic fields.

Scope : String of 16 characters. “{*}” represents the field generic identificator (there is one variable
per field). However the string length is limited to 12 characters for upper air fields.

Default value : Refer to Section D.6.1 on page 127 for upper air fields, and to Section (a) on
page 128 for 2D fields.

Namelist location : NAMAFN

CFPDIR :

Definition : Prefix of the output files names.

Scope : String of 180 characters. for instance you can set a unixpath.

Default value : ’PF’

Namelist location : NAMFPC

LINC :

Definition : Control of the time stamp of the output files names: .TRUE. to write the stamp in
hours, .FALSE. to write it in time steps.

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMOPH

116 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

(b) Traceback

LTRACEFP :

Definition : post-processing traceback: set LTRACEFP=.TRUE. to get more information printed out
on the listing (for debugging purpose). This option is coupled with the variable NPRINTLEV.

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMFPC

NPRINTLEV :

Definition : verbose option for the listing.

Scope : Integer between 0 (minimum prints) and 2 (maximum prints).

Default value : 0

Namelist location : NAMCT0

LFPNORM :

Definition : Control of the norms of the output fields (mean, minimum and maximum value for
each field and each (sub-)domain).

Scope : Boolean.

Default value : .TRUE.

Namelist location : NAMFPC

LRFILAF :

Definition : verbose option to control the content of any arpege/aladin files used. Set
LRFILAF=.TRUE. to get the content of the files at each I/O operation.

Scope : Boolean.

Default value : .TRUE.

Namelist location : NAMCT1

IFS Documentation – Cy37r2 117



Appendix D: FullPos user guide

D.4 THE FAMILY OF CONFIGURATIONS 927

D.4.1 What it is

The “configuration 927” is the way how to use fullpos to change the geometry and/or the resolution
of a history spectral file. Actually, it is not a true configuration of the software arpege/ifs/aladin,
since the parameter NCONF should remain equal to 1; let us rather call it a configuration of the post-
processing. In such configuration the horizontal interpolations are performed systematically before the
vertical interpolations, and the dynamic variables are (usually) written out as spectral coefficients in the
target spectral geometry7.

As shown in the fancy picture D.1 on page 118, gobbleenv below,

927Arpege Arpege

E927Arpege
Aladin

EE927 AladinAladin

Figure D.1 The configuration 927, E927 and EE927.

• Configuration “927” is to make a file arpege, starting from a file arpege (mostly used to change
the resolution, the stretching and the pole of stretching in the 4D-Var suite).

7It is the change of spectral geometry which makes this configuration so special in the context of the software state.

118 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

• Configuration “E927” is to make a file aladin, starting from a file arpege (for coupling aladin

to arpege).
• Configuration “EE927” is to make a file aladin, starting from a file aladin (for aladin nesting).

D.4.2 How it works

The configurations 927 are working only off-line8.

Such “configurations” are activated through a specific key:

LFPSPEC :

Definition : Control of the configuration 927. Set LFPSPEC=.TRUE. to activate the process.

Scope : Boolean.

Default value : .FALSE.

Namelist location : NAMFPC

Notice:

• To run the configuration 927 (arpegeto arpege) you have to run the model arpege.
• To run the configuration E927 (arpegeto aladin) you have to run the model arpege (setting

LELAM=.FALSE. or -m arpifs in command line) with the software aladin.
• To run the configuration EE927 (aladinto aladin) you have to run the model aladin.

Warning! The configurations 927 create a working file named “ncf927”. If your script contains executions
of configurations 927 inside a loop, then this file should be deleted before the beginning of each iteration.

D.4.3 Namelists parameters

The recommended namelists parameters to set for the configuration 927 are the following:

&NAMCT0

LFPOS=.T.,
NPRINTLEV=1, (verboosity)
NOPGMR=0, LSIDG=.F., (memory savings)
NSPPR=0, (CPU savings)

/END

&NAMCT1

N1HIS=0, (no history file in output)
LRFILAF=.F., (I/O savings)

/END

&NAMINI

NEINI=0, (no initialization on input data)
/END

&NAMFA

NSTRON=-1, NBITPG=16, (proper file encoding)
/END

&NAMAFN (Let this namelist empty)
/END

&NAMFPC

LTRACEFP=.TRUE.,
LFPSPEC=.T.,
CFPFMT=’GAUSS’,
NFPCLI=3,

8Out of the direct model integration.

IFS Documentation – Cy37r2 119



Appendix D: FullPos user guide

LFPMOIS=.FALSE.,
CFP3DF(1)=’TEMPERATURE’,
CFP3DF(2)=’FONC.COURANT’,
CFP3DF(3)=’POT.VITESSE’,
CFP3DF(4)=’HUMI.SPECIFIQUE’,
CFP2DF(1)=’SURFPRESSION’,
CFP2DF(2)=’SPECSURFGEOPOTENTIEL’,
CFPPHY(1)=’SURFTEMPERATURE’,
CFPPHY(2)=’PROFTEMPERATURE ’,
CFPPHY(3)=’PROFRESERV.EAU ’,
CFPPHY(4)=’SURFRESERV.NEIGE’,
CFPPHY(5)=’SURFRESERV.EAU ’,
CFPPHY(6)=’SURFZ0.FOIS.G ’,
CFPPHY(7)=’SURFALBEDO ’,
CFPPHY(8)=’SURFEMISSIVITE ’,
CFPPHY(9)=’SURFET.GEOPOTENT’,
CFPPHY(10)=’SURFIND.TERREMER’,
CFPPHY(11)=’SURFPROP.VEGETAT’,
CFPPHY(12)=’SURFVAR.GEOP.ANI’,
CFPPHY(13)=’SURFVAR.GEOP.DIR’,
CFPPHY(14)=’SURFIND.VEG.DOMI’,
CFPPHY(15)=’SURFRESI.STO.MIN’,
CFPPHY(16)=’SURFPROP.ARGILE’,
CFPPHY(17)=’SURFPROP.SABLE’,
CFPPHY(18)=’SURFEPAIS.SOL’,
CFPPHY(19)=’SURFIND.FOLIAIRE’,
CFPPHY(20)=’SURFRES.EVAPOTRA’,
CFPPHY(21)=’SURFGZ0.THERM’,
CFPPHY(22)=’SURFRESERV.INTER’,
CFPPHY(23)=’PROFRESERV.GLACE’,
CFPPHY(24)=’SURFRESERV.GLACE’,
NRFP3S=1,2,3,4,5,6,7,8,9,10,11,12, ... (fill it up to NFPLEV)

/END

&NAMFPD

NLAT= (fill it yourself)
NLON= (fill it yourself)

/END

&NAMFPG

FPMUCEN= (fill it yourself)
FPLOCEN= (fill it yourself)
NFPHTYP= (fill it yourself)
NFPRGRI= (fill it yourself if NFPHTYP=2)
FPSTRET= (fill it yourself)
NFPTTYP= (fill it yourself)
NFPMAX= (fill it yourself)
NFPLEV= (fill it yourself)
FPVALH= (fill it yourself)
FPVBH= (fill it yourself)

/END

The recommended namelists parameters to set for the configuration E927 or EE927 are the following:

&NAMCT0

LFPOS=.T.,
NPRINTLEV=1, (verboosity)

120 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

NOPGMR=0, LSIDG=.F., (memory savings)
NSPPR=0, (CPU savings)

/END

&NAMCT1

N1HIS=0, (no history file in output)
LRFILAF=.F., (I/O savings)

/END

&NAMINI

NEINI=0, (no initialization on input data)
/END

&NAMFA

NSTRON=-1, NBITPG=18, (proper file encoding)
/END

&NAMAFN

TFP U%CLNAME=’WIND.U.PHYS’,
TFP V%CLNAME=’WIND.V.PHYS’,

/END

&NAMFPC

LTRACEFP=.TRUE.,
LFPSPEC=.T.,
CFPFMT=’GAUSS’,
NFPCLI=3,
LFPMOIS=.FALSE.,
CFP3DF(1)=’TEMPERATURE’,
CFP3DF(2)=’FONC.COURANT’,
CFP3DF(3)=’POT.VITESSE’,
CFP3DF(4)=’HUMI.SPECIFIQUE’,
CFP2DF(1)=’SURFPRESSION’,
CFP2DF(2)=’SPECSURFGEOPOTENTIEL’,
CFPPHY(1)=’SURFTEMPERATURE’,
CFPPHY(2)=’PROFTEMPERATURE ’,
CFPPHY(3)=’PROFRESERV.EAU ’,
CFPPHY(4)=’SURFRESERV.NEIGE’,
CFPPHY(5)=’SURFRESERV.EAU ’,
CFPPHY(6)=’SURFZ0.FOIS.G ’,
CFPPHY(7)=’SURFALBEDO ’,
CFPPHY(8)=’SURFEMISSIVITE ’,
CFPPHY(9)=’SURFET.GEOPOTENT’,
CFPPHY(10)=’SURFIND.TERREMER’,
CFPPHY(11)=’SURFPROP.VEGETAT’,
CFPPHY(12)=’SURFVAR.GEOP.ANI’,
CFPPHY(13)=’SURFVAR.GEOP.DIR’,
CFPPHY(14)=’SURFIND.VEG.DOMI’,
CFPPHY(15)=’SURFRESI.STO.MIN’,
CFPPHY(16)=’SURFPROP.ARGILE’,
CFPPHY(17)=’SURFPROP.SABLE’,
CFPPHY(18)=’SURFEPAIS.SOL’,
CFPPHY(19)=’SURFIND.FOLIAIRE’,
CFPPHY(20)=’SURFRES.EVAPOTRA’,
CFPPHY(21)=’SURFGZ0.THERM’,
CFPPHY(22)=’SURFRESERV.INTER’,
CFPPHY(23)=’PROFRESERV.GLACE’,
CFPPHY(24)=’SURFRESERV.GLACE’,
NRFP3S=1,2,3,4,5,6,7,8,9,10,11,12, ... (fill it up to NFPLEV)

/END

IFS Documentation – Cy37r2 121



Appendix D: FullPos user guide

&NAMFPD

NLAT= (fill it yourself)
NLON= (fill it yourself)
RLATC= (fill it yourself)
RLONC= (fill it yourself)
RDELX= (fill it yourself)
RDELY= (fill it yourself)
NFPLUX= (fill it yourself)
NFPGUX= (fill it yourself)

/END

&NAMFPG

FPLON0= (fill it yourself)
FPLAT0= (fill it yourself)
NFPMAX= (fill it yourself)
NMFPMAX= (fill it yourself)
NFPLEV= (fill it yourself)
FPVALH= (fill it yourself)
FPVBH= (fill it yourself)

/END

Furthermore, if you intend to make a non-hydrostatic history file, you should add the following parameters:

&NAMCT0

LNHDYN=.TRUE. or .FALSE. (depending whether your input file is hydrostatic or not)
/END

&NAMDYN

NDLNPR=1,
/END

&NAMFPC

CFP3DF(5)=’PRESS.DEPART’,
CFP3DF(6)=’VERTIC.DIVER’,

/END

D.4.4 Bogussing

A procedure has been developed in order to try and improve the forecast of tropical cyclone in
arpege/aladin: it is called “bogussing”, or “configuration 927E”. This configuration is working in
3 steps:

(i) Bogussing of aladin a configuration EE927 is run in adiabatic mode with translation activated to
move the model cyclone (actually the minimum of surface pressure in the model) to the observed
location (refer to NFPTTYP, FPMUCEN and FPLOCEN). In order not to translate the orography, one
should first lower the orography to zero, then translate, and finally re-set the original orography.

(ii) arpege background: this is a file arpege which should contain the fields of a given arpege history
file, all in gridpoint representation. Furthermore the surface pressure should be the true one, not
its logarithm. This file aims to be used for the third step:

(iii) Bogussing of arpege this configuration is a kind of “reverse configuration E927”: starting from
the arpege background file and the aladin bogussed file, a new arpege file is build, containing
the local translation of fields in the vicinity of the tropical cyclone.

To run this configuration 927E (aladin to arpege) you have to run the model aladin (setting
LELAM=.TRUE. or -m aladin in command line) with the namelist of a configuration 927 in adiabatic
mode and with the incremental process as described below:

122 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

NFPINCR :

Definition : Control of incremental post-processing. Set NFPINCR=1 to activate the incremental
process.

Scope : Integer which value can be only 0 or 1.

Default value : 0

Namelist location : NAMFPC

You will have also to provide 3 input files:

ELSCF${CNMEXP(1:4)}ALBC : the aladin file before bogussing

ICMSH${CNMEXP(1:4)}INIT : the aladin bogussed file

BGPX${CNMEXP(1:4)}${CFPDOM} : the arpege background file

Remark: this “incremental” process can be considered like the “tangent linear post-processing of the
poor”, as it does not really works on increments.

IFS Documentation – Cy37r2 123



Appendix D: FullPos user guide

D.5 EXPERT USAGE

Once you have a good knowledge of fullpos, you can tune various parameters of namelists as you wish,
combine scripts, and even modify the code.

This section will shortly describe some examples of clever use of the software.

D.5.1 Appending fields to a file

Imagine you wish to post-process a given field on a thousand pressure levels: the software will fail because
the maximum number of output levels is limited to a reasonable value.

However you can easily overcome this limitation by slicing the list of post-processing levels: that way you
would submit a bunch of jobs, targeting the same output file. Since the output file is not sequential but
indexed-sequential, the file will not be overwritten at the beginning of each job: instead the fields will be
appended to one another.

You can also use this trick to append fields to your own input file: to do that you just have to copy your
input file to the output file before starting the post-processing job.

D.5.2 Derivatives on model levels

If you try to postprocess derivatives on eta levels (like the potential vorticity on the model levels) and
you do interpolate on the horizontal (for instance: from a file arpege to a file aladin), the software will
fail because derivatives will be missing: this is because the horizontal derivatives are available only in the
model geometry.

A way to overcome this limitation is to first change the geometry of your input file to the geometry of your
output file (using the configurations 927), then to post-process on the new “model” grid (CFPFMT=’MODEL’
and LFITS=.FALSE.).

Unfortunately this does not work if the target geometry is lat × lon! In this case you have to trick the
software so that the field you wish to interpolate will be considered as a passive scalar field; this can be
achieved in two steps:

(i) You should create a history file with the supplementary fields you wish to interpolate; this can be
achieved either by running a configuration of the kind “927” in which namelist you will request
the supplementary fields, or by running a normal post-processing job in the model geometry
(CFPFMT=’MODEL’) and using the “appending fields” trick (refer to the previous section).

(ii) If they are spectral you can post-process your supplementary fields as model passive scalar fields
(setting NFPASS and the field descriptors TFP SCVA()). Else you can still trick the software by
activating the pronostic field for gridpoint cloud fraction (setting LGPA=.TRUE.) and feeding the
cloud fraction with one of your supplementary field through a proper setting of TFP CLF%CLNAME.
Notice: this is possible only because there is — by “chance”! — no control of the interpolations
overshoot for cloud fraction. (In principle the interpolated cloud fraction should be controlled in
order to remain between 0. and 1.)

D.5.3 3D physical fluxes

Fluxes are not yet post-processable as 3D fields. However you can post-process them in off-line mode9

by activating the pronostic field for gridpoint cloud fraction (setting LGPA=.TRUE.) and feeding the cloud
fraction with one of them through a proper setting of TFP CLF%CLNAME. Notice: this is possible only
because there is — by “chance”! — no control of the interpolations overshoot for cloud fraction. (In
principle the interpolated cloud fraction should be controlled in order to remain between 0. and 1.)

9Out of the direct model integration.

124 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

D.5.4 Free-use fields

fullpos provides the environment to post-process your personal fields once you have created them in the
software. This may be done with a minimum of modifications in the software. The environment should
be documented through the following namelists variables:

CNPFSU :

Definition : Generic for surface physical free-use fields.

Scope : array of 16 characters; maximum size: 15 items.

Default value : Refer to Section (b) on page 129.

Namelist location : NAMAFN

NBFSU :

Definition : Number of bits for packing surface physical free-use fields.

Scope : Integer array; maximum size: 15 items.

Default value : Refer to Section (b) on page 129.

Namelist location : NAMAFN

TFP FUA%CLNAME :

Definition : Dynamic upper air free-use fields names.

Scope : array of 16 characters;; maximum size: 30 items.

Default value : Refer to Section D.6.1 on page 127.

Namelist location : NAMAFN

TFP FUA%IBITS :

Definition : Number of bits for packing dynamic upper air free-use fields.

Scope : Integer array; maximum size: 30 items.

Default value : Refer to Section D.6.1 on page 127.

Namelist location : NAMAFN

TFP FUA%LLGP :

Definition : Control of the horizontal representation for dynamic upper air free-use fields: .TRUE.
for gridpoint representation; .FALSE. for spectral representation.

Scope : Boolean array; maximum size: 30 items.

Default value : Refer to Section D.6.1 on page 127.

Namelist location : NAMAFN

TFP FSU%CLNAME :

Definition : Dynamic surface free-use fields names.

Scope : array of 16 characters;; maximum size: 15 items.

Default value : Refer to Section (a) on page 128.

Namelist location : NAMAFN

TFP FSU%IBITS :

Definition : Number of bits for packing dynamic surface free-use fields.

Scope : Integer array; maximum size: 15 items.

Default value : Refer to Section (a) on page 128.

Namelist location : NAMAFN

IFS Documentation – Cy37r2 125



Appendix D: FullPos user guide

TFP FSU%LLGP :

Definition : Control of the horizontal representation for dynamic surface free-use fields .TRUE. for
gridpoint representation; .FALSE. for spectral representation.

Scope : Boolean array; maximum size: 15 items.

Default value : Refer to Section (a) on page 128.

Namelist location : NAMAFN

Dynamic fields should then be computed in the subroutines POS (for interpolations on pressure levels,
isentropic levels or PV levels) or ENDPOS (for interpolations on height or eta levels).

You can possibly control the result of the horizontal interpolations in the subroutine FPCORDYN.

The fields will be treated as fitable non-derivatives: in other words they will be concerned by the keys
LFITP, LFITV, LFITT, LFITS and LFIT2D.

126 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

D.6 FIELD DESCRIPTORS

D.6.1 Upper air dynamic fields descriptors

This section details the content of a part of the namelist NAMAFN which contains the descriptors of the
upper air dynamic fields. The descriptor %CLNAME serves to fill the array CFP3DF in the namelist NAMFPC.

Field : TYPE NAME %CLNAME %IBITS %LLGP

Absolute Vorticity........: TFP_ABS ABS_VORTICIT 24 F

Atmospheric liquid water..: TFP_W LIQUID_WATER 24 T

Atmospheric solid water...: TFP_S SOLID_WATER 24 T

Cloud fraction............: TFP_CLF CLOUD_FRACTI 24 T

Divergence................: TFP_DIV DIVERGENCE 24 F

Equiv. pot. temperature...: TFP_ETH THETA_EQUIVA 24 F

Free upper air field n 01.: TFP_FUA(01) UPPER_AIR.01 24 F

Free upper air field n 02.: TFP_FUA(02) UPPER_AIR.02 24 F

Free upper air field n 03.: TFP_FUA(03) UPPER_AIR.03 24 F

(truncated list - 30 variables)

Geopotential..............: TFP_Z GEOPOTENTIEL 24 F

Montgomery potential......: TFP_MG MONTGOMERY G 24 F

Ozone.....................: TFP_O3MX OZONE 24 F

Passive scalar nr 01......: TFP_SCVA(01) #001.SCALAR 24 F

Passive scalar nr 02......: TFP_SCVA(02) #002.SCALAR 24 F

Passive scalar nr 03......: TFP_SCVA(03) #003.SCALAR 24 F

(truncated list - 5 variables)

Potential temperature.....: TFP_TH TEMPE_POTENT 24 F

Potential Vorticity.......: TFP_PV POT_VORTICIT 24 F

Pressure Departure........: TFP_PD PRESS.DEPART 24 F

Pressure..................: TFP_P PRESSURE 24 F

Pseudo Vertic. Divergence.: TFP_VD VERTIC.DIVER 24 F

Relative humidity.........: TFP_HU HUMI_RELATIV 24 F

Shearing Deformation......: TFP_SHD SHEAR_DEFORM 24 F

Specific humidity.........: TFP_Q HUMI.SPECIFI 24 F

Stream function...........: TFP_KHI FONC.COURANT 24 F

Stretching Deformation....: TFP_STD STRET_DEFORM 24 F

Temperature...............: TFP_T TEMPERATURE 24 F

True Vertical NH Velocity.: TFP_VW VERT.VELOCIT 24 F

U-momentum of wind........: TFP_U VENT_ZONAL 24 F

Velocity potential........: TFP_PSI POT.VITESSE 24 F

Vertical velocity.........: TFP_VV VITESSE_VERT 24 F

Vorticity.................: TFP_VOR VORTICITY 24 F

V-momentum of wind........: TFP_V VENT_MERIDIE 24 F

Wet bulb pot. temperature.: TFP_THPW THETA_PRIM_W 24 F

Wind velocity.............: TFP_WND WIND_VELOCIT 24 F

Notice: Vertical velocity “omega” is expressed in Pa/s and true vertical velocity “w” is expressed in m/s

IFS Documentation – Cy37r2 127



Appendix D: FullPos user guide

(a) 2D dynamic fields descriptors

This section details the content of a part of the namelist NAMAFN which contains the descriptors of the
2D dynamic fields. The descriptor %CLNAME serves to fill the array CFP2DF in the namelist NAMFPC.

Field : TYPE NAME %CLNAME %IBITS %LLGP

Altitude of iso-t=0 ......: TFP_HT0B SURFISOT0.MALTIT 24 T

Altitude of iso-tprimw=0 .: TFP_HTPW SURFISOTPW0.MALT 24 T

CAPE......................: TFP_CAPE SURFCAPE.POS.F00 24 T

CIEN......................: TFP_CIEN SURFCIEN.POS.F00 24 T

Free surface field nr 01..: TFP_FSU(01) SURF2D.01 24 F

Free surface field nr 02..: TFP_FSU(02) SURF2D.02 24 F

Free surface field nr 03..: TFP_FSU(03) SURF2D.03 24 F

(truncated list - 15 variables)

HU cls....................: TFP_RCLS CLSHU.RELATI.POS 24 T

ICAO jet pressure.........: TFP_PJET JETPRESSURE 24 T

ICAO Tropopause pressure..: TFP_PCAO ICAOTROP.PRESSUR 24 T

ICAO Tropo. temperature...: TFP_TCAP ICAOTROP.TEMPERA 24 T

Log. of Surface pressure..: TFP_LNSP LOG.SURF.PRESS 24 F

Map factor................: TFP_GM MAP_FACTOR 24 T

Maxi. rel. moist. in cls..: TFP_HUX CLSHUREL.MAX.POS 24 T

Maxi. temperature in cls..: TFP_TX CLSTEMPE.MAX.POS 24 T

Mean sea level pressure...: TFP_MSL MSLPRESSURE 24 F

Mini. rel. moist. in cls..: TFP_HUN CLSHUREL.MIN.POS 24 T

Mini. temperature in cls..: TFP_TN CLSTEMPE.MIN.POS 24 T

Module of gusts...........: TFP_FGST CLSRAFALES.POS 24 T

Module of wind cls........: TFP_FCLS CLSWIND_VELO.POS 24 T

Pressure of iso-t=0 ......: TFP_PT0B SURFISOT0.PRESSU 24 T

Q cls.....................: TFP_QCLS CLSHU.SPECIF.POS 24 T

Surface geopotential......: TFP_FIS SPECSURFGEOPOTEN 64 F

Surface pressure..........: TFP_SP SURFPRESSION 24 F

Surface Vertical Velocity.: TFP_WWS SURFVERT.VELOCIT 24 F

T cls.....................: TFP_TCLS CLSTEMPERATU.POS 24 T

Total water vapour........: TFP_TWV SURFTOT.WAT.VAPO 24 T

Tropo. Folding Indicator..: TFP_FOL TROPO_FOLD_INDIC 24 T

U cls.....................: TFP_UCLS CLSVENT_ZONA.POS 24 T

U gusts...................: TFP_UGST CLSURAFALES.POS 24 T

U-momentum of ICAO jet....: TFP_UJET JETVENT_ZONAL 24 T

V cls.....................: TFP_VCLS CLSVENT_MERI.POS 24 T

V gusts...................: TFP_VGST CLSVRAFALES.POS 24 T

V-momentum of ICAO jet....: TFP_VJET JETVENT_MERIDIEN 24 T

128 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

(b) Surface physical fields descriptors

This section details the content of a part of the namelist NAMAFN which contains the descriptors of the
surface physical fields. The descriptor %CLNAME serves to fill the array CFPPHY in the namelist NAMFPC.

Albedo ............................... CNAL = SURFALBEDO NBAL = 24

Analysed RMS of geopotential ........ CNPCAAG= SURFETA.GEOPOTEN NBPCAAG= 24

Anisotropy coeff. of topography ...... CNACOT = SURFVAR.GEOP.ANI NBACOT = 24

Clim. relative deep soil wetness ..... CNCDSW = PROFPROP.RMAX.EA NBCDSW = 24

Clim. relative surface soil wetness .. CNCSSW = SURFPROP.RMAX.EA NBCSSW = 24

Deep soil temperature ................ CNDST = PROFTEMPERATURE NBDST = 24

Deep soil wetness .................... CNDSW = PROFRESERV.EAU NBDSW = 24

Direction of main axis of topography . CNDPAT = SURFVAR.GEOP.DIR NBDPAT = 24

Emissivity ........................... CNEMIS = SURFEMISSIVITE NBEMIS = 24

Forecasted RMS of geopotential ....... CNPCAPG= SURFETP.GEOPOTEN NBPCAPG= 24

Frozen deep soil wetness ............. CNFDSW = PROFRESERV.GLACE NBFDSW = 24

Frozen superficial soil wetness ...... CNFSSW = SURFRESERV.GLACE NBFSSW = 24

Index of vegetation .................. CNIVEG = SURFIND.VEG.DOMI NBIVEG = 24

Interception content ................. CNIC = SURFRESERV.INTER NBIC = 24

INTERPOLATED surface temperature ..... CNRDST = INTSURFTEMPERATU NBRDST = 24

Land/sea mask ........................ CNLSM = SURFIND.TERREMER NBLSM = 24

Leaf area index ...................... CNLAI = SURFIND.FOLIAIRE NBLAI = 24

OUTPUT Grid-point geopotential ....... CNGFIS = SURFGEOPOTENTIEL NBGFIS = 64

Percentage of clay within soil ....... CNARG = SURFPROP.ARGILE NBARG = 24

Percentage of land ................... CNLAN = SURFPROP.TERRE NBLAN = 24

Percentage of sand within soil ....... CNSAB = SURFPROP.SABLE NBSAB = 24

Percentage of vegetation ............. CNVEG = SURFPROP.VEGETAT NBVEG = 24

Relaxation deep soil wetness ......... CNRDSW = RELAPROP.RMAX.EA NBRDSW = 24

Resistance to evapotranspiration ..... CNHV = SURFRES.EVAPOTRA NBHV = 24

Roughness length of bare surface

(times g)............................. CNBSR = SURFZ0REL.FOIS.G NBBSR = 24

Snow albedo .......................... CNALSN = SURFALBEDO NEIGE NBALSN = 24

Surface snow density ................. CNSNDE = SURFDENSIT.NEIGE NBSNDE = 24

Snow depth ........................... CNSD = SURFRESERV.NEIGE NBSD = 24

Soil depth ........................... CND2 = SURFEPAIS.SOL NBD2 = 24

Standart deviation of orography

(times g) ............................ CNSDOG = SURFET.GEOPOTENT NBSDOG = 24

Stomatal minimum resistance .......... CNRSMIN= SURFRESI.STO.MIN NBRSMIN= 24

Surface albedo for non snowed areas .. CNBAAL = SURFALBEDO.COMPL NBBAAL = 24

Surface relative moisture ............ CNPSRHU= SURFHUMI.RELATIV NBPSRHU= 24

Surface roughness (times g) .......... CNSR = SURFZ0.FOIS.G NBSR = 24

Surface soil wetness ................. CNSSW = SURFRESERV.EAU NBSSW = 24

Surface temperature .................. CNST = SURFTEMPERATURE NBST = 24

Thermal roughness length (times g) ... CNZ0H = SURFGZ0.THERM NBZ0H = 24

U-momentum of vector anisotropy ...... CNPADOU= SURF.U.ANISO.DIR NBPADOU= 24

V-momentum of vector anisotropy ...... CNPADOV= SURF.V.ANISO.DIR NBPADOV= 24

Free field #01 ....................... CNPFSU = SURFFREE.FIELD01 NBFSU = 24

Free field #02 ....................... CNPFSU = SURFFREE.FIELD02 NBFSU = 24

(truncated list - 15 variables)

IFS Documentation – Cy37r2 129



Appendix D: FullPos user guide

(c) Cumulated fluxes descriptors

This section details the content of a part of the namelist NAMAFN which contains the descriptors of the
cumulated fluxes. The descriptor %CLNAME serves to fill the array CFPCFU in the namelist NAMFPC.

Boundary Layer Dissipation ........... CNCBLD = SURFDISSIP SURF NBCBLD = 24

Clear sky longwave radiative flux .... CNCTHC = SURFRAYT THER CL NBCTHC = 24

Clear sky shortwave radiative flux ... CNCSOC = SURFRAYT SOL CL NBCSOC = 24

Contribution of Convection to Cp.T ... CNCCVS = SURFCFU.CT.CONVE NBCCVS = 24

Contribution of Convection to Q ...... CNCCVQ = SURFCFU.Q.CONVEC NBCCVQ = 24

Contribution of Convection to U ...... CNCCVU = SURFTENS.CONV.ZO NBCCVU = 24

Contribution of Convection to V ...... CNCCVV = SURFTENS.CONV.ME NBCCVV = 24

Contribution of Turbulence to Cp.T ... CNCTUS = SURFCFU.CT.TURBU NBCTUS = 24

Contribution of Turbulence to Q ...... CNCTUQ = SURFCFU.Q.TURBUL NBCTUQ = 24

Convective Cloud Cover ............... CNCCCC = ATMONEBUL.CONVEC NBCCCC = 24

Convective precipitation ............. CNCCP = SURFPREC.EAU.CON NBCCP = 24

Convective Snow Fall ................. CNCCSF = SURFPREC.NEI.CON NBCCSF = 24

Deep soil water content run-off ...... CNCDRU = PROFRUISSELLEMEN NBCDRU = 24

Duration of total precipitations ..... CNCDUTP= SURFTIME.PREC.TO NBCDUTP= 24

Evapotranspiration ................... CNCETP = SURFEVAPOTRANSPI NBCETP = 24

Flux d eau dans le sol ............... CNCEAS = SURFEAU DANS SOL NBCEAS = 24

Flux de chaleur dans le sol .......... CNCCHS = SURFCHAL. DS SOL NBCCHS = 24

High Cloud Cover ..................... CNCHCC = ATMONEBUL.HAUTE NBCHCC = 24

Interception water content run-off.... CNCIRU = SURFRUISS. INTER NBCIRU = 24

Large Scale Precipitation ............ CNCLSP = SURFPREC.EAU.GEC NBCLSP = 24

Large Scale Snow fall ................ CNCLSS = SURFPREC.NEI.GEC NBCLSS = 24

Latent Heat Evaporation .............. CNCLHE = SURFFLU.LAT.MEVA NBCLHE = 24

Latent Heat Sublimation .............. CNCLHS = SURFFLU.LAT.MSUB NBCLHS = 24

Liquid specific moisture ............. CNCLI = ATMOHUMI LIQUIDE NBCLI = 24

Low Cloud Cover ...................... CNCLCC = ATMONEBUL.BASSE NBCLCC = 24

Medium Cloud Cover ................... CNCMCC = ATMONEBUL.MOYENN NBCMCC = 24

Melt snow ............................ CNCFON = SURFFONTE NEIGE NBCFON = 24

Snow mass ............................ CNCSNS = SURFRESERV NEIGE NBCSNS = 24

Snow Sublimation ..................... CNCS = SURFFLU.MSUBL.NE NBCS = 24

Soil Moisture ........................ CNCWS = SURFCONTENU EAU NBCWS = 24

Solid specific moisture .............. CNCICE = ATMOHUMI SOLIDE NBCICE = 24

Surface down solar flux .............. CNCSOD = SURFRAYT DIFF DE NBCSOD = 24

Surface down thermic flux ............ CNCTHD = SURFRAYT THER DE NBCTHD = 24

Surface downward moon radiation ...... CNCSMR = SURFRAYT.LUNE.DE NBCSMR = 24

Surface Latent Heat Flux ............. CNCSLH = SURFCHAL LATENTE NBCSLH = 24

Surface parallel solar flux .......... CNCSOP = SURFRAYT DIR SUR NBCSOP = 24

Surface Sensible Heat Flux ........... CNCSSH = SURFFLU.CHA.SENS NBCSSH = 24

Surface solar radiation .............. CNCSSR = SURFFLU.RAY.SOLA NBCSSR = 24

Surface Thermal radiation ............ CNCSTR = SURFFLU.RAY.THER NBCSTR = 24

Surface water content run-off......... CNCSRU = SURFRUISSELLEMEN NBCSRU = 24

Tendency of Surface pressure ......... CNCTSP = SURFPRESSION SOL NBCTSP = 24

Top clear sky longwave radiative flux CNCTTHC= SOMMRAYT THER CL NBCTTHC= 24

Top clear sky shortwave radiative flux CNCTSOC= SOMMRAYT SOL CL NBCTSOC= 24

Top mesospheric enthalpy ............. CNCTME = TOPMESO ENTH NBCTME = 24

Top parallel solar flux .............. CNCTOP = TOPRAYT DIR SOM NBCTOP = 24

Top Solar radiation .................. CNCTSR = SOMMFLU.RAY.SOLA NBCTSR = 24

Top Thermal radiation ................ CNCTTR = SOMMFLU.RAY.THER NBCTTR = 24

Total Cloud cover .................... CNCTCC = ATMONEBUL.TOTALE NBCTCC = 24

Total Ozone .......................... CNCTO3 = ATMOOZONE TOTALE NBCTO3 = 24

Total precipitable water ............. CNCQTO = ATMOHUMI TOTALE NBCQTO = 24

Transpiration ........................ CNCTP = SURFTRANSPIRATIO NBCTP = 24

130 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

U-momentum of Gravity-Wave Drag stress CNCUGW = SURFTENS.DMOG.ZO NBCUGW = 24

U-momentum of Turbulence stress ...... CNCUSS = SURFTENS.TURB.ZO NBCUSS = 24

V-momentum of Gravity-Wave Drag stress CNCVGW = SURFTENS.DMOG.ME NBCVGW = 24

V-momentum of Turbulence stress ...... CNCVSS = SURFTENS.TURB.ME NBCVSS = 24

Water Evaporation .................... CNCE = SURFFLU.MEVAP.EA NBCE = 24

Notice: precipitations are expressed in kg/m2 (equivalent to mm)

IFS Documentation – Cy37r2 131



Appendix D: FullPos user guide

(d) Instantaneous fluxes descriptors

This section details the content of a part of the namelist NAMAFN which contains the descriptors of the
instantaneous fluxes. The descriptor %CLNAME serves to fill the array CFPXFU in the namelist NAMFPC.

CAPE out of the model ................ CNXCAPE= SURFCAPE.MOD.XFU NBXCAPE= 24

Contribution of Convection to Cp.T ... CNXCVS = S000FL.CT CONVEC NBXCVS = 24

Contribution of Convection to Q ...... CNXCVQ = S000FL.Q CONVEC NBXCVQ = 24

Contribution of Convection to U ...... CNXCVU = S000FL.U CONVEC NBXCVU = 24

Contribution of Convection to V ...... CNXCVV = S000FL.V CONVEC NBXCVV = 24

Contribution of Gravity Wave Drag to U CNXGDU = S000FL.U ONDG.OR NBXGDU = 24

Contribution of Gravity Wave Drag to V CNXGDV = S000FL.V ONDG.OR NBXGDV = 24

Contribution of Turbulence to Cp.T ... CNXTUS = S000FL.CT TURBUL NBXTUS = 24

Contribution of Turbulence to Q ...... CNXTUQ = S000FL.Q TURBUL NBXTUQ = 24

Contribution of Turbulence to U ...... CNXTUU = S000FL.U TURBUL NBXTUU = 24

Contribution of Turbulence to V ...... CNXTUV = S000FL.V TURBUL NBXTUV = 24

Convective Cloud Cover ............... CNXCCC = SURFNEBUL.CONVEC NBXCCC = 24

Convective precipitation ............. CNXCP = S000PLUIE CONVEC NBXCP = 24

Convective Snow Fall ................. CNXCSF = S000NEIGE CONVEC NBXCSF = 24

Gusts out of the model ............... CNXGUST= CLSRAFAL.MOD.XFU NBXGUST= 24

Height of the PBL out of the model

(times g) ............................ CNXPBLG= CLPGEOPO.MOD.XFU NBXPBLG= 24

High Cloud Cover ..................... CNXHCC = SURFNEBUL.HAUTE NBXHCC = 24

Large Scale Precipitation ............ CNXLSP = S000PLUIE STRATI NBXLSP = 24

Large Scale Snow fall ................ CNXLSS = S000NEIGE STRATI NBXLSS = 24

Low Cloud Cover ...................... CNXLCC = SURFNEBUL.BASSE NBXLCC = 24

Maximum relative moisture at 2 meters CNXX2HU= CLSMAXI.HUMI.REL NBXX2HU= 24

Maximum temperature at 2 meters ...... CNXX2T = CLSMAXI.TEMPERAT NBXX2T = 24

Medium Cloud Cover ................... CNXMCC = SURFNEBUL.MOYENN NBXMCC = 24

Minimum relative moisture at 2 meters CNXN2HU= CLSMINI.HUMI.REL NBXN2HU= 24

Minimum temperature at 2 meters ...... CNXN2T = CLSMINI.TEMPERAT NBXN2T = 24

MOCON out of the model ............... CNXMOCO= CLPMOCON.MOD.XFU NBXMOCO= 24

Relative Humidity at 2 meters ........ CNX2RH = CLSHUMI.RELATIVE NBX2RH = 24

Specific Humidity at 2 meters ........ CNX2SH = CLSHUMI.SPECIFIQ NBX2SH = 24

Surface solar radiation .............. CNXSSR = S000RAYT.SOLAIRE NBXSSR = 24

Surface Thermal radiation ............ CNXSTR = S000RAYT.TERREST NBXSTR = 24

Temperature at 2 meters .............. CNX2T = CLSTEMPERATURE NBX2T = 24

Top Solar radiation .................. CNXTSR = SOMMRAYT.SOLAIRE NBXTSR = 24

Top Thermal radiation ................ CNXTTR = SOMMRAYT.TERREST NBXTTR = 24

Total Cloud cover .................... CNXTCC = SURFNEBUL.TOTALE NBXTCC = 24

U-momentum of gusts out of the model . CNXUGST= CLSU.RAF.MOD.XFU NBXUGST= 24

U-momentum of wind at 10 meters ...... CNX10U = CLSVENT.ZONAL NBX10U = 24

V-momentum of gusts out of the model . CNXVGST= CLSV.RAF.MOD.XFU NBXVGST= 24

V-momentum of wind at 10 meters ...... CNX10V = CLSVENT.MERIDIEN NBX10V = 24

Wind velocity at 10 meters ........... CNX10FF= CLSWIND.VELOCITY NBX10FF= 24

132 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

D.7 SELECTION FILE EXAMPLE

To get the following fields:

• Model orography on domains FRANCE and EUROC25 at time h00
• Surface pressure on domain EUROC25 at times h00 and h03
• Geopotential at 500 hPa on domains FRANCE and EUROC25 at time h00
• Geopotential at 850 hPa on domains FRANCE and EUROC25 at time h03
• Temperature at 850 hPa on domain FRANCE at time h00
• Temperature at 500 hPa on domain EUROC25 at time h00 and h03
• Potential vorticity at 300 K on domain FRANCE at time h00

You would first have the following parameters in the namelist file:

/NAMCT0

CNPPATH=’.’,

/END

/NAMFPC

CFP2DF=’SPECSURFGEOPOTEN’,’SURFPRESSION’,

CFP3DF=’GEOPOTENTIEL’,’TEMPERATURE’,’POT_VORTICIT’,

RFP3P(1)=500.,

RFP3P(2)=850.,

RFP3T(1)=300.,

CFPDOM=’FRANCE’,’EUROC25’,

/END

Then you would add in your script:

/bin/cat <EOF>> xxt00000000

/NAMFPPHY

/END

/NAMFPDY2

CL2DF(1)=’SPECSURFGEOPOTEN’,

CLD2DF(1)=’FRANCE:EUROC25’,

CL2DF(2)=’SURFPRESSION’,

CLD2DF(2)=’EUROC25’,

/END

/NAMFPDYP

CL3DF(1)=’GEOPOTENTIEL’,

ILD3DF(1,1)=1,

CLD3DF(1,1)=’FRANCE:EUROC25’,

CL3DF(2)=’TEMPERATURE’,

ILD3DF(1,2)=1,2,

CLD3DF(1,2)=’EUROC25’,

CLD3DF(2,2)=’FRANCE’,

/END

/NAMFPDYH

/END

/NAMFPDYV

CL3DF(1)=’POT\_VORTICIT’,

ILD3DF(1,1)=1,

CLD3DF(1,1)=’FRANCE’,

/END

/NAMFPDYT

/END

/NAMFPDYS

IFS Documentation – Cy37r2 133



Appendix D: FullPos user guide

/END

EOF

/bin/cat <EOF>> xxt00000300

/NAMFPPHY

/END

/NAMFPDY2

CL2DF(1)=’SURFPRESSION’,

CLD2DF(1)=’EUROC25’,

/END

/NAMFPDYP

CL3DF(1)=’GEOPOTENTIEL’,

ILD3DF(1,1)=2,

CLD3DF(1,1)=’FRANCE:EUROC25’,

CL3DF(2)=’TEMPERATURE’,

ILD3DF(1,2)=1,

CLD3DF(1,2)=’EUROC25’,

/END

/NAMFPDYH

/END

/NAMFPDYV

/END

/NAMFPDYT

/END

/NAMFPDYS

/END

EOF

/bin/ls > dirlst

134 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

D.8 MAKING CLIMATOLOGY FILES

You need to run the configuration 923 (arpege/ifs) for a Gaussian grid, or the configuration E923
(aladin) for a lam grid or a lat × lon grid.

You should not forget to specify in the namelists of the configuration 923/E923 the definition(s) of your
output (sub-)domain(s). Remember that in the case of lat × lon grids there is no extension zone
(set NDGL=NDGUX and NDLON=NDLUX in NAMDIM) and the geometry is not plane (set LRPLANE=.FALSE. in
NAMCT0).

Finally do not forget that in the case of any gridpoint output for ordinary post-processing the surface
geopotential should not be spectrally fitted (set LKEYF=.FALSE. in NAMCLA).

IFS Documentation – Cy37r2 135



Appendix D: FullPos user guide

D.9 SPECTRAL FILTERS

There are two formulations used to smooth the fields.

The first one — nicknamed thx because it uses the hyperbolic tangent function — is used in arpege/ifs
only to smooth the fields which are horizontal derivatives, or which are built upon horizontal derivatives,
especially when the model is stretched. It looks like a smoothed step function:

f(n) =
1 − tanh(e−k(n − n0))

2

where n is a given wavenumber in the unstretched spectral space, k is the intensity of the filter and n0 is
the truncation threshold: this function roughly equals 1 if n is less than n0, and roughly equals 0 if it is
bigger.

Figure D.2 on page 136 illustrates this spectral filter. gobbleenv The next figure illustrates this spectral
filter:

m

n

m

n

m

n n

m

spectrum in stretched spacefiltered spectrum in stretched space spectrum in unstretched spacefiltered stpectrum in unstretched space
Figure D.2 Illustration of the spectral filter for derivatives in arpege/ ifs.

The second one is a Gaussian function. In arpege/ifs it writes:

f(n) = e
−k

2
(n/N)2

where n is a given wavenumber, k is the intensity of the filter and N represents the model triangular
truncation.

136 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

In aladin it writes:
f(n, m) = e

−k

2
((n/N)2+(m/M)2)

where (n, m) is a given pair of wavenumbers, k is the intensity of the filter and (N ,M) represent the
model elliptic truncation.

In aladin this Gaussian filter is used to filter any field (“derivative” or not).

Figure D.3 on page 137 illustrates this spectral filter. gobbleenv The next figure illustrates this spectral
filter: Gaussian filter in ALADINGaussian filter in ARPEGE

m

n

m

n

m

n

m

n

Figure D.3 Illustration of the Gaussian spectral filter.

IFS Documentation – Cy37r2 137



Appendix D: FullPos user guide

D.10 OPTIMIZATION OF THE PERFORMANCE

D.10.1 Communications

To write post-processed fields in an output file, you first gather the distributed pieces of these fields from
the different processors.

Rather than gathering the fields one after the other, the fields are grouped in chunks, and these chunks
are treated one after the other.

The variable NFPXFLD is the maximum size of these chunks. Lowering it should save memory to the
detriment of inter-processors communications, and vice versa.

D.10.2 Segmentation

Several variables control the segmentation of the software arrays:

NPROMA is the elementary size of the gridpoint rows in the model geometry. In the post-processing it is
in use mostly during the vertical interpolations.

NFPROMAG is the elementary size of the gridpoint rows in the post-processing geometry. It is used mostly
during the horizontal interpolations.

NFPROMEL is the elementary size of the gridpoint rows in the post-processed extension zone for lam

output. It is used only in aladin during the computation of the post-processed extension zone.

By definition all these variables control a part of the vectorization depth as well as memory cost. The
bigger these variables are, the deeper the vectorization is, in detriment to the memory cost. On non-vector
machines it is better to use small values for these parameters in order to fit the cache memory. They
should not be a power of 2 to avoid memory bank conflicts. One should refer to the machine constructor
to choose the best values for these variables.

138 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Appendix E

FullPos technical guide

Author: R. El Khatib
METEO-FRANCE - CNRM/GMAP

Table of contents
E.1 Founder principles

E.1.1 Basic concept

E.1.2 Scientific layouts

E.1.3 Technical requirements

E.1.4 Technical limitations

E.2 General conception

E.2.1 Architecture

E.2.2 Data flow

E.2.3 Monitoring

E.1 FOUNDER PRINCIPLES

E.1.1 Basic concept

fullpos is a non-independent software: it is designed to serve specifically the arpege/aladin post-
processing.

To get a post-processing fully consistent with the model itself, fullpos software has been completely
embedded inside the arpege/aladin software, in order that it can (and it should!) re-use model
operators. This should also simplify a few maintenance operations1.

The reliability of this concept has been ensured by the existence of a previous internal post-processing
software (currently pointed out by the name of its leading subroutine: POS). However the target of this
previous internal software was limited to vertical pressure interpolations for a few specific fields to be
written out as spherical harmonics, while fullpos is designed to be a comprehensive post-processing
tool.

fullpos is also designed to serve both operations (which implies: high efficiency to be run in real time
situation) and research (which means: the ability to process various elaborated fields on various grids and
vertical levels).

E.1.2 Scientific layouts

This section will list the processes that have taken part in the elaboration of fullpos. Presented prior
to the architecture of the software, it should help understanding the conception of the code.

• Dynamical fields should be post-processable on pressure levels (P ), potential vorticity levels (Pv),
isentropic levels (θ), eta levels (η) including other definitions than the model originating eta levels,
and on height levels above a given orography (z).

1This is less and less true.

IFS Documentation – Cy37r2 139

mailto:ryad.elkhatib@meteo.fr
http://www.meteo.fr
http://intra.cnrm.meteo.fr/gmap/index.html


Appendix E: FullPos technical guide

• Fields post-processed on P , Pv and θ levels should be interpolated vertically first, then horizontally.
In between, it should be possible (as an option) to fit the fields in spectral space (to remove the
numerical noise induced by the vertical interpolations). For a few specific fields (like geopotential,
medium sea-level pressure, . . . ) for which the formulation of vertical interpolation induces potential
inconsistencies, a filter in spectral space should be optionally performed.

• Fields post-processed on η and z levels should respect the profile of the boundary layer; therefore
they should be interpolated horizontally first, then re-adjusted with respect to the orography of the
target grid.

• To ensure the inter-consistency of fields interpolated on η or z levels, only the model primitive
variables (U , V , T , q, Ps currently) should be horizontally interpolated: the other fields should be
recomputed from the interpolated model primitive variables.

• Fields on horizontal surfaces should be homogenous; in other words the small scale information
should not pollute the interpretation of the output fields. This means that the fields which are
composed of derivatives (like vorticity, divergence, vertical velocity as the integral of the divergence,
but also any field on Pv levels) should be filtered in a spectral space of homogenous resolution2.
The intensity of this filter should depend of the output grid resolution3.

• Physical fields from the model, including cumulated fluxes and instantaneous diagnostics, should
be post-processable: their interpolations require often specific treatments, like the land/sea aspect
(only points of the same nature should serve the interpolations), the control of the validity domain
for the output values (for instance: the interpolated land/sea mask should be either 0. or 1.), or the
interdependencies of the post-processed physical fields (for instance: deep soil temperature should
be interpolated as its anomaly with respect to surface temperature, which implies to interpolate
surface temperature prior to deep soil temperature).

• It should be possible to interpolate “physico-dynamic” fields: these are fields defined on a surface
and computed with model physical surface fields as well as upper air dynamic fields (CAPE is one of
them). If computed on the model originating grid, this should be easy (because the environment is
then very similar to the model gridpoint environment), but if computed on another grid, this implies
to interpolate horizontally almost all the model pronostic fields (upper air as well as surface).

• It should be possible to use fullpos to make full history files (for coupling, nesting, multi-
incremental variational purpose, or even bogussing). This means that the fields (mainly the physical
fields and the dynamic fields post-processed on η levels) should be interpolated with respect to a
target orography (ie: the orography of the output grid) which should be spectrally fitted in the
output spectral geometry; and also that it should be possible to write out the dynamic fields as
spectral coefficients for the target geometry in this case.

• While doing bogussing, to prevent from getting “walls” at the border of the bogussing area, the
target grid should get only the interpolated increments from the source fields.

• It should be possible to use climatology data in order to interpolate with a better accuracy a few
surface fields; instead of a straightforward interpolation, we would interpolate the anomaly of a
field with respect to the climatology, or even: we would impose the whole climatology field if it is
a constant field (land-sea mask for instance).

• In case of gridpoint outputs on a complete aladin grid, the extension zone should be computed as
well, taking into account the realism of the physical fields.

• In the initial design, horizontal interpolations had to be quadratic exclusively4.
• Wind-related fields (like vorticity, divergence, etc) should be computed from the wind components

so that all these fields are consistent.

2Actually not done for wind on PV levels.
3Not effective for aladin. Is it a bug? However we usually write out only one grid from aladin. Anyhow this should be

harmonized with arpege.
4Things are supposed to change in the future, so that each field could have a specific interpolation kind: quadratic,

bilinear or no interpolation but the value of the model nearest point is adopted.

140 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

E.1.3 Technical requirements

Beside the scientific aspects, various technical aims had to be achieved:

• it should be possible to post-process during the model direct integration (“in-line post-processing”)
as well as after (“off-line post-processing”), both solution giving the same results. This implies that
fullpos should not be a specific arpege/aladin configuration but a package which could be
called inside the direct model temporal loop, and that the packing of fields in history files should
be considered.

• fullpos should benefit, as the model does, from the (super)computer hardware architecture, that
is: the memory distribution today and probably OPEN-MP tomorrow5.

• fullpos should be cheap.
• fullpos should be modular and should not spread itself all over the code6.
• fullpos users interface should be ergonomic. This should not mean that the users interface should

be restricted to a limited number of namelists parameters, but rather that the namelists should be
easy to set, with meaningful parameters.

• fullpos should stick to the arpege/aladin interfaces standards: namelists parameters for the
users interface and arpege/aladin files for the I/O data.

• the list of post-processing fields, levels and horizontal domains per post-processing time range should
be flexible.

• The horizontal output format has been restricted to: either one gaussian grid, or one aladin grid,
or a set of latlon grids, or one definition of spectral coefficients.

• One should be able to pack each post-processing field on a tunable specific number of bits.

E.1.4 Technical limitations

Nobody is perfect, and the code is not, either: before understanding a few technical choices concerning
the conception of fullpos, one should remember the following technical limitations existing at the time
this software has been first conceived:

• The software has been elaborated upon a fortran 77 compiler; fortran 90 was not available at
that time.

• To extend the possibilities of the software, arpege/aladin system was currently using fortran

Cray extensions, like a memory manager system based on the pre-allocation of a heap; from this
heap it was possible to allocate arrays. This system was not so flexible as the ALLOCATE statement
of the fortran 90 language.

• Spectral transform were not modular.
• The arpege/aladin was originally designed for a multi-processor vector machine with limited

central memory, using multitasking and having fast I/Os; while the architecture of today is
distributed, not always vector, and with relatively slow I/Os but with a large central memory.

5Formerly: the multitasking and the I/O scheme.
6This has been a failure definitely, partly because of the technical limitations/constraints at the time of the first

conception,. However things has changed so that fullpos is getting more concentrated and modular. Its “externalization”
from the code arpege/ifs/aladin is even under consideration.

IFS Documentation – Cy37r2 141



Appendix E: FullPos technical guide

E.2 GENERAL CONCEPTION

E.2.1 Architecture

This section will describe the main subroutines involved in fullpos and how they are articulated between
one another.

(a) General implementation

fullpos is included in the configuration 001 of arpege/ifs/aladin: this is to enable the in-line post-
processing as well as the off-line post-processing (in the latter case, it is enough to run the model on zero
time step but with the post-processing activated).

However it remain theoretically possible to implement fullpos in any other configuration. For instance,
one can imagine to implement it canari (configuration 701).

A logical key: LFPOS has been implemented in order to select either fullpos or the previous internal
post-processing. In the near future, this old post-processing should be removed, but this will not be so
easy since it is also used for the so-called “movies”. Note also that LFPOS and the binary namelist variable
N1POS (controlling the main post-processing flow) could then be merged.

The general mechanism of the code follows the “control routines cascade” (CNT0 to CNT4) of the model
(see Figure E.1 on page 142), though all the subroutines are not used. The next list describes the purpose
of each control subroutine:

Program
MASTER

CNT0

CNT1

CNT2

CNT3

CNT4

Main program

Setup

Initialisations

Temporal loop

Control level "1"
(unproper)

Useless

Figure E.1 General mechanism of the post-processing inside the model.

MASTER : Main program; it does not do anything but calls the control subroutine CNT0.

CNT0 : Setup (control of level “0”); it initializes the constants or the namelists variables as scalars or
arrays.

CNT1 : Control of level “1”.fullpos is concerned by this subroutine for two reasons. The first one is
because the namelist NAMCT1, which contains two variables used by fullpos (N1POS and LRFILAF),
is read below this subroutine; the second one is because the key LFPOS is still used in this subroutine

142 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

for a completely old-fashioned reason. These situations are not proper, and in future developments
fullpos should no more be concerned by CNT17.

CNT2 : Useless for fullpos.

CNT3 : Initializations (control of level “3”); it reads the initial conditions data (and possibly the needed
climatology data) and compute the working arrays which would depend on these data.

CNT4 : Temporal loop (control of level “4”); it initializes the time-dependent post-processing variables (like
the list of fields to be post-processed for the current model step) and performs the post-processing
inside the model temporal loop.

When fullpos is configured to make history files, things are more complicated since the code has been
conceived with non-modular spectral transform: the control cascade should be invoked two times in order
to change the setup of the spectral transforms.

The first control cascade will be called the external part, while the second control cascade will be called
the internal part.

This mechanism is achieved by a supplementary control subroutine named CPREP4 which is called once
by CNT4 (in the external part) and once by CNT3 (in the internal part). The location of CPREP4 in CNT4 for
the external part is justified by the fact that this mechanism could potentially work in the “in-line” mode,
though this possibility has never been used, and has even been removed from the code. The location of
CPREP4 in CNT3 for the internal part is justified by the fact that this part is really internal: it is “out
of the temporal loop”; actually this internal part is justified only because the spectral transforms were
not modular at the time of this conception. At the end of the external part, CPREP4 calls again CNT0

after it has released all the allocated arrays. So we have to cope with a recursive cascade of subroutines
(see Figure E.2 on page 144). This needs supplementary control items in order to be able to leave this
never-ending loop:

LFPSPEC : namelist variable which should be set to .TRUE. for getting fullpos configured to make history
files. Note that this so-called “configuration” is not a real one, since the code is still implemented in
the configuration 001. However, this system is well-known as configuration (e)(e)927 for historical
reasons (it has replaced the previous true configuration 926).

LFPART2 : internal key telling whether the running part is the external one (LFPART2 = .FALSE.) or the
internal one (LFPART2 = .TRUE.; also called: “part 2”).

ncf927 : pilot file to control the never-ending loop on CNT0: its existence means that the post-processing
is over.

(b) Setup

Still following the general structure of the code arpege/aladin, the setup of fullpos is split in two
main subroutines: SU0YOMA and SU0YOMB. One should remind that the original reason for splitting the
setup was because of the memory management handling on the former Cray computer. Today there is
no reason for such splitting, but we have to live with the past, before reforming it.

Concerning the post-processing, it was mostly important to make a hierarchical setup, in order to have
an easy setup using consistent default values as much as possible. Sometimes, this becomes contradictory
with the principle of modularity; as a consequence, in some places, the setup of fullpos is spread over
the setup of the model. In the future this matter of fact should be reduced by a progressive reorganization
of the setup of the model.

Notice: in the case of the family of configurations 927, the internal call to CNT0 (case: LFPART2=.TRUE.)
should be limited to what needs to be re-initialized only, because of the change of geometry. For instance

7LFPOS has already been removed from CNT1 in the cycle 26.

IFS Documentation – Cy37r2 143



Appendix E: FullPos technical guide

Program
MASTER

CNT0

CNT1

CNT2

CNT3

CNT4

CPREP4

L
FPA

R
T

2=
.T

R
U

E.

LFPART2=.FALSE.

LFPART2=.FALSE.

Set LFPART2=.TRUE., 
or create pilot file ncf927

Pi
lo

t f
ile

 n
cf

92
7 

do
es

 n
ot

 e
xi

st

Figure E.2 General mechanism of the so-called configuration (e)(e)927.

the message passing should not be re-initialized. One will also notice a call to the synchronization barrier:
this is because the I/O operations should be finished before starting the internal part. In short one will
notice that the key LFPART2=.TRUE. is often spoiling the code. It would be advantageous to reconsider
this “second part” so that instead of recalling the whole control subroutines cascade, it would recall only
its needed parts.

SU0YOMA This subsection will list the subroutines which are (more or less) specific to fullpos in the first
part of the setup. Besides, Figure E.3 on page 145 will show the scheme of this subroutine. One should
not forget that the post-processing is also using a large amount of variables coming from the model itself
(like logical unit numbers). In the scope of the externalization of fullpos, it will be necessary to create
a data module to transfer these model variables to internal post-processing variables.

SUAFN (SetUp Arpege Field Names): To initialize extensive descriptors about the fields which are post-
processable (which fields and how they should be treated). This subroutine is interfaced with a
namelist (NAMAFN) and consequently initializes the corresponding module YOMAFN. It calls three
subroutines:

• SUAFN1: setup default values, using some model variables as a background; so it must be called
after SUDIM1.

• SUAFN2: control the users values and complete with supplementary internal control variables.
• SUAFN3: print out the initialized descriptors.

144 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

SUFPD

SUAFN

SUAFN2

SUAFN1

SUAFN3

SUDIM1

SUFPC

SUEDIM

SUALLO

SUEGEO1

SUDIM2

SUGPPRP

SU0PHY

FPINIPHY

SUALFPOS

SUFPDIM

Figure E.3 Setup, first part: SU0YOMA. The greyish areas correspond to model subroutines.

Remarks:

• YOMAFN is now used in the model to read non-hard-coded arpege field names. This is
embarrassing because it makes both the model and fullpos less independent. The solution
should be to create a derived type variable in the model to setup the arpege field names and
possibly other characteristics (gribcode and the minimum number of bits the field should be
encoded with). These derived type would then be used to setup fullpos.

• SUAFN and its relatives treat all the post-processing fields (from dynamics or physics): this
matter of fact is penalizing the maintenance. It would be better to split this ensemble in two
parts: one for dynamics and one for physics; then each part could be re-unified in one single
module.

SUFPC (SetUp FullPos Computation): originally designed to setup the list of fields to post-process as
well as all scientific or technical options used for the post-processing. This subroutine has become a
mess, depending on a lot of model variables. It should be split one of these days in one subroutine
for the various post-processing options, and one subroutine for the list of fields to post-process.

IFS Documentation – Cy37r2 145



Appendix E: FullPos technical guide

SUFPDIM (SetUp FullPos Dimensioning): originally designed to setup dimensions of arrays to be shared
with the model (in the spirit of re-using the model allocated arrays to save memory). This subroutine
was highly related to the shared memory architecture and the internal spectral transforms, that is
why it is called inside SUDIM2. Today it has two new purposes:

• To complete the descriptors in YOMAFN with information from the model settings (more exactly:
which variables are primitive); for that it needs to be run after SUDIM1 and SUFPC.

• To compute static dimensions of data arrays now specific to fullpos, so it needs to be called
after SUFPC.

Remarks:

• In the cycle 26, this subroutine has just been removed, because it is enough and more efficient
to work with dynamic dimensioning only. This was not possible at the time of the conception
because the I/O scheme needed static dimensionings for the workfiles.

• There is a dirty trick in SUDIM1: the namelist NAMFPC is read there in order to initialize the
variable NFPCLI. This is the consequence of a hurried (and hurting) split of SUDIM in SUDIM1

and SUDIM2. The cleaning might come from the future split of SUFPC, but a more robust
solution would be to have an independent gridpoint buffer to contain the input climatology.

• The fact that a part of a descriptor is initialized in SUAFN* and another part in SUPDIM proves
that this descriptor should be split!

SUFPD (SetUp FullPos Domains): to initialize the dimensions and bounds of the output post-processing
(sub)-domains. To take advantage of default values which would be the model dimensions, this
subroutine needs to be called after SUDIM1 for arpege and after SUEDIM and SUEGEO1 for aladin.
Unfortunately SUEGEO1 is called late in SU0YOMB for the time being. The solution is probably to
move SUFPD inside SUBFPOS (see SU0YOMB below).

FPINIPHY (FullPos INItialization of physics): to control that all the model physical fields pointers which
will be used by the post-processing are initialized. This is a fragile subroutine, which should be
merged with parts of SUFPC (tests about physical aspects) and it should rather work on the physics
logical keys and dimensions (from the namelists NAMPHY and NAMDPHY, actually prior to reading
these namelists) rather than pointers values (we do not know what is the “undefined” value). For
the time being it is called by SUGPPRP in order to get this “undefined” pointer value.

SUALFPOS (SetUp ALLocations of FullPOS): to allocate various arrays. The location of this subroutine
inside SUALLO and at the bottom of SU0YOMA is purely the consequence of the conception on the
former Cray machine. In the cycle 26, this subroutine has been moved inside SUBFPOS below SU0YOMB

(see below). However the call to this subroutine is conditioned by the initialization of the model
and the post-processing dimensioning.

SU0YOMB In the second part of the setup, things are fortunately much more condensated as there are
less interactions with the model itself.

Figure E.4 on page 147 shows the scheme of this subroutine.

SUCFUFP (SetUp Cumulated FlUxes for FullPos): To activate the model cumulated fluxes switches which
will be needed by the post-processing. It is called inside SUCFU. This routine is typically an input–
output interface between the model and fullpos (finally like FPINIPHY described above).

SUXFUFP (SetUp X —instantaneous— FlUxes for FullPos): same as SUCFUFP for the instantaneous fluxes;
called inside SUXFU. Same remark.

SUBFPOS (SetUp part B of FullPOS): this subroutine contains a lot of specific subroutines for fullpos.
Here is a rough description of them:

• SUFPG (SetUp FullPos Geometry): To initialize the geometric parameters of the output grids
. . . and the post-processing gridpoint distribution as well!

146 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

SUBFPOS

SUXFU

SUXFUFP

SUCFU

SUCFUFP

SU0YOMA

SUFPOPH

SUFPSC2

SURFPDS

SUWFPDS

SUFPTR2

SUFPIOS

SUFPWIDE

SUFPG

Cumulated 
fluxes

Instantaneous
 fluxes

geometry &
gridpoint distribution

Horizontal interpolations
 management

Output files
 handling

Horizontalgridpoint
 segmentation

Climatology &
geometry pointers

Weights &
indexes pointers

auxilary fields
pointers

Post-processing
 gridpoint buffers

 control

Figure E.4 Setup, second part: SU0YOMB. The greyish areas correspond to model subroutines.

• SUFPWIDE (SetUp FullPos WIDE): To initialize the parameters and working arrays needed for
the horizontal interpolations mechanism.

• SUFPF (SetUp FullPos Filters): To initialize the spectral filters parameters.
• SUFPOPH (SetUp FullPos Output Parameters Handling): To setup output files names and their

autodocumentation part. Note that the files logical unit numbers are initialized in the model
subroutine SULUN (A clear problem of interfacing the model and the post-processing).

• SUFPSC2 (SetUp FullPos SCan 2): To initialize the horizontal segmentation in the post-
processing gridpoint calculation and some corresponding control arrays.

• SURFPDS (SetUp Real fields FullPos DeScriptors): To initialize fields pointers in output buffers
for the target climatology and target geometry. Notice: there were no reason to put altogether
these fields (climatology and geometry) but to limit I/O operations in the framework of the
former I/O scheme. Today it would be advantageous to split climatology and geometry because
it would improve the modularity and the understanding of the code.

• SUWFPDS (SetUp Weights FullPos DeScriptors): To initialize fields pointers in output buffers
for the horizontal interpolations weights, addresses and indexes. Note that fields in this buffer
are all considered as real fields, though some of them are actual integer fields. In the future
it would be advantageous to build a more clever field organization (using either the Fortran

IFS Documentation – Cy37r2 147



Appendix E: FullPos technical guide

function TRANSFER in order to save memory, or just by creating a integer gridpoint buffer: now
very easy).

• SUFPTR2 (SetUp Fullpos PoinTeR 2): To initialize the “auxiliary fields” pointers, that is the
special surface fields which should be horizontally post-processed prior to the current flow of
post-processed fields, because they will have to be used for the current post-processing flow.

• SUFPIOS (SetUp Fullpos IO scheme): To initialize the control parameters for each “post-
processing gridpoint buffer”.
Remarks:

– This subroutine was originally designed to initialize the former I/O schemes for the post-
processing gridpoint buffers, but its purpose has now completely changed.

– This subroutine, which is reading the namelist NAMFPIOS containing a unique variable,
should be merged with SUFPSC2 which also reads the namelist NAMFPSC2 containing a
unique variable; so one of these two namelists could be removed.

– It would be more robust to setup each buffer descriptors at the time the buffer is allocated.
Actually this has been already done for cycle 26. To go further, the next step would be to
define the post-processing gridpoint buffers as derived types, together with their operators
(allocation and initialization, deallocation, and even reading in and writing out).

Notice: One will notice that in SUBFPOS a few variables need to be initialized even if fullpos

is not active (LFPOS=.FALSE.): this clearly shows that these variables have an active role in
subroutines which are common to the model and the post-processing. In the scope of the
externalization of fullpos, this should disappear.

(c) Initializations

Figure E.5 on page 148 shows the scheme of this subroutine.

SUINIF

FPFILTER

SURFPBUF

SUHOW1/SUEHOW1

SUWFPBUF

SU3FPOS

ELSAC

FPFILTER

SURFPBUF

SUHOW1/SUEHOW1

SUWFPBUF

SU3FPOS

ARPEGE ALADIN

Figure E.5 Initializations: CNT3. The greyish areas correspond to model subroutines.

The initializations part is composed of two main parts:

• The initialization of the input meteorology data (including possibly climatology data) which is
common with the model: SUINIF for arpege and ELSAC for aladin.

• RoutineNameSU3FPOS (SetUp level 3 FullPOS): to initialize the following data buffers/arrays:

148 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

– The buffer containing the output climatology and geometry (refer to SURFPDS). This is
performed by the subroutine SURFPBUF.

– The buffer containing the weights and indexes for horizontal interpolations (refer to SUWFPDS).
This is performed by the subroutines SUEHOW1/SUHOW1/SUWFPBUF.

– The matrixes for the spectral filters (performed by the subroutine FPFILTER).

Remarks:

– The occurrence of a piece of code in CNT3 is justified only if it depends on the initial condition
fields; that is why SURFPBUF could (and should!) be moved away from it, and put into SUBFPOS

for instance.
– In cycle 26 FPFILTER has been moved away and put into the control subroutine for dynamic

post-processing (see DYNFPOS later) because this place is the best one to limit the memory cost
(special notice: the array should be allocated if necessary at the beginning of the scans “Vertical
then Horizontal”, and systematically deallocated at the end of this scan for an optimal memory
management).

– The occurrence of SUWFPBUF inside CNT3 is justified because to compute the land-sea-mask-
dependent interpolations weights, we need first to interpolated the model land-sea mask (and
possibly the surface temperature) when the output climatology is not at disposal.

– SU3FPOS had to be moved inside ELSAC for aladin because the computation of weights, if it
uses the model surface temperature, should be performed before the digital filters initialization
of the model (true?).

– A possibility to concentrate fullpos could be just to move SUBFPOS inside CNT3?

(d) Temporal loop

Figure E.6 on page 149 shows the scheme of this subroutine.

SU4FPOS

MONIO

GRIDFPOS CPREP4

GRIDFPOS

T
em

po
ra

l l
oo

p

Normal post-processing "Configuration 927"

DYNFPOS

Model
time step

Figure E.6 Temporal loop: CNT4. The greyish areas correspond to model subroutines.

IFS Documentation – Cy37r2 149



Appendix E: FullPos technical guide

The temporal loop subroutine is composed of the following parts:

MONIO (MONitoring of I/O): To stamp the model time steps with the post-processing events; it is called
before the temporal loop. This subroutine is not specific to fullpos, and thus it is penalizing its
modularity. The solution would be first to move out from the model the variables N1POS, NFRPOS
and NPOSTS, and put them into a post-processing-specific module.

SU4FPOS (SetUp level 4 FullPOS): To setup the time-dependent variables for the post-processing (ie: the
actual list of fields to post-process).

GRIDFPOS (GRIDpoint FullPOS): to perform the post-processing of physical fields (surface fields or
fluxes). It can be invoked either at the beginning of the time step, or at its end (Notice: the
conditions of call are not clear since ecmwf never use the cumulated fluxes buffer; this must be the
residual effects of an old-fashioned specification related to the shift between instantaneous physical
fields and the fluxes, in contradiction with the specification for in-line/off-line reproductibility).

DYNFPOS (DYNamic FullPOS): to perform the post-processing of dynamic fields. It is called at the
beginning of the model time step to have the correct clock. It should be called after GRIDFPOS

(non-lagged call) in order to have the needed surface fields already post-processed before starting
the physico-dynamical post-processing. In the scope of the externalization of fullpos it will be
interesting to have the model STEPO sequences completely independent from DYNFPOS (no overlap
on the configuration of IOPACK).

Note that the non-lagged call to GRIDFPOS could simply be put at the beginning of DYNFPOS.

CPREP4 (Configuration PREParatory level 4): to control the mechanism of the so-called “configuration
927”.

Notice: the logical key NFPCT0 is an internal key to control the so-called “bogussing” configuration, which
will be described later. For the moment, it is enough to know that NFPCT0 is greater or equal to 1 for
ordinary post-processing.

(e) Control of the configurations 927

This subroutine controls the whole family of “configurations 927”, that is “927” (arpege to arpege),
“e927” (arpege to aladin), “ee927” (aladin to aladin), and “bogussing” (aladin to arpege).

Figure E.7 on page 151 shows the scheme of this subroutine.

The main ingredients are again GRIDFPOS and DYNFPOS.

• In the first part (LFPART2=.FALSE.) the horizontal post-processing is performed.
• Then all the allocated arrays are released (FREEMEM) and the program is re-run from the (CNT0).
• Finally in the second part (LFPART2=.TRUE.) the vertical post-processing is performed.

Remark: again here we can guess that the key LFPART2=.TRUE. will complicate the setup since we need
to select from the namelists the horizontal aspects first, then the vertical aspects.

The bogussing consists in a local modification of a history file arpege by a file aladin. For that, we
actually need to compute the increments to add to the arpege file. Since we do not have coded yet the
tangeant linear of fullpos we should perform first the horizontal interpolations on two separate aladin

files (which difference corresponds to the increments).

The bogussing is activated by the key NFPINCR in namelist (0 for no bogussing, 1 for bogussing). Its
control is realized by the key NFPCT0 which can have the following values:

• NFPCT0=-2: first part of the “external” part (for bogussing only)
• NFPCT0=-1: last part of the “external” part (for all)
• NFPCT0=0: second (“internal”) part of the post-processing (for all).

150 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

GRIDFPOS GRIDFPOS

DYNFPOS

LFPART2=.FALSE. LFPART2=.TRUE.

DYNFPOS

FREEMEM

CNT0

GRIDFPOS

DYNFPOS

SUINIF
B

o
g

u
ss

in
g

 o
n

ly

Figure E.7 Control of the configurations 927: CPREP4. The greyish areas correspond to model subroutines.

However, and for preliminary test, the bogussing has been enabled out of the “927 configurations system”,
that is for normal post-processing, through the following options (see CNT4 in aladin):

• NFPCT0=1: last normal external part of the post-processing (for all)
• NFPCT0=2: first external part of the post-processing (for bogussing only).

(f ) Physical fields post-processing

The post-processing for physical fields is split in two flows:

(i) Post-processing of auxiliary surface fields: this is an intermediate step before the actual post-
processing, as these auxiliary surface fields should be re-used for the post-processing of physical
fields and physico-dynamical fields.

(ii) Post-processing of physical fields. This step is completed by the computation of the extension zones
of the post-processed fields (if the output domain includes such an area).

Figure E.8 on page 152 shows the scheme of this subroutine.

Following the mechanism of gridpoint calculations in the model and the horizontal interpolations for the
semi-Lagrangian scheme, the horizontal interpolations for the post-processing have been embedded inside
the model subroutine SCAN2H, invoked with a specific configuration string.

The biperiodicization of post-processed fields is treated by a specific subroutine: FPEZO2H. Note that the
content of this subroutine is “unbalanced” since both biperiodicizations for the auxiliary surface fields and
the physical fields are treated within the same call, while the symmetry of the code structure indicates
clearly that the two biperiodicizations should be performed separately.

IFS Documentation – Cy37r2 151



Appendix E: FullPos technical guide

SCAN2H(’G’)

SCAN2H(’P’)

FPEZO2H(’I’)

WRHFP(’I’)

PREGPFPOS (before)

PREGPFPOS(after)

Fullpos-specific
 part

Model part :
data conditionning 

for the 
post-processing

Figure E.8 Physical fields post-processing: GRIDFPOS. The greyish areas correspond to model subroutines.

The writing out to files of the gridpoint post-processed fields is performed by the leading subroutine
WRHFP (for arpege/aladin at least), with a configuration letter.

Remark: GRIDFPOS is actually a model-dependent subroutine, because it contains the subroutine
PREGPFPOS which purpose is to pack the data before, and restore them after, in order to enable the in-
line/off-line reproductibility of the post-processing. All that is between the two invocation of PREGPFPOS
is purely specific to fullpos, and thus it should be isolated in a specific subroutine; while PREGPFPOS

and the container subroutine should not be subject to externalization, unless PREGPFPOS would be an
external module called by the post-processing (another problem of interfacing!).

Further notices about PREGPFPOS:

• There is no reason to have one single subroutine for both operations “before” and “after”: there
should be one subroutine for “before” (PREGPFPOS) and one for “after” (POSTGPFPOS?); but both
subroutines could be contained in the same module.

• To avoid evident duplication of code, the subroutine should treat only one gridpoint buffer, and
then called three times.

(g) Dynamic and physico-dynamic post-processing

Figure E.9 on page 153 describes this subroutine.

The dynamic and physico-dynamic post-processing is based on the following concepts:

• It uses the model subroutine STEPO to combine spectral transforms, gridpoint calculations, spectral
calculations and I/O operations.

• A “post-processing step” is composed of a succession of calls to STEPO, since one single call to this
subroutine would not be enough to treat at once the vertical interpolations, the horizontal ones,
the spectral fit and the spectral filters.

• To each kind of post-processing level corresponds a “post-processing step”.

There are three kinds of post-processing steps:

The post-processing on P , Pv or θ levels : it is composed of three calls to STEPO:

152 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Post-processing
step

Setup dimensions
and control arrays

for the current 
post-processing step

SUVFPOS

SUVFPOSL
Save dimensions
and control arrays

for the current 
post-processing step

STEPO

STEPO

L
oo

p 
on

 p
os

t-
pr

oc
es

si
ng

 s
te

ps

Figure E.9 Dynamical and physico-dynamical post-processing: DYNFPOS.

(i) vertical interpolations and spectral filters
(ii) horizontal interpolations
(iii) outputs

The post-processing on z or η levels : it is composed of four calls to STEPO:

(i) computation of the model primitive fields on the model levels
(ii) horizontal interpolations of the model primitive fields on the model levels
(iii) computation and vertical adjustment of post-processing fields
(iv) outputs

Notice: the first two sequences have been separated because such a conception was easier and faster.
However they could now be merged: the idea would be to pipe the output array from POS with the
input core array for horizontal interpolations. Anyhow this must not lead to duplication of code
(VPOS to be re-visited?).

The post-processing on the originating model primitive fields and levels : this is an internal
post-processing step dedicated to the external part of the “configuration 927”, and composed of
three calls to STEPO:

(i) computation of the model primitive fields on the model levels
(ii) horizontal interpolations of the model primitive fields on the model levels
(iii) outputs

Notice: this post-processing step is very close from the beginning of the previous one, except that
the data flow in output is different (this is justifying another configuration sequence).

Remarks:

• The mechanism of STEPO is so that the writing out of the post-processing fields, for a given post-
processing step, is always “postponed” to the beginning of the next post-processing step. This is

IFS Documentation – Cy37r2 153



Appendix E: FullPos technical guide

complicating the code because the descriptors control arrays, which are used to drive a given post-
processing step, are overwritten (by the following post-processing step) before the current step is
over; that is why (a part of) these descriptors must be saved before starting a new post-processing
step.

• In the scope of the externalization and the simplification of fullpos, the model subroutine STEPO

should be abandoned for the post-processing, and a new specific one should be written, with a
well-adapted configuration string, like the following one:

0. Model fields (adapted) inverse transforms
1. Vertical interpolator
2. Direct spectral transforms
3. Spectral filters
4. Inverse spectral transforms
5. Horizontal interpolator
6. Residual computations and vertical adjustments
7. Biperiodicizator
8. Output fields preconditioner
9. Outputs

The management of the I/Os is still wide open: what kind and conditionment for the input data
and the output data: should the model inverse transform or the writing out to files be parts of the
post-processing package or not?

• The output configuration letters from the subroutine SUFPCONF should be arrays dimensioned to
the maximum number of scans, stored in a module and initialized in the setup (SUBFPOS).

• The double call to SUVFPOS is odd: there should be one (simplified?) subroutine to find out whether
or not the sequence on model fields and levels should be performed or not.

• The loop on post-processing steps should be split in two parts: one for the P , Pv, θ levels and
internal sequences; the other one for the z and η levels. In between, spectral matrixes arrays should
be released in order to save memory.

Table E.1 on page 155 shows the STEPO configuration letters used for the post-processing.

However, all the combinations are not possible: they are build in function of the horizontal output format
and the vertical kind of levels, as described in Table E.2 on page 156. Note that whenever the configuration
letter “P” occurs, it can be replaced by “0” if the spectral fit for the current post-processing level has
been switched off. But once the spectral fit is active, the program will always run through the spectral
computations (even if the filters are inactive) because there happen arrays transfers.

Notice: the “configurations 927” (corresponding to LFPSPEC=.TRUE.) are normally performed only for η
levels outputs.

Figure E.10 on page 157 shows the ingredients of the subroutine STEPO used for the post-processing.

WRHFP, WRSFP (WRite Horizontal fullPos, WRite Spectral FullPos): To write out post-processed data.
These subroutines are embedded inside IOPACK but are specific to fullpos .

ESPFP : to precondition some spectral fields before writing them out. This subroutine is specific to
aladin infullpos: it is used in the case of plane geometry to go from the reduced variables to the
geographical ones.

FPEZO2H : to perform the biperiodicization of the fields if needed (see GRIDFPOS above).

PRESPFPOS (PREpare SPectral FullPOS): to pack the spectral data and the surface fields before, and
restore them after, in order to enable the in-line/off-line reproductibility of the post-processing.
Like the subroutine PREGPFPOS, it should rather be considered as a model-specific subroutine.

TRANSINVH/ETRANSINVH : Inverse spectral transforms. Note that the data can be either the model
trajectory or a post-processing flow (externalization to be prospected).

154 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Table E.1 STEPO configuration letters used for the post-processing.

Sequence Function Possible values

(1) Outputs ”E” : P levels
”U” : z levels
”Y” : Pv levels
”M” : θ levels
”Z” : η levels

(2:3) Inverse ”A” : on model fields
spectral ”P” : on post-processing fields

transforms ”0” : No inverse transforms

(4) Not used ”0”

(5) Gridpoint ”B” : vertical interpolations on P levels
computations ”V” : vertical interpolations on Pv levels

”T” : vertical interpolations on θ levels
”H” : vertical interpolations on z levels (above model surface)
”S” : vertical interpolations on η levels (above model surface)
”Z” : vertical interpolations on z levels (above output surface)
”E” : vertical interpolations on η levels (above output surface)
”M” : computation of the model fields on the model levels
”A” : horizontal interpolations of vertically post-processed fields
”G” : horizontal interpolations of auxiliary surface fields
”P” : horizontal interpolations of physical fields
”I” : horizontal interpolations of model fields

(6) Not used ”0”

(7:8) Direct ”P” : on post-processing fields
spectral ”0” : No inverse transforms

transforms

(9) Spectral ”P” : active
computations ”0” : not active

SCAN2H : the model gridpoint head subroutine is invoked with a specific configuration string (see GRIDFPOS
above).

TRANSDIRH/ETRANSDIRH : Direct spectral transforms. They are performed on post-processing data
exclusively. Post-processing-specific subroutines are embedded inside.

SPOS/ESPOS : (Spectral POSt-processing): to perform computation in spectral space for the post-
processing. These routines are not only used to filter fields, but also for other operations. They
are embedded inside the model subroutines SPCH and ESPCH.

(h) Gridpoint calculations

This section will describe the mechanism of post-processing computations in gridpoint space, which is
embedded inside the model subroutines SCAN2H and SCAN2MDM. In the scope of the externalization of
fullpos, it will be necessary to leave these interfaces.

Horizontal interpolations Following the mechanism of “semi-Lagrangian buffers” at the time of the
shared memory architecture, the horizontal interpolations have been conceived as a succession of two
subroutines, respectively:

HPOS (Horizontal POSt-processing): to copy the fields to be interpolated in a “core-array”.

IFS Documentation – Cy37r2 155



Appendix E: FullPos technical guide

Table E.2 Possible combinations of STEPO sequences.

Gridpoint Spectral (CFPFMT=’MODEL’) “927” (LFPSPEC=.TRUE.)

P . A A 0 B 0 P P P . A A 0 B 0 P P P . A A 0 M 0 0 0 0

0 P P 0 A 0 0 0 0 E . . . . . . . . 0 0 0 0 A 0 0 0 0

E . . . . . . . . Z 0 0 0 0 0 0 0 0

0 A A 0 B 0 P P P

E 0 0 0 0 0 0 0 0

Pv . A A 0 V 0 P P P . A A 0 V 0 P P P . A A 0 M 0 0 0 0

0 P P 0 A 0 0 0 0 Y . . . . . . . . 0 0 0 0 A 0 0 0 0

Y . . . . . . . . Z 0 0 0 0 0 0 0 0

0 A A 0 V 0 P P P

Y 0 0 0 0 0 0 0 0

θ . A A 0 T 0 P P P . A A 0 T 0 P P P . A A 0 M 0 0 0 0

0 P P 0 A 0 0 0 0 M . . . . . . . . 0 0 0 0 A 0 0 0 0

M . . . . . . . . Z 0 0 0 0 0 0 0 0

0 A A 0 T 0 P P P

M 0 0 0 0 0 0 0 0

z . A A 0 M 0 0 0 0 . A A 0 H 0 P P P . A A 0 M 0 0 0 0

0 0 0 0 I 0 0 0 0 U . . . . . . . . 0 0 0 0 A 0 0 0 0

0 0 0 0 Z 0 0 0 0 Z 0 0 0 0 0 0 0 0

U . . . . . . . . 0 A A 0 H 0 P P P

U 0 0 0 0 0 0 0 0

η . A A 0 M 0 0 0 0 . A A 0 S 0 P P P . A A 0 M 0 0 0 0

0 0 0 0 I 0 0 0 0 Z . . . . . . . . 0 0 0 0 A 0 0 0 0

0 0 0 0 E 0 0 0 0 Z 0 0 0 0 0 0 0 0

Z . . . . . . . . 0 A A 0 Z 0 P P P

Z 0 0 0 0 0 0 0 0

HPOSLAG : (Horizontal POSt-processing, LAGged part): to interpolate the fields (the suffix “LAG” recalls
the former shared memory architecture where the call to this subroutine had to be synchronized
with the corresponding call to HPOS).

Figure E.11 on page 158 describes this general mechanism.

Between these two subroutines, the “core-array” is surrounded by a “halo” of data from the neighbouring
processors. This part is common with the model. In the scope of the externalization of fullpos, it is
supposed to be externalized as well; it could be the opportunity to write a specific interpolator, well-
adapted to an irregular string of output points.

Today HPOSLAG has become a useless interface which calls a main subroutine for the management of
horizontal interpolations: FPOSHOR (FullPOS HORizontal).

Notice: in a new modular framework, the general organization should be composed of three successive
subroutines:

(i) HPOS: to fill the core array
(ii) HPOSLAG: to fill the halo
(iii) FPOSHOR: to interpolate.

The subroutine FPOSHOR, as shown on Figure E.12 on page 159, contains the following elements:

SC2RDGFP : To extract data from a “fullpos buffer”. Three of them are used here:

156 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

IOPACK

Spectral
outputs

Gridpoint
outputs

WRSFP

WRHFP

ESPFP

FPEZO2H

SPCH/ESPCH

SPOS/ESPOS

SCAN2H

TRANSINVH/ETRANSINVH

PRESPFPOS

TRANSDIRH/ETRANSDIRH

Inverse
spectral

transforms

Direct
spectral

transforms

Spectral
computations

Gridpoint
computations

Data conditionning
for post-processing

Preconditionment
of LAM

spectral output

Biperiodicizations

Figure E.10 Elements of STEPO used for the post-processing. The greyish areas correspond to model
subroutines.

(i) The weights and indexes for interpolations (refer to SUWFPDS and SUWFPBUF).
(ii) The output climatology and geometry (refer to SURFPDS and SURFPBUF).
(iii) The auxiliary (pre-interpolated) surface fields (refer to SUFPTR2 and SCAN2H(’G’)).

FPSCAW : To compute the exact addresses of the neighbouring input points for interpolations.

FPINTDYN/FPINTPHY : Fields basic interpolators, respectively for dynamics and physics.

FPCORDYN/FPCORPHY : Fields basic correctors after interpolations, respectively for dynamics and physics.

FPGEO : To convert wind-related fields to the output compass and map factor.

SC2WRGFP : To write out the interpolated data in a “fullpos buffer”.

FPCLIPHY : To use the output climatology rather than interpolate (for the appropriate fields only!)

FPNILPHY : A strange subroutine which controls that the remaining fields are proper for interpolations,
and which perform the appropriate computations for those which should not be interpolated.

Remark: to enable the use of all this mechanism for the pre-interpolation of the model land-sea mask
(instead of duplicating the code — refer to CPCLIMI —), the buffer containing the weights and indexes
should be split: one for the land-sea-dependent fields and one for the “standard” fields.

IFS Documentation – Cy37r2 157



Appendix E: FullPos technical guide

Fill 
core array

Fill halo

Interpolations

SCAN2H

SCAN2MDM

HPOS

HPOSLAG

FPOSHOR

SLCOMM

SLEXTPOL

Figure E.11 General mechanism of horizontal interpolations. The greyish areas correspond to model
subroutines.

Vertical interpolations, re-adjustments and physico-dynamic calculations The vertical
interpolations, which are performed on the model grid, are simply controlled by a post-processing-specific
interface named VPOS; as shown on Figure E.13 on page 159, it contains the following main subroutines:

POS : To perform vertical interpolations.

PHYMFPOS (PHYsical Meteo-France POStprocessing): To compute physico-dynamic fields on the model
grid (used only if the output grid is the model grid).

Notice:

• The conditions of calls to POS and PHYMFPOS are unproper: they should be limited to the occurrence
of any field subject to vertical interpolations for POS, and to the occurrence of any field subject
to physico-dynamic computations on the model grid for PHYMFPOS. QFPTYPE to be extended in this
sense?

• The interface between VPOS and the model has become odd: while the physical fields are read inside
VPOS, the dynamic ones are obtained via the subroutine interface. This should be harmonized (all
the model data to be read inside).

The vertical re-adjustments, which are performed on the output grids (because they have to be computed
after the horizontal interpolations of the model primitive fields), are simply controlled by a post-
processing-specific interface named ENDVPOS; as shown on Figure E.14 on page 160, it contains the
following subroutines:

SC2RDGFP : To extract data from a “fullpos buffer”. Three of them are used here:

(i) The horizontally interpolated model dynamic fields.
(ii) The output climatology and geometry (refer to SURFPDS and SURFPBUF).
(iii) The auxiliary (pre-interpolated) surface fields (refer to SUFPTR2 and SCAN2H(’G’)).

ENDPOS (END POSt-processing): To perform vertical re-adjustments and physico-dynamic calculations

158 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Read weights
& indexes

from a 
Fullpos buffer

Read output
climatology
& geometry

from a
Fullpos buffer

Read
auxilary

fields
from a

Fullpos buffer

Compute
local adresses

for
interpolations

SC2RDGFP(...WFPBUF)...)

SC2RDGFP(...RFPBUF)...)

SC2RDGFP(...GFPAUXBUF)...)

FPSCAW

FPINTDYN

FPCORDYN

FPGEO

SC2WRGFP

FPGEO

SC2WRGFP

FPINTPHY

FPCORPHY

FPNILPHY

FPCLIPHY

Interpolations on
dynamic fields

Interpolations on
physical fields

Interpolator Interpolator

Corrector Corrector

Compass
&

map factor

Compass
&

map factor

Write out
to a

fullpos buffer

Write out
to a

fullpos buffer

Imposed
output 

climatology

Control on 
various odd fields

Figure E.12 Horizontal interpolations management: FPOSHOR.

Read model surface fields

Get model dynamic fields

Vertical interpolations

Write out to a model gridpoint buffer

Physico-dynamic calculations

SC2WRG

POS

PHYMFPOS

Interface

SC2RDG

Figure E.13 Vertical interpolations and physico-dynamic calculations on input grid: VPOS.

IFS Documentation – Cy37r2 159



Appendix E: FullPos technical guide

SC2WRGFP : To write out the interpolated data in a “fullpos buffer”.

Notice:

• In ENDVPOS the loop on subrows should be put outside the subroutine to make easier a further
distribution (OPEN-MP).

• POS/PHYMFPOS on one side, and ENDPOS on the other side are similar. In the scope of a further
harmonization of the code, one should investigate how to re-organize all these subroutines.

Read
interpolated

model
dynamic fields

from a 
Fullpos buffer

Read output
climatology
& geometry

from a
Fullpos buffer

Read
auxilary

fields
from a

Fullpos buffer

SC2RDGFP(...AFPBUF)...)

SC2RDGFP(...RFPBUF)...)

SC2RDGFP(...GFPAUXBUF)...)

SC2WRGFP

Vertical
re-adjustment

& physico-dynamic
calculations

ENDPOS

Write out
to a

fullpos buffer

Figure E.14 Re-adjustments and physico-dynamic calculations on output grids: ENDVPOS.

Biperiodicization The biperiodicization is performed in the same spirit as the horizontal
interpolations: somehow the “interpolations” are replaced by “extrapolations”.

The control subroutine, as seen before, is named FPEZO2H. Figure E.15 on page 161 describes its
mechanism.

EPOS (Extension zone POSt-processing): To fill a “fullpos buffer” with fields to biperiodicize. This
subroutine is the counterpart for HPOS.

ENDEPOS (END Extension zone POSt-processing): To correct the extended fields after the
biperiodicization. This subroutine is the counterpart of a part of FPOSHOR.

FPEZONE (FullPos Extension ZONE): To perform the biperiodicization itself. This subroutine has the
specificity that its distribution is odd: since the calculation itself is not (yet?) distributed, the
distribution is performed on the global fields.

Notice:

• FPEZO2M is nothing but an interface to control the former multitasking system. It should be removed
now.

• FPEZONE is supposed to be externalized, or more exactly: its main subroutine FPBIPER. This
externalization should naturally fit the spectral transforms ... and their distribution! Therefore
the distribution of FPBIPER should be investigated: then fullpos would be adapted.

• For the clarity of the code, it would be nice to have a straight symmetry between the interpolations
and the biperiodicization! But this depends on the biperiodicization distribution.

160 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Corrections after biperiodicization

Fill biperiodicization buffer

Biperiodicization

FPEZO2M

ENDPOS

FPEZO2M

EPOS

FPEZONE

FPBIPER

Figure E.15 Biperiodicization: FPEZO2H.

E.2.2 Data flow

This section will describe the principal data arrays used in fullpos.

(a) Spectral arrays

fullpos is (indirectly) using the model spectral arrays (SPA2 and SPA3) as the input of the model inverse
spectral transforms. It uses also specific spectral arrays which will contain the spectrally fitted fields to be
filtered or written out to files. As fullpos uses the tfl/tal spectral transforms packages, these arrays
are all shaped and distributed in the same manner.

Open question: in the scope of the externalization of FULLPOS, should we consider that the model inverse
transforms is an external subroutine used inside the post-processing package? This could be a solution
to improve the portability of the externalized fullpos in other applications (with 100% gridpoint input
data for instance).

There are three specific spectral arrays:

SPAFP : it contains the vertically post-processed fields to be spectrally fitted which are not “derivative
fields” to be filtered in the homogeneous high resolution space. SPAFP is output from TRANSDIRH

and input to SPOS/ESPOS.

SPDFP : it contains the vertically post-processed fields to be spectrally fitted which are “derivative fields”
to be filtered in the homogeneous high resolution space. SPDFP is output from TRANSDIRH and input
to SPOS/ESPOS.

SPBFP : it contains the vertically post-processed spectral fields which are “derivative fields” filtered in
the homogeneous high resolution space. In this array, for each field, there is one spectrum per field
and per subdomain. SPBFP is output from SPOS/ESPOS and input to TRANSINVH.

(See Figure E.16 on page 162.)

Remarks:

• Though there were no reasons to do it, the spectral data flow in aladin has been split like in
arpege to stick to the same code structure.

• SPAFP and SPDFP had been split for technical reasons, after an old conception. In cycle 26, all
these arrays have been unified in one single array SPBFP, thanks to a more clever monitoring of the
post-processed fields.

IFS Documentation – Cy37r2 161



Appendix E: FullPos technical guide

(E)SPOS

(E)TRANSINVH

(E)TRANSDIRH

SPAFP SPDFP

SPBFP

Figure E.16 Spectral post-processing data flow.

(b) Gridpoint buffers

By “gridpoint buffers” one should understand the model gridpoint buffers, that is those which are shaped
to fit the model geometry and its distribution.

These buffers (or arrays) are used to interface:

- the model and the post-processing in general (GPPBUF, GFUBUF, XFUBUF for the physical fields; GPP
and GPUABUF for the dynamic fields; various geographical data arrays from the module YOMGC);

- the vertical post-processing and the spectral transforms (GPP is re-used as output from VPOS);
- the inverse spectral transforms and the horizontal post-processing (GPP is used as output from the

inverse spectral transforms and input to HPOS);
- the vertical post-processing and the horizontal interpolations (GAUXBUF used for the fields which are

not concerned by the spectral fit).

Figure E.17 on page 163 gives more information about the relations between the main subroutines and
these buffers/arrays. Note that the model array GPP is re-used as input/output forfullpos: this is
embarrassing for the externalization.

(c) Fullpos buffers

By “Fullpos buffers” we shall point out the gridpoint buffers specially designed for the post-processing
output.

How are they shaped?

Figure E.18 on page 164 helps to understand the problem:
Given the model gridpoint area and its distribution, it appears that from one processor to another, the
number of “output points” (ie: the points where to the model fields will be interpolated) can be quite
different. This is even more obvious when the input model is stretched and the target grid is not, or when
the output grid is centered on the pole of interest of the input model (which is typically the case of the
arpege/aladin coupling).

At the time of the shared memory code and the I/O scheme, this was really a complication because to a
model “row” (with a fixed size NPROMA) we had to affect a post-processing “row” of points with a variable
size. To solve this problem we had to consider that the post-processing packets were composed of subrows
of fixed size NFPROMAG.

162 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

GPUABUF GPPBUF YOMGC

VPOS

(E)TRANSINVH

(E)TRANSDIRH

GAUXBUF

HPOS

GPPBUFGFUBUFYOMGC XFUBUFGPP

GPP

GPP

Figure E.17 Gridpoint buffers interactions.

Things have been much easier to conceive since the removal of the I/O scheme and the new distributed
architecture: the “Fullpos buffer” is very close to the model “Gridpoint buffer”, since only the
characteristics have different numerics: the size is NFPRGPL instead of NGPTOT; the segmentation is
NFPROMAG instead of NPROMA (however, this last distinction has been purely formal since the distributed
memory architecture, while it was of prime importance for the parallelism in the shared memory
architecture).

Remarks:

• The code is still containing a lot of items which were used for the shared memory architecture and
which have become completely useless today (cleaning to be done!).

• “Fullpos buffers” and “Gridpoint buffers” should remain formal different structures to make the
externalization of fullpos easier. “Fullpos buffers” should even be able to setup “Gridpoint
buffers”-like structures on demand, in order to help the externalization (so that buffers like GAUXBUF,
which are internal to fullpos, would not need the model structure). Another possibility would be
to create an external common structure for the model and the post-processing (to be archived in
xrd library?).

• “Fullpos buffers” are also already used to handle the biperiodicization, with different characteristics:
NFPEL instead of NFPRGPL and NFPROMEL instead of NFPROMAG.

• Distribution on horizontally interpolated data may be better balanced. But how to do it is a big
deal! The solution would be to distribute as equally as possible the geographically sorted string of
post-processing points, and then to adapt the construction of the cores and halos. This leads to a re-
distribution of the model gridpoints after the vertical interpolations and before the horizontal ones,
and thus to a post-processing-specific horizontal interpolator system (good for externalization!): see
Figure E.19 on page 164.

IFS Documentation – Cy37r2 163



Appendix E: FullPos technical guide

Figure E.18 Gridpoints repartitions between model and output grids: the greyish areas corresponds to
an output grid; the background areas corresponds to the input model, with a physical separation between
processors. Top left represents a typical coupling from a stretched grid, Top right a typical coupling from
a rotated grid, bottom a typical nesting.

Figure E.19 “Next generation” fullpos horizontal interpolator: the cores and halos are re-built to fit the
post-processing distribution.

As shown in Figure E.20 on page 165, these buffers are used to interface the vertical interpolations
(FPOSHPOR, according to its configuration), the vertical re-adjustment and physico-dynamic calculations
on the target grids (ENDVPOS), and finally the writing out to files (WRHFP).

The used buffers are:

164 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

GPFPBUFGDFPBUF AFPBUFGFPAUXBUF

ENDVPOS

GDFPBUF

WRHFP

WRHFP

FPOSHOR

RFPBUFWFPBUF

(A) (I)(P) (G)

Figure E.20 Fullpos buffers interactions in the horizontal interpolations.

WFPBUF : weights and indexes for interpolations

RFPBUF : output climatology and geometry

GFPAUXBUF : auxiliary surface fields

GPFPBUF : output physical fields

GDFPBUF : output dynamic fields

AFPBUF : horizontally interpolated model fields

Notice: GPFPBUF and GDFPBUF are never used simultaneously; so they should be merged in a single buffer
(FFPBUF like “Final FullPos BUFfer”?).

As shown in Figure E.21 on page 166, these buffers are also used to interface the biperiodicizations; the
used buffer, named EZOBUF, contains either the extensions zone of the physical fields or the extensions
zones of the dynamic fields (according to the configuration of FPEZO2H).

E.2.3 Monitoring

This section will describe how the post-processed fields are monitored through the software.

(a) Physical fields

The monitoring of the physical fields is rather easy, since there are only horizontal interpolations (at
least for the time being, since the upper air fluxes are not yet post-processable). However it has become
old-fashioned with regards to the fortran 90 facilities, and it is heavy to use. This monitoring should
be revisited to make the maintenance easier and to enable the treatment of upper air fluxes.

The characteristics are the following:

IFS Documentation – Cy37r2 165



Appendix E: FullPos technical guide

GPFPBUFGDFPBUF GFPAUXBUF RFPBUF

FPEZO2M

EZOBUF

WRHFP

Figure E.21 Fullpos buffers interactions in the biperiodicizations.

• The fields are stored in the following order:

(i) Surface fields (from GPPBUF)
(ii) Cumulated fluxes (from GFUBUF)
(iii) Instantaneous fluxes (from XFUBUF)

This rule should be followed through the whole code in order to locate the fields.
• The fields are characterized by:

- The arpege/aladin field name.
- The number of bits for packing before writing out to file.

The setup is performed in YOMAFN, NAMAFN, SUAFN1, SUAFN2 and SUAFN3 (Note that the tables
numbering is fragile). Then the fields will be always recognized by their arpege/aladin name.

The steps to be followed in order to add a new field are then the next ones:

• For a given post-processing field, all the needed model fields should be at disposal:
FPINIPHY/SUFPCFU/SUFPXFU according to the field kind.

• Each field is associated to one or more model fields to fill the interpolations buffer: HPOS.
• Each field is associated to one or more interpolated fields to fill the biperiodicization buffer: FPFILLB.
• Interpolations and control of interpolations may occurs in the following subroutines: FPINTPHY,

FPNILPHY, FPCLIPHY, FPCORPHY, FPGEO.

(b) Dynamic fields

The monitoring of the dynamic fields now uses complex derived types from the fortran 90 language.
The aim is to setup all the characteristics which will be used to monitor the fields, so that the fields could
be handled in an almost blind way.

The monitoring is realized with two kinds of specific derived types (both declared in the module file
fullpos descriptors.F90)

(i) fullpos descriptor:
a static derived type, describing the fixed characteristics through the post-processing for all the
fields which can be requested. This type is set in YOMAFN, NAMAFN, SUAFN1, SUAFN2 and SUAFN3.
Notice: the item %ILMOD is set in SUFPDIM; this item, together with %LLGP and %IBIT are a bit odd
since they depend on the model namelist (to be revisited). This type is partly external, as it is
partly accessible from the namelist NAMAFN.

166 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

There is one type for each field, and one type array containing all of them (named: TFP DYNDS). The
fields are then recognized by their rank in this type array (it plays the role of an internal code).

(ii) fullpos request:
a dynamic derived type named QFPTYPE, describing the changing characteristics of each field along
the post-processing. This type is set in CPVPOSPR, SUVPOS and UPDVPOS (in cycle 26: only in CPVPOSPR

and SUVPOS). It is then used in a large amount of subroutines. It is a purely internal variable type.
The purpose of SUVPOS is to set the fields characteristics, while CPVPOSPR initializes the pointer of
each field in each space. This last routine is crucial to the dataflow between the gridpoint space and
the spectral space: it enables the gridpoint fields to be stored in the proper order for the spectral
transforms.

The steps to be followed in order to add a new field are then the next ones:

• To add a new fullpos descriptor type for the new field and set it in YOMAFN, NAMAFN, SUAFN1,
SUAFN2 and SUAFN3.

• To possibly modify SUFPDIM if the field should be considered as a new pronostic field.
• To compute the field in POS/ENDPOS using the fullpos request type QFPTYPE and the individual

fullpos descriptor types.
• To possibly control the horizontal interpolation of this field in FPCORDYN, using the individual

fullpos descriptor types.

IFS Documentation – Cy37r2 167





Part VI: Technical and Computational Procedures

Appendix F

Coding standards

Table of contents
F.1 Introduction

F.2 Specifications

F.2.1 Documentation

F.2.2 Code conception

F.2.3 Code validation and maintenance

F.2.4 Current code framework

F.3 Design

F.3.1 Typewriting style

F.3.2 Basic layout

F.3.3 Header comments

F.3.4 Declaring variables

F.3.5 General coding norms

F.3.6 Specific coding norms

F.3.7 Purpose and usage of the key LRPLANE

F.3.8 I/O raw data

F.3.9 Message passing interface

F.4 Source code management

F.5 Index of standards for the presentation of the code

F.6 Index of standards for the respect of the norm

F.7 Index of standards for the control of the code

F.8 Index of standards for the conception of the code

F.1 INTRODUCTION

NWP software, which is often used for both operations and research, aims to be homogenous, portable,
modifiable and maintained with much flexibility and ease.

This represents a lot of constraints, to be shared by all participants of the arpege/ifs and
arpege/aladin projects, and even more when cross-collaborations with other projects are included.

While the computing environment of the arpege/ifs software was originally a shared-memory, multi-
processor vector machine, things have changed so that the computing environment is much wider: ranging
from a single workstation to a cluster of high performance servers: scalar or vector processors, distributed
memory or partially shared memory machines.

Last but not least, scientific and technical developments provide a strong justification for a perpetual
evolution of the codes in order for the software to perform optimally, and this should be achieved using
a minimum of time and human resources.

All these requirements need a set of agreed coding standards, that will be used by all participants of the
project.

First of all we have to choose a language. But it is not enough to “just code in the same language”. There
are many ways to write the same program. Though different styles can give the same numerical result,
they would not be equivalent once we consider further criteria telling that the software should be:

IFS Documentation – Cy37r2 169



Appendix F: Coding standards

• well studied and well analysed
• well written (. . . but what does it mean?!)
• properly documented
• portable
• efficient
• flexible
• possibly exchangeable

For a long time the best solution to achieve this was to use the so-called “DOCTOR norm” (DOCumentary
ORiented norm) by J. K. Gibson from ECMWF. Time has proven its efficiency.

Then the evolution of machines and languages as well as the increase of European collaborations has lead
us to modify or extend the original norms. A European standard has been developed in order to facilitate
the exchanges of code between meteorological organizations.

We can point out a few aspects of these norms:

• The existence of comments and especially comments at the start of each routine. Those concerning
the modifications appear to be very useful to trace the history of the code. However, the 3-level
structure to enable an automatic extraction of the comments never seems to have been used.
Nevertheless an automatic extractor to document the arpege/ifs/aladin namelist variables now
exists.

• The structure in sections and sub-sections with homogenous labels improve the readability of the
code, which is even more important than the norm itself.

• The convention of prefixes in order to rapidly identify the type (integer, real . . . ) and the nature
(local or shared, dummy or not, . . . ) of the variables appeared to be the most popular aspect of
the norm.

This document aims to collect all the conventions and customs used in the arpege/ifs/aladin software.
Hopefully it could be the starting point to code an automatic verificator of the norm. Finally only the
norms tested in this automatic verificator would be the official norms while the others would be just
recommendations. Developers should be aware that some rules could cause a lot of merging problems,
especially where the same lines have been re-shuffled by more than one developers. Therefore we would
not advocate to have all the standards systematically enforced by an automatic corrector.

In this document each item is referenced by a label composed of a topic and a number. There are four
defined topics:

PRES for the presentation of the code,

NORM for the respect of the norm,

CTRL for the control of the code,

CCPT for the conception of the code.

This document was originally authored by R. El Khatib (Météo-France - CNRM/GMAP). It has been
cosmetically edited for the ifs documentation.

170 IFS Documentation – Cy37r2

http://www.met-office.gov.uk/research/nwp/numerical/fortran90/f90_standards.html


Part VI: Technical and Computational Procedures

F.2 SPECIFICATIONS

A well-thought out program is less difficult to code, produces fewer bugs and is often easier to maintain.
So it is essential to specify the work with care. Three important aspects should be considered: the
documentation, the code conception and its further enhancements, the code validation and maintenance.

F.2.1 Documentation

Documentation is essential: modification and maintenance will be much easier if everyone can understand
not only the code, but also the design spirit behind the code. When changing the code the documentation
should be updated immediately to avoid misunderstandings.

For the international cooperation to work, the documentation should be written in English.

There should be two kinds of documentation:

An external documentation which will be provided for a package of subroutines rather than an
individual one. It should be written outside the code and divided into three parts (?):

(i) Scientific documentation describing the scientific aspects of the problem and the solution adopted
in the current software. This documentation should not refer to the code itself.

(ii) Technical documentation describing the implementation of the solution adopted in the scientific
documentation. This documentation should include a calling tree and a description (name, purpose)
of all the modules which are used (subroutines, functions, data modules). This documentation should
take over from the scientific one when technical aspects are concerned. Information for testing,
modifying and maintaining the code should be included inside such documentation.

(iii) A users guide describing the user interface, switches and tunable variables of the software (access,
default values and range).

Internal documentation which should be provided for individual modules (data modules or
procedures). This documentation can be divided into three categories:

(i) Header comments stating briefly the purpose of the module, the author, references to external
documentation, list of modifications (author and purpose) since the creation of the module. When
dummy arguments are used, this header should describe them.

(ii) Section comments splitting the code into logical sections (that may be related to the scientific
documentation). They indicate, section by section, the purpose of the code.

(iii) Supplementary comments which should help reading the code. There should not be many of them:
source code which is interspersed with many comments is difficult to follow and to understand.
If the code has been well designed and if the related external documentation has been properly
written before coding, then the header and section comments should be sufficient.

Both kinds of documentation should be updated at the same time in order to avoid misunderstandings.

F.2.2 Code conception

• At the design stage, one should consider how the system should be tested, how it could be modified
later and how it will be maintained. Future objectives of the system — not only the immediate
objectives — should be considered: future enhancements should be anticipated and planned if
possible, and should be made possible with a minimum of disturbance to the whole system.

• The different parts of the system should be analysed and planned. The parts should be designed in a
modular way, with interaction between them based on a hierarchical and tree-like structure. There
should not be any duplication of code: neither real duplications (when a piece of code is copied then
pasted) nor virtual duplications (when more than one procedure has the same purpose). Duplication
of code increases the problems of maintenance. Whenever code duplication is found the incriminated
part of code should be re-designed.

• The relationship between modules should be simple. Individual modules should not be complex.
Whenever a module is becoming complex after enhancements, the system should be re-examined

IFS Documentation – Cy37r2 171



Appendix F: Coding standards

and the modularity re-designed. The longer subroutines are, the less readable they are and the more
difficult they are to maintain.

• Derived types should be used where appropriate as that they make the code more robust and easier
to maintain. Derived types naturally contribute to a more object-oriented code.

• Dataflow is a recurrent problem whenever portability is concerned. Therefore special attention
should be given to it. Data inputs, outputs or transfers should be confined to a set of data handling
modules, separated from the application modules.

• Non-standard statements of the language should not be used. In case they have to be, they should
be confined into a subset of modules to limit the problems of portability. The same rule should
apply to the invocation of routines coming from an external package.

F.2.3 Code validation and maintenance

• While validating and evaluating new code, the following questions should be considered:

- Does the source code comply with the coding standards?
- Is the code easy to understand?
- Is the code unnecessarily complex?
- Is the interface to the subroutine straightforward?
- Does the routine produce the expected results?
- Can modifications be made easily if required?
- Are ALL error cases detected and properly acted upon?
- Are ALL aspects of the calculation (ie: direct model, tangent linear, adjoint, limited area model

versus global, ecmwf versus Météo-France setups) properly treated?
- Is the routine efficient in terms of memory and CPU consumption?
- Are the final integrated tests (ie: the operational configurations of the software) successful?

• The primary maintenance documentation is the source code. Only the source code is guaranteed
to be up to date. Thus, it is of vital importance to update source code comments while
modifying the source code.

• When code undergoes development for scientific and technical reasons, at some point it is likely to
become unnecessarily complex. It is important to recognise this and when it occurs review and if
necessary re-design and re-write the code package concerned.

F.2.4 Current code framework

• The arpege/ifs/aladin code is written in fortran 90 and C. The following document mainly
applies to the part of the code written in fortran, this being the main coding language in which
the bulk of the code is written.

• The code is designed to perform well on both vector and cache based processors. This feature has
to be maintained for the foreseeable future.

• It is parallelised for distributed memory computers using MPI.
• It is also parallelised for shared memory computers using OpenMP inside MPI. This implies that

the code inside the OpenMP regions has to be written in a thread-safe way.

172 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

F.3 DESIGN

F.3.1 Typewriting style

Following the European standards (?) which are more restrictive than the ansi standard the fortran

keywords may be written in upper case only, or with initial letter in upper case and the rest in lower
case. The names of variables may be written in mixed lower or upper case and the names of namelists,
modules, programs or subroutines may be written in mixed lower or upper case. No recommendation has
been made concerning comments.

However the survey of the existing code shows that the whole executable lines are preferably written
with upper case characters. Comments are preferably written with lower case characters except the first
letter, or the first letter after each full stop. Emphasized words are written in upper case characters and
bracketed with asterisks1.

It is recommended to stick to a conventional typewriting style inside the whole code because this
convention enables the developers to concentrate upon the semantic of the code and makes easier the use
of automatic tools to manipulate the code (?).

In view of the apparent lack of rule concerning the typewriting style, the recommendation is to stick to
the apparent habit:

PRES(01) Executable lines should be written using upper case characters.

PRES(02) Comments should be written with lower case characters except the first letter, or the first
letter after each full stop. Emphasized words may be written in upper case characters.

The minimum recommendation would be to follow a consistent style throughout each module or
subroutine.

F.3.2 Basic layout

(a) Executable statements

NORM(01) The code should be written in fortran 90 free format, at least as far as science is
concerned.
The use of fortran (“FORmula TRANslator”) is almost obligatory since:

• it fits the scientific topics
• it is portable
• it is well-known by most of the developers!
• there exist well optimised fortran compilers for vector and scalar processors.

C language can advantageously be used for low-level subroutines.

PRES(03) The code should start at the column 1, unless it comes to any of the indentation norms as
they will be described below.

PRES(04) The ending statement of a module or subroutine should repeat its name. For example:
“SUBROUTINE SUCT0 ... END SUBROUTINE SUCT0”

NORM(02) Tabulations must not be used: this ensures the code will look indented as desired whenever
ported (also the use of the tab character is non ANSI).

PRES(05) One should avoid writing more than one statement per line (ie: avoid using the separator
“;”). More than one statement per line might penalize the readability. If several statements should
be grouped together then one may write a tiny subroutine that would be private and contained in
the current subroutine.

1Apparently the heritage of an automatic documentation extractor.

IFS Documentation – Cy37r2 173



Appendix F: Coding standards

CCPT(01) Subroutines should not have more than 300 executable statements (?) (there are projects
which are even more strict, see ?). Each subroutine should have a maximum score of 400, based on
the following measure (?):

• each subroutine call has score 5
• other executable lines have score 1

There is no recommendation for a minimum score per subroutine.

CCPT(02) When the code is modified, it is easier to add or remove lines than modify existing ones.
This is of special importance when merging code modifications from several developers. Therefore
one should write the code in such a way that consecutive lines are as independent as possible.
This would make the future merge of source code easier. Unfortunately this can make the code
unnecessarily long. So this rule should be applied with care. Obviously it fits short codes.

(b) Comments

PRES(06) The comments should be written in English. They should not be written twice (for example:
English and the programmer’s native language), because it makes the code less readable.

PRES(07) Blank lines should remain empty: they should not start with “!”

(c) Entry point and exit points

CTRL(01) Each procedure should contain one entry point and at most two kinds of exit points: one
normal return and one abnormal termination.

CTRL(02) The entry point should be at the top of the procedure.

CTRL(03) The normal return should be the bottom of the procedure. Consequently the use of the
statement RETURN is discouraged. If there is only one RETURN statement at the end of a procedure
it should be removed.

CTRL(04) Abnormal termination should be invoked with the specific subroutine ABOR1 because this
subroutine enables one to flush the output buffer and to release the processors which are not affected
by the abnormal termination.

There can be more than one abnormal termination in the body of the subroutine.

Listing F.1 shows examples of entry/exit points.

F.3.3 Header comments

(a) Data modules

CCPT(03) Each data module should begin with documentation describing the general content of the
module and the purpose of each declared variable.

PRES(08) In order to improve the readability, the namelist variables in a data module should be
separated from the internal ones.

PRES(09) Each description line should be independent to enable an automatic extraction of the
documentation.

PRES(10) The documentation should be separated from the starting statement with a blank line and
it should finish with a comment line filled with minus signs.

Listing F.2 shows an example of a data module.

174 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Listing F.1 Examples of entry/exit points and errors handling.

SUBROUTINE ERROR_DETECTION

:

:

USE MHOOK , ONLY : LHOOK

:

:

IF (LHOOK) CALL DRHOOK(’ERROR_DETECTION ’,0)

:

:

IF (IWORD /= ILEN) THEN

CALL ABOR1 (’ERROR_DETECTION : MESSAGE 1 ’// &

& ’RECEIVED WITH WRONG LENGTH ’)

ENDIF

:

:

:

IF (IERR > 0) THEN

CL=’MESSAGE 2 RECEIVED WITH WRONG LENGTH ’

WRITE(NULOUT ,*) CL

WRITE(NULERR ,*) CL

CALL ABOR1 (’FROM ERROR_DETECTION ’)

ENDIF

:

:

:

IF (LHOOK) CALL DRHOOK(’ERROR_DETECTION ’,1)

END SUBROUTINE ERROR_DETECTION

(b) Procedures

PRES(11) Each procedure should begin (?) with a documentation header as a set of comments
containing:

- the purpose of the procedure
- the interface details, describing the dummy arguments in the same order as they are in the

interface
- the externals or other subroutines called
- the method used in the application, where there is no further documentation to refer to
- a reference to further documentation
- the author and date of creation of the procedure
- the modifications applied since the creation of the procedure, with the author and date of

modifications

PRES(12) The header documentation should be separated from the entry point statement with an
empty line and it should finish with a comment line filled with minus signs.

PRES(13) The modifications comments should start with the template:
“! Modifications”
and should end with the template:
“! End Modifications”.
In between all the modifications description should be written in the same style:
day(2 digits), month(3 characters), year(four digits) separated with a minus sign, then the author,
then a description.

IFS Documentation – Cy37r2 175



Appendix F: Coding standards

Listing F.2 Example of data modules.

MODULE YOMDATA

! Module showing the coding standards in

! ARPEGE/IFS/ALADIN.

! NUMBER : Key telling what to do :

! NUMBER = 0 => don ’t do anything

! NUMBER = 1 => do this

! NUMBER = 2 => do that

! VALUE : Tunable variable to do what you wish

! ARRAY : Mysterious data array

!-------------------------------------------------

USE PARKIND1 , ONLY : JPIM ,JPRB

IMPLICIT NONE

SAVE

INTEGER(KIND=JPIM) :: NUMBER

REAL(KIND=JPRB) :: VALUE

REAL(KIND=JPRB), ALLOCATABLE :: ARRAY (:,:)

!-------------------------------------------------

END MODULE YOMDATA

Listing F.3 shows a header documentation for a procedure.

F.3.4 Declaring variables

(a) Layout

NORM(03) The use of IMPLICIT NONE statement is mandatory. It improves the portability of the code
and helps in the detection of errors.

NORM(04) Hard-coded variables increase the problem of maintenance and can even be the cause of
bugs, especially when they are used in a subroutine interface.
Hence it is much better to write: CALL POSNAM(NULNAM,CLNAME) than CALL POSNAM(4,’NAMCT0’)

PRES(14) The declaration of variables should be separated from the header documentation with an
empty line. It should finish with a comment line filled with minus signs.

PRES(15) The declarations of variables should be grouped according to their type and attributes.

NORM(05) The statement DIMENSION should not be used (but the attribute DIMENSION can be). The
shape and size of arrays should be declared inside brackets after the variable name on the declaration
statement.

NORM(06) The notation “::” should be systematically used after the type and attribute declaration,
and before the name of the variable.

PRES(16) All the attributes of a given variable should be grouped within the same instruction. This
makes it possible to visualize in a glance the characteristics of a variable or of a family of variables.

176 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

Listing F.3 Example of header documentation and variables declarations in a procedure.

SUBROUTINE CODESTY(KERR)

! Purpose :

! -------|\\

! *CODESTY* : CODE STYLE : Show coding standards

! Interface :

! ---------

! KERR : Output error code of the subroutine

! Externals :

! ---------

! None.

! Method :

! ------

! Reference :

! ---------

! Coding standards in Arpege/Ifs/Aladin.

! Author :

! ------

! 19-Jul -2002 Ryad El Khatib *METEO -FRANCE*

! Modifications :

! -------------

! 30-Oct -2003 M. Hamrud Cleaning for Cycle 28

! 30-Feb -0000 A.N. Other Imaginary modification ;-)

! End Modifications

!-----------------------------------------------------

USE PARKIND1 , ONLY : JPIM

USE YOMDATA , ONLY : NUMBER ,VALUE

IMPLICIT NONE

INTEGER(KIND=JPIM),INTENT(OUT)::KERR

INTEGER(KIND=JPIM),PARAMETER::JPLEN =16 ! Length of

! local message

CHARACTER(LEN=JPLEN )::CLMESS ! Local message

!-----------------------------------------------------

:

:

END SUBROUTINE CODESTY

IFS Documentation – Cy37r2 177



Appendix F: Coding standards

PRES(17) Templates like “Dummy scalar arguments :”, or “Local integer arrays :”, etc. on top
of any group of variables declarations are not necessary: the fortran attributes declarations, if used
as recommended in this document, are self-documenting. Also the complete list of such templates
is so wide that using them can make the code less readable.

CCPT(04) Actually unused variables (local in a used module) should be removed from the current
procedure: this makes the code clearer and can reduce the dependencies complexity.

(b) Kinds

NORM(07) Variables or constants are preferably declared with explicit kind.
In practice conventional parameters have been defined for various kinds (see modules PARKIND1 and
PARKIND2): refer to Table F.1.

Table F.1 Conventional kind parameters for INTEGERs and REALs.

KIND value KIND parameter

SELECTED INT KIND(2) JPIT

SELECTED INT KIND(4) JPIS

SELECTED INT KIND(9) JPIM

SELECTED INT KIND(12) JPIB

SELECTED INT KIND(18) JPIH

SELECTED REAL KIND(2,1) JPRT

SELECTED REAL KIND(4,2) JPRS

SELECTED REAL KIND(6,37) JPRM

SELECTED REAL KIND(13,300) JPRB

SELECTED REAL KIND(28,2400) JPRH

Refer to Listing F.4 for an example of constants usage.

(c) Specifications for data modules

CTRL(05) In data modules all variables should be saved in order to preserve their values. This is
achieved by the use of the statement SAVE.

PRES(18) Each variable should be declared separately.

Refer to Listing F.2 for an example of declarations in a data module.

(d) Specifications for procedures

NORM(08) The variables should be used or declared in the following order:

(i) the variables used from modules (this is enforced by fortran standard)
(ii) the dummy arguments
(iii) the local variables

NORM(09) When using a data MODULE, the resources should be restricted to the actually used variables
in order to avoid latent conflicts. This is achieved by the use of the keyword ONLY.

PRES(19) While enumerating the used variables, the items should be regularly spaced in order to
respect a general alignment: this improves the readability. The space used is currently 9 characters
per variable, but it could be a multiple of 9 to preserve the general alignment when long names are
used. If lines should be broken the separating commas should be at the end of the lines, not the
beginning of them.

178 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

PRES(20) The declaration of dummy arguments and the presentation of the dummy arguments in the
subroutine interface should be the same, in order to improve the readability.

PRES(21) If lines should be broken in the SUBROUTINE variable lists then the separating commas should
be at the end of the lines, not the beginning of them.

PRES(22) New lines in the CALL variable lists should be the same as “line breaks” in the subroutine
arguments list.

Refer to Listing F.3 for examples of variables declarations in a procedure.

(e) DOCTOR naming conventions

The purpose of the following naming conventions is to convey, through the use of prefix letters, the type,
status and scope of all variables within the program. Since the original definition of the DOCTOR system,
a few minor changes have been made to reflect:

• the increase use of facilities of fortran, especially CHARACTER type
• the rationalization in the light of experience
• the wish to restrict prefixes to a single letter as far as possible.

The use of a prefix convention to indicate the status or scope of the variable enables differentiation at a
glance.

NORM(10) The type of a variable is indicated by the first — or first two — letter(s) which compose(s)
its name, according to Table F.2.

Table F.2 Naming conventions.

Type Variable Dummy Local Loop Any
in data module argument variable control PARAMETER

INTEGER M,N K I J but not JP JP

REAL A,B,E-H,O,Q-X P but not PP Z - PP

LOGICAL L but not LD,LL,LP LD LL - LP

CHARACTER C but not CD,CL,CP CD CL - CP

Derived Y but not YD,YL,YP YD YL - YP

Note:

NORM(11) Double precision variables, which are prefixed with D according to the DOCTOR norm,
are no more used in the current software: instead of that, the type and kind of the variables are
declared explicitly.

NORM(12) Elementary variables composing a derived type should follow the naming conventions for
local or global variables.

(f ) Further naming conventions

Names of variables should be as meaningful as possible.

At the time the DOCTOR norm was first specified, the distributed memory machines were not in
operations. While programming on a distributed memory machine, the developers have to consider a
new scope of variables:

IFS Documentation – Cy37r2 179



Appendix F: Coding standards

• those which are local in the sense of the distribution: such variables can be shared by several
subroutines and so they can be declared in a data module. But their values may differ between
processors.

• those which are global in the sense of the distribution: such variables can be local to a subroutine.
But they have a physical meaning so that their values will be the same on all processors.

Concerning this scope the naming convention is the following:

CCPT(05) Variables which are suffixed with the letter L are local in the sense of the distribution.

CCPT(06) Variables which are suffixed with the letter G are global in the sense of the distribution.

Note: the reverse assumption is not true, that is: variables which are local in the sense of the distribution
are not always suffixed with L (actually all variables are local in the sense of the distribution). In the
same way variables which are global in the sense of the distribution are not always suffixed with G. This is
justified since the distribution concerns the data and not all the applications: the mentioned rule applies
only to those variables related to the dimensions concerned by the distribution. For instance the model
time step is not governed by this rule. Also a loop index would not be governed by this rule, while the
loop bounds could be.

Table F.3 gives an example of such variables.

Table F.3 Example of local versus global variables.

Variable local to a subroutine Variable in a data module

Local variable The number of
in the sense of A loop index gridpoints treated
the distribution by a processor

Global variable A value The total number
in the sense of gathered among of gridpoints
the distribution all processors in the model

F.3.5 General coding norms

(a) Section comments and supplementary comments

PRES(23) The body of the code should be split into numbered sections and subsections. The numbering
should be so that the M th subsection of the N th section would be labelled N.M.

PRES(24) Each section should be clearly separated from the previous one and should begin with its
section number and an underlined title.

PRES(25) Each subsection should be clearly separated from the previous one and should begin with
its subsection number and title.

PRES(26) Supplementary comments should be placed either immediately before or on the same line
as the code they are commenting.

(b) Banned features

Several fortran features should not — or no more — be used, as their past usage showed their
detrimental effect in programming, or because they are becoming obsolescent and thus can disappear
in future versions of the compilers.

NORM(13) GOTO should not be used because it is detrimental to the readability and is obsolescent.
fortran 90 provides instructions like DO WHILE, EXIT, CYCLE and the conditional block SELECT

CASE which can replace GOTO.

180 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

NORM(14) FORMAT statement should not be used any more as it is becoming obsolescent. Format
descriptors should be used instead. For example, one can replace:

WRITE(*,99) ’Hello !’

99 FORMAT(A7)

by
CLFMT=’(A7)’

WRITE(*,CLFMT) ’Hello !’

NORM(15) COMMON should not be used. MODULE should be used instead, because it is a more robust,
flexible statement.

NORM(16) EQUIVALENCE should not be used because it may cause problems of readability or sometimes
portability. POINTER or TYPE data can replace it.

NORM(17) COMPLEX type should not be used since the resulting code is not efficient (?).

CTRL(06) One should not implicitly change the shape of an array while passing it into a subroutine,
because this works only after assumptions about how the data is stored. In such situations the
code should be properly re-written. If this is not possible RESHAPE should be used instead, but this
statement involves extra cost.

CTRL(07) One should not implicitly change the type of a variable while passing it into a subroutine,
because this works only after assumptions about how the data is stored. In such situations one
should use TRANSFER instead.

NORM(18) To declare a character string, the syntax CHARACTER*n should no more be used because
it is becoming obsolescent. Hence the syntax should be:
CHARACTER(LEN=n).

NORM(19) Arrays should not be declared with implicit size, ie.:
REAL(KIND=JPRB) :: A(*)

but they may be declared with implicit shape, ie.:
REAL(KIND=JPRB) :: A(:)

Note that such declaration requires an interface block.

(c) Loops

NORM(20) One should use only the “block loop” construct, ie starting with DO and ending with
ENDDO. Loop boundaries should stand out, finishing with ENDDO statement, in order to make future
modifications inside the loop easier.

PRES(27) DO and DO WHILE loops should be indented with 2 blank spaces to improve the readability.

PRES(28) In case of complex loops nesting, it is recommended to use a character label for each loop.

CCPT(07) Loops should be as plain as possible: complexity may destroy the vectorization of the loop.

Listing F.4 shows indentations for loops.

(d) Conditional blocks

CTRL(08) Use the SELECT CASE statement when possible, rather than IF-ELSEIF-ELSE-ENDIF
statements because the condition relies on the value of only one expression which is compared
to constant values, and thus overlapping values can be detected at compilation time.

PRES(29) Conditional blocks should be indented with 2 blank spaces to improve the readability.

IFS Documentation – Cy37r2 181



Appendix F: Coding standards

Listing F.4 Example of computations in a procedure.

SUBROUTINE COMPUTE

:

:

! 1. Initialization

! --------------

IST = LBOUND(ZA)

IEND = UBOUND(ZA)

ZSCAL = 5._JPRB

ZB(:) = 2._JPRB

ZC(:) = 4._JPRB

! 2. Computation and selection

! -------------------------

DO JI=IST ,IEND

IF (LDONE(JI)) CYCLE

ZA(JI) = ZB(JI) + ZC(JI)

ZD(JI) = 1.0_JPRB -LOG(ZA(JI))

ZE(JI) = ZSCAL*ZB(JI) &

& + (ZA(JI)-ZD(JI))

ENDDO

SELECT CASE (NOPTION)

CASE(1:)

SELECT CASE (ALL(LDONE))

CASE(.FALSE.)

CALL ROUTINE( &

& NOPTION ,IST ,IEND , &

& ZA ,ZB ,ZC ,ZD,ZE)

END SELECT

CASE DEFAULT

CALL ABOR1(’COMPUTE : ILLEGAL VALUE NOPTION ’)

END SELECT

CALL MPL_BARRIER(CDSTRING=’COMPUTE:’)

:

:

END SUBROUTINE COMPUTE|\\

PRES(30) Nesting of conditional blocks should not be more than 3 levels deep: deeper nesting destroys
the understandability of the code (?). In case of complex nesting, it is recommended to use a
character label for each elementary blocks.

PRES(31) Conditional block boundaries should stand out, in order to make future modifications below
a condition easier. However, if the conditional instruction is nothing but a plain branch like EXIT

or CYCLE then this recommendation may be ignored.

Refer to Listing F.4 for examples of usage of conditional blocks.

182 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

(e) Linebreaking

PRES(32) Though fortran 90 allows up to 132 characters on a line, the length should be limited
to 80 characters per line in order for the code to be viewed easily on any terminal, or to be easily
read, when printed on A4 paper.

NORM(21) The continuation character “&” should appear both at the end of each line to be continued
and at the beginning of each continuation line. In this way we have a systematic rule which allows
the inclusion of blank space.

PRES(33) The continuation lines should be indented with one supplementary blank space to improve
the readability.

PRES(34) Lines should be broken in a readable manner (ie: do not break a variable name). It is better
to start a continuation line with an operator rather than to end one with an operator.

PRES(35) The continuation characters should be aligned on the same columns to improve the
readability.

Refer to Listing F.4 for examples of linebreaking.

(f ) Dynamic memory usage

CCPT(08) The use of dynamic memory (automatic or explicit allocation) is preferred to static one
(arrays dimensioned with PARAMETER statement) because:

- it enables the re-use (and thus the saving) of memory
- it enables the same executable file to be run for different resolutions (which is basically the

configuration of a multi-incremental 4D-var assimilation)

However, to avoid potential memory inefficiency, further recommendations should be considered while
using dynamic memory allocation:

NORM(22) Automatic arrays should be preferred to explicitly ALLOCATEd arrays/POINTERs (except
for very large arrays2) because they are automatically released at the end of the subroutine they
are declared in.

NORM(23) Local arrays ALLOCATEd explicitly in a subroutine must be explicitly DEALLOCATEd before
leaving the subroutine.

CCPT(09) One should not repeat sequences like: ALLOCATE, DEALLOCATE, ALLOCATE again . . .
many times: it is better to compute the maximum size of the array and allocate it once.

(g) Symbolic comparison operators

NORM(24) The fortran 90 specific comparison operators should be used because since this syntax
is closer to the mathematical notation the resulting code should be more readable. Table F.4 lists
them.

Table F.4 fortran 90 specific comparison operators.

Less than Less equal Equal Not equal Greater equal Greater than

< <= == /= >= >

2Huge automatic arrays can break the stack limit.

IFS Documentation – Cy37r2 183



Appendix F: Coding standards

NORM(25) The operators == and /= should not be used to compare real variables because the
result depends of the precision of the machine. This kind of comparison should be used only when
absolutely necessary.
Instead of:
(Z1 == Z2)

one should write:
( ABS(Z1-Z2) < ZSCAL*SPACING(Z1) )

where ZSCAL is a scaling factor greater than 1.

(h) Fortran 90 intrinsic functions and procedures

The fortran 90 language provides a large number of predefined functions or procedures. These can
make the code shorter, more readable, more portable and sometimes more efficient. Table F.5 recalls
several of these functions and their behaviors for zero-element arrays.

Table F.5 Some of the predefined functions or procedures specific to fortran 90.

Fortran Purpose Behaviour for
function zero-element arrays

ADJUSTL
To adjust a string on the left side without normal
leading blank (not leading “space”) characters

ADJUSTR
To adjust a string on the right side without normal
trailing blank (not trailing “space”) characters

ALL To find out if all the values of an array are .TRUE. .TRUE.

ANY To find out if any value of an array is .TRUE. .FALSE.

COUNT To count the number of true elements in an array 0
DOT PRODUCT Scalar product of two vectors 0
EPSILON Precision of the machine normal
HUGE largest number of the machine normal
MAXLOC To localize the maximum value in an array 0
MAXVAL To find out the maximum value in an array less equal (- HUGE)
MINLOC To localize the minimum value in an array 0
MINVAL To find out the minimum value in an array HUGE

RESHAPE To reshape an array Possible error
SHAPE Shape of an array 0
SIZE Size of an array 0
SUM To sum the content of an array 0
SYSTEM CLOCK To get information from the system clock -
TINY Smallest number of the machine normal
TRANSFER To transfer a variable into another type ?

TRIM
To remove the trailing blank Error
(not the trailing “space”) characters of a string

NORM(26) generic names should be used for intrinsic procedures, not specific names.

(i) Fortran 90 array syntax

fortran 90 array syntax makes the code more compact and sometimes more readable, but in most cases
the result is slower, or at least not faster than the fortran 77 style DO loops.

The reason is the compiler’s inability to fuse several array statements and re-use common sub-expressions,
registers, etc. With the current level of maturity of fortran 90 compilers there is no reason to believe
that the situation will improve dramatically in the future.
Therefore:

184 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

CCPT(10) The use of array syntax is not recommended, except for simple operations, like initializing
or copying whole arrays.

Refer to Listing F.4 for examples of recommended computations for arrays. Note that in the F90 style,
ZA(:) has a precise meaning: it means that we consider the whole array. The lower and upper bound are
then respectively LBOUND(ZA) and UBOUND(ZA).

(j ) Dummy and actual arguments

In fortran 90 there are two ways of associating arguments when a subroutine is called, the fortran 90

way and for compatibility the fortran 77 way (?). The main difference lies in the way arrays are passed,
in the fortran 90 way it is by strict type, kind, rank and extent matching whereas in the fortran 77

way it is done by Array Element Sequence association. It is important to know that the fortran 90 way
is only used when you have an explicit interface block and the arrays are declared with assumed shape.

The fortran 90 way of passing arguments is much more secure, the compiler will detect any mismatch
between actual and dummy arguments thanks to the explicit interface block. Unfortunately the use of
explicit interface blocks/module procedures is still very limited within the arpege/ifs/aladin code, one
reason being that it introduces more dependencies between separately compiled units and thus increases
the complexity and possibly cost of the compiling system.

CTRL(09) When an explicit interface block is being used for a routine, the interface body should be
in an independent separate file (ie: starting with “INTERFACE” and ending with “END INTERFACE”
and introduced in the calling routine with an #include statement. The interface body should be
extracted from the routine itself by an automatic procedure to ensure that they conform.

NORM(27) The INTENT attribute should be used for all dummy arguments: this improves the auto-
documentation and the security of the code.

CTRL(10) The number of dummy arguments should be kept as small as possible. As excessive
number of arguments degrades the readability and increases the problems of maintenance whenever
arguments are added or removed.
To retain the modularity of subroutines there are alternatives:

- to re-design a set of elementary arguments as a new derived TYPE;
- to identify the arguments which are internal to a set of subroutines and to use them via a data

module. Care has to be taken that this does not cause problems with the thread safeness of
the code.

The standard should be: the number of dummy arguments should not exceed 9.

CTRL(11) The arguments of a subroutine should be presented following a conventional order
because this improves the readability, the maintainability and sometimes also the portability (the
dimensioning of dummy arguments should appear ahead in order to improve the portability). For
the time being such a rule has been applied only for the physical package of Météo-France, with
the convention: input, then input/output, then output arguments. Other orders can be considered,
for instance: to order the arguments according to their types and attributes, including the INTENT

attribute. Concerning the tangent linear and adjoint subroutines the initial recommendation was
to follow the order of arguments as in the direct code, then to add the trajectory variables in the
same order. Such rule can conflict with other general norms.
Finally the achievable norm in this context seems to be: the arguments of a subroutine should be
ordered at least with INTEGER scalar first.

NORM(28) The preferred method for passing array subsections is to use an explicit interface block.
This method allows array sections to be passed safely with no extra cost. If instead an array section
is passed when using the fortran 77 way of passing arguments extra copying will take place
before and after the subroutine call (the compiler will generate the code) incurring extra cost. If the
bounds of the array section is specified wrongly this copying may also cause memory overwriting.

IFS Documentation – Cy37r2 185



Appendix F: Coding standards

Thus when using the fortran 77way of passing arguments, when the section of the array you
want to pass is contiguous in memory and there is no explicit interface block declared, one should
pass the start address of the section e.g. ZARG(1,2) rather than the array section - ZARG(:,2).
Passing array sections, not contiguous in memory, should be completely avoided when using the
fortran 77 way of passing arguments.
However the use of an explicit interface block with assumed shape arrays can cause memory
overwriting too, because the compilers become unable to check bounds. Thus when using assumed
shape arrays one should take care that the array subscript never goes out of the interval given by
the function LBOUND and UBOUND.

NORM(29) Use of array sections (using fortran 90 array syntax) is encouraged when calling intrinsic
routines, as all intrinsic fortran 90 subroutines have explicit interfaces. This makes the code more
readable and enables the compiler to check bounds properly.

Listing F.5 illustrates the handling of dummy arguments.

Listing F.5 Example of dummy arguments handling.

SUBROUTINE PROCEDURE(KLEN ,PIN1 ,PIN2 ,PIN3 ,PIN4 ,PIN5 , &

& PIN6 ,PIN7 ,POUT1 ,POUT2)

:

:

USE PARKIND1 , ONLY : JPIM ,JPRB

IMPLICIT NONE

INTEGER(KIND=JPIM), INTENT(IN) :: KLEN

REAL(KIND=JPRB), INTENT(IN) :: PIN1(KLEN), &

& PIN2(KLEN), &

& PIN3(KLEN)

REAL(KIND=JPRB), INTENT(IN) :: PIN4(KLEN), &

& PIN5(KLEN), &

& PIN6(KLEN)

REAL(KIND=JPRB), INTENT(IN) :: PIN7(KLEN)

REAL(KIND=JPRB), INTENT(OUT) :: POUT1(KLEN), &

& POUT2(KLEN)

INTEGER(KIND=JPIM), PARAMETER :: JPNAME =9

INTEGER(KIND=JPIM), PARAMETER :: JPMESS =30

CHARACTER(LEN=JPNAME), PARAMETER :: CLNAME=’PROCEDURE ’

CHARACTER(LEN=JPMESS) :: CLMESS= &

& ’ : INVALID NUMBER OF ARGUMENTS ’

!-----------------------------------------------------

! 1. Computation

! -----------

:

:

END SUBROUTINE PROCEDURE

F.3.6 Specific coding norms

(a) Naming modules, procedures, namelists and derived types

Names of modules, procedures, namelists or types should be as meaningful as possible.

186 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

CTRL(12) Conventional prefixes or suffixes are recommended for names. Refer to Table F.6.

Table F.6 Conventional prefixes and suffixes.

Prefix Entities Suffix

TYPE Types names
TYPE Types definitions modules S

PAR Parameters modules
YOE Data modules specific to ecmwf physics
QA Data modules specific to canari

YEM Data modules specific to aladin

TPM Data modules specific to spectral transforms packages
MPL Data modules specific to mpl (message passing) package

YOM
Data modules not specific to ecmwf physics, canari,
aladin, spectral transforms or mpl package
Procedure modules MOD

NAE Namelists specific to ecmwf physics
NEM Namelists specific to aladin

NAC Namelists specific to canari

NAM Namelists not specific to ecmwf physics, aladin or canari

SUEC Setup procedures specific to ecmwf physics
SUE, not SUEC Setup procedures specific to aladin

SU, not SUE Setup procedures not specific to ecmwf physics or aladin

SL Calculation procedures for any horizontal interpolations system
LA Calculation procedures specific to the semi-Lagrangian scheme

AC
Calculation procedures specific to arpege/aladin physics
(“Arpege Calcul”)

PP Calculation operators for the post-processing or the analysis
FP Procedures specific to fullpos

CA Procedures specific to canari

FA Procedures specific to the Files Arpege package (fa)
LFI Procedures specific to the Indexed Files Library (lfi)
MPL Procedures specific to the Message Passing Library (mpl)
SI Procedures specific to the semi-implicit scheme
GNH Procedures specific to non-hydrostatic gridpoint calculations
CP or GP Non-specific gridpoint calculation procedures
SP Spectral calculation procedures
COMM, GATH, Procedures dealing with inter-nodes communications
ISND, IRCV, (“COMMunicate”, “GATHer”, “Input SeND”,
OSND, ORCV, “Input ReCeiVe”, “Output SeND”, “Output ReCeiVe”,
BR, DI or TR “BRoadcast”, “DIstribute”, “TRanspose”)
RE or RD Procedures to read data
WR Procedures to write data
E Procedures specific to aladin (“Elliptic”)

Tangent linear of a procedure TL

Adjoint of a procedure AD

Inverse of a procedure IN

Note: additive standards concern the radical of names:

CTRL(13) The radical of a TYPE definition module should be the name of the type it defines3. For
instance the type TYPE GFLD is defined in the module TYPE GFLDS.

3ambiguous if there are more than one type defined in the module.

IFS Documentation – Cy37r2 187



Appendix F: Coding standards

CTRL(14) The radical of a procedure module should be the name of the procedure it encapsulates.
For instance the module SUPOL MOD encapsulates the procedure SUPOL.

CTRL(15) For a subroutine in the spherical geometry of arpege/ifs, its counterpart subroutine in
the toroidal geometry of aladin should have the same name prefixed with an “E”.

CTRL(16) Considering a NAMELIST, its content should be saved in a specific data module and initialized
in a specific subroutine. All three should be named with the same radical. For example: the content
of the namelist NAMCT0 is saved in the module YOMCT0 and initialized in a subroutine SUCT0.

(b) Error handling

Proper management of the errors during the execution of the program help finding them more quickly.

CTRL(17) On error detection, a brief message describing the error should be written out to the
conventional error file and output file with logical unit numbers are respectively NULERR and NULOUT.
On one hand it is important to write out the error message on NULERR otherwise if only processors
other than 1 abort we have no information about the abort, unless we ask for all the output files
(one per task). But in this case the number of files can be so large that the debugging would not
be easier.
On the other hand, writing twice the error message (on NULERR and NULOUT) can confuse the user,
and there can even be a huge number of identical error messages in the listing if all processors abort
for the same reason.

CTRL(18) Then, if abnormal termination is required, the subroutine ABOR1 should be called with a
message (a character string) as argument, indicating the error location. The use of the subroutine
ABOR1 gives time to flush the output buffer and to release the processors not causing ABOR1. It
writes out a message on NULERR, and possibly on NULOUT if an argument is provided.

CTRL(19) Sometimes it can be advantageous to postpone the abnormal termination until the end of
the subroutine in order to output all the errors detected to the output file before actually aborting.

NORM(30) The statement STOP should not be used in case of an error because it reports a normal
termination code.

Refer to Listing F.1 for examples of error handling.

(c) “Hook” function

CTRL(20) Each subroutine should start and end with a conditional call to a “hook” subroutine. One
main usage for it may be finding really awful bugs where we do not get any traceback because the
stack has been trashed, but there are also many other potential uses, for statistics gathering, doing
‘checksumming’ for early catching of problems, etc.

Listing F.1 shows an example of “hook” function.

(d) Handling universal constants

CTRL(21) Universal constants are stored in a data module named YOMCST. To access them one should
use this module.

CTRL(22) Universal constants should not be redefined at any other place in the code, to avoid any
potential inconsistency after a redefinition.

CTRL(23) Universal constants should not be accessed via dummy arguments because there would be
a risk to overwrite them through the subroutine interface.

CTRL(24) To make it more robust all universal constants should be declared and initialized in a unique
module (fusion of the module YOMCST and the subroutine SUCST of today).

188 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

(e) Purpose and usage of the key LECMWF

In order to simplify user namelist files a different default setup is performed according to the value of the
logical key LECMWF. If LECMWF is .TRUE. then the selected default setup corresponds to the framework of
ecmwf; else it corresponds to the framework of Météo-France.

CCPT(11) The key LECMWF should appear only in the setup routines and should be used only to
initialize namelists variables in order to preserve the scientific flexibility of the code.

(f ) Purpose and usage of the key LELAM

The logical key LELAM enables the selection of the limited area model (aladin) instead of the global
model (arpege/ifs). Thus this key controls branches of the code related to the limited-area versus
global aspects of the model.

CCPT(12) The key LELAM should be used only in the setup and control subroutines (ie: not below
SCAN2MDM) in order to minimise the scientific generality of the code.

CCPT(13) The code below the key LELAM should be modular as far as possible in order to preserve
the visibility of the aladin specific code from those who are not aladin partners.

CCPT(14) Use of LELAM should be as rare as possible. If a routine uses lots of LELAM keys then it
should have its own aladin counterpart subroutine called under a single LELAM key.

F.3.7 Purpose and usage of the key LRPLANE

The logical key LRPLANE selects the plane geometry instead of the spherical one. Therefore this key has
a strong relationship with the key LELAM.

CCPT(15) Contrary to the key LELAM, the key LRPLANE can be used at any place in the code, but to
preserve the scientific generality of the code it should not replace the key LELAM. It can be used
outside a LELAM section to treat in a general way low-level parts of the code (for example: in the
semi-Lagrangian scheme).

Note that LELAM=.TRUE. together with LRPLANE=.FALSE. would indicate that aladin is run in spherical
latitudes-longitudes geometry instead of the usual projected plane. This facility has been abandoned in
practice for quite a few years but should remain possible in principle.

(a) Model settings

CTRL(25) User variables for setting up the model should be accessed via a conventional formatted
sequential file containing namelists. Its logical unit number is: NULNAM (NULNAM=4).

CCPT(16) Namelist variables should be read from the namelist file and initialized only at one place
in the software, in order to prevent redefinition of variables.

CCPT(17) To enable an easy control of the variables used in the program, all the namelist variables
should be printed out to the listing file and not be redefined later in the code.

(b) Output messages

CTRL(26) Messages should be written to the conventional formatted sequential file with logical unit
number: NULOUT. The standard output ( “*” or unit 6) should not be used as it would mix the
messages coming from different processors.

CCPT(18) Important messages may be written out to the standard error file which logical number in
the software is NULERR. In that case messages coming from the different processors will be mixed.

CCPT(19) Verbosity should be controlled by the specific namelist variable NPRINTLEV, running between
0 (minimum prints and default value) to 2 (maximum prints).

IFS Documentation – Cy37r2 189



Appendix F: Coding standards

F.3.8 I/O raw data

CCPT(20) Observation files are binary files to be handled with the odb software.

CCPT(21) Restart files are binary files to be handled with the pbio software, which uses C I/O and
gives pure binary files without any Fortran record structure.

CCPT(22) Movies (Météo-France only) are fortran sequential binary files.

CCPT(23) In the ecmwf framework other user’s I/O raw data should be accessed via GRIB files,
using the pbio software.

CCPT(24) In the arpege/aladin framework other user’s I/O raw data should be accessed either via
FA files if the horizontal format of the data corresponds to the model settings; else via LFI files.
These are unformatted indexed sequential files.

CCPT(25) It is recommended to use the logical key LARPEGEF rather than the key LECMWF to select
the files format FA/LFI versus grib.

More generally, the recommendation is to use C I/O to improve the portability (today almost all
computers adhere to the ieee standard).

F.3.9 Message passing interface

CCPT(26) One should use the mpl package as interface for any message passing.

CTRL(27) For an easier control of the code, each mpl subroutine call should have its argument
CDSTRING explicitly documented as the name of caller routine. Listing F.4 shows an example of
this.

190 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

F.4 SOURCE CODE MANAGEMENT

The source code is stored in a database managed by the Perforce software package.

Among other advantages, the use of this software makes it possible to maintain an accurate view of
the history of the code, and to simplify and make code merging operations safer. Thus, it is of vital
importance to use Perforce to modify the code.

A few standards should be considered while handling the source code files:

CTRL(28) The whole source code is partitioned into projects. Below each project the source code is
partitioned into directories. Each directory contains elementary files which are either compilable
source files or pieces of source files (“include files”) to be included in other source files.

CTRL(29) Each elementary file should contain only one MODULE or only one procedure: this makes
the maintenance easier (but a procedure may include more than one subroutine via the instruction
CONTAINS).

CTRL(30) All procedures which are internal to a package should be encapsulated inside a MODULE:
through the recompilation of the dependencies this enables the compiler to check automatically the
interfaces for all the depending procedures. This has already been done for the spectral transform
package.

CCPT(27) Each elementary file should be put in the proper project and below the directory which best
fits its topic. For example: dynamics routines should be put in the arpege/ifs project directory
adiab.

CCPT(28) NAMELIST statements should be declared in a module containing the namelist variables
(data part) as well as the subroutine initializing these variables (via the CONTAINS statement): this
would make the maintenance and developments easier.

CTRL(31) The basename of each compilable source file should be the name (in lowercase letters) of
the MODULE or SUBROUTINE it contains. For example: the file suct0.F90 contains the subroutine
SUCT0.

CCPT(29) Derived TYPEs should be declared in a MODULE because this manner is more robust than
using the attribute SEQUENCE and it makes the maintenance easier (no duplication of code). There
should be one module dedicated to the declaration of each derived type (or group of derived types
if they are closely related), and vice-versa. These modules could also contain “primitive” operations
on the type(s) like allocation or deallocation of its components, etc. The structures defined by this
or these type(s) should not be in this module, only type(s) definitions and basic operations on the
type(s) should be.

CTRL(32) Each NAMELIST should be contained in a specific include file, which basename should be the
name of the namelist (in lowercase letters). For example: the file namct0.h contains the namelist
NAMCT0.

CTRL(33) Each explicit interface should be contained in a specific include file, with basename the
name of the subroutine it contains. For example: the file suspec.h contains the interface block of
the subroutine SUSPEC. Note: an explicit interface is necessary whenever a POINTER variable is used
as a dummy argument. Interfaces should be computer-generated.

CTRL(34) Useless files should be deleted.

IFS Documentation – Cy37r2 191



Appendix F: Coding standards

F.5 INDEX OF STANDARDS
FOR THE PRESENTATION OF THE CODE

PRES(01) Executable lines should be written using upper case characters. 173
PRES(02) Comments should be written with lower case characters . . . 173
PRES(03) Indentation rules. 173
PRES(04) The ending statement of a module or subroutine should repeat its name. 173
PRES(05) One should avoid writing more than one statement per line. 173
PRES(06) The comments should be written in English only. 174
PRES(07) Blank lines should remain empty. 174
PRES(08) Namelist and internal variables in data module to be separated. 174
PRES(09) Each description line should be independent. 174
PRES(10) The documentation should be separated from the starting statement. 174
PRES(11) Each procedure should begin with a documentation header. 175
PRES(12) Header documentation to be separated from the entry point statement. 175
PRES(13) Template for modifications comments. 175
PRES(14) Declaration of variables to be separated from the header documentation. 176
PRES(15) Declarations of variables to be grouped according to type & attributes. 176
PRES(16) All attributes of a variable to be grouped in the same instruction. 176
PRES(17) Templates like “! Dummy scalar arguments :” etc. are not necessary. 178
PRES(18) Each variable should be declared separately. 178
PRES(19) Items to be regularly spaced in used variables lists. 178
PRES(20) The declaration and the presentation of dummy arguments to be the same. 179
PRES(21) Separating commas at the end of lines in the SUBROUTINE variable lists. 179
PRES(22) New lines in the CALL variable lists as new lines in the subroutine. 179
PRES(23) Code body to be split into numbered sections and subsections. 180
PRES(24) Each section should be clearly separated from the previous one. 180
PRES(25) Each subsection should be clearly separated from the previous one. 180
PRES(26) Comments to be placed just before or on the same line as the code. 180
PRES(27) DO and DO WHILE loops should be indented with 2 blank spaces. 181
PRES(28) Use a character label for each loop in case of complex loops nesting. 181
PRES(29) Conditional blocks should be indented with 2 blank spaces. 181
PRES(30) Nesting of conditional blocks should not be more than 3 levels deep. 182
PRES(31) Conditional block boundaries should stand out. 182
PRES(32) The length should be limited to 80 characters per line. 183
PRES(33) Continuation lines to be indented with one supplementary blank space. 183
PRES(34) Lines should be broken in a readable manner. 183
PRES(35) The continuation characters should be aligned on the same columns. 183

192 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

F.6 INDEX OF STANDARDS
FOR THE RESPECT OF THE NORM

NORM(01) Usage of fortran 90 free format and C. 173
NORM(02) No use of tabulations. 173
NORM(03) Mandatory use of IMPLICIT NONE. 176
NORM(04) No hard-coded variables. 176
NORM(05) No use of the statement DIMENSION. 176
NORM(06) Mandatory use of the notation “::”. 176
NORM(07) Variables or constants are preferably declared with explicit kind. 178
NORM(08) Variables to be used or declared in a conventional order. 178
NORM(09) Use ONLY. 178
NORM(10) Prefix convention for variables. 179
NORM(11) No DOUBLE PRECISION variables. 179
NORM(12) Prefix convention for elementary variables of a derived type. 179
NORM(13) No use of GOTO. 180
NORM(14) No use of FORMAT. 181
NORM(15) No use of COMMON. 181
NORM(16) No use of EQUIVALENCE. 181
NORM(17) No use of COMPLEX. 181
NORM(18) Character strings to be declared with the syntax CHARACTER(LEN=n). 181
NORM(29) Arrays should not be declared with implicit size. 181
NORM(20) Mandatory use of DO ... ENDDO block loop. 181
NORM(21) Continuation character “&”. 183
NORM(22) Automatic arrays preferred to explicitly allocated arrays. 183
NORM(23) Local arrays to be deallocated at the end of the subroutine. 183
NORM(24) Mandatory use of the fortran 90 specific comparison operators. 183
NORM(25) No use of the operators == and /= to compare real variables. 184
NORM(26) Generic names to be used for intrinsic procedures. 184
NORM(27) Mandatory use of INTENT attribute. 185
NORM(28) Passing array subsections to a subroutine. 185
NORM(29) Use array sections when calling intrinsic routines. 186
NORM(30) No use of STOP in case of error. 188

IFS Documentation – Cy37r2 193



Appendix F: Coding standards

F.7 INDEX OF STANDARDS
FOR THE CONTROL OF THE CODE

CTRL(01) Only one entry point and at most two kinds of exit points. 174
CTRL(02) The entry point should be at the top of the procedure. 174
CTRL(03) Usage of RETURN statement is discouraged. 174
CTRL(04) Abnormal termination to be invoked ABOR1. 174
CTRL(05) All variables in data modules to be saved SAVE statement. 178
CTRL(06) Shape of arrays should not be changed when passed to a subroutine. 181
CTRL(07) Type of variables should not be changed when passed to a subroutine. 181
CTRL(08) Usage of SELECT CASE. 181
CTRL(09) Position of explicit interface blocks. 185
CTRL(10) The number of dummy arguments should not exceed 9. 185
CTRL(11) Actual/dummy arguments to be presented following a conventional order. 185
CTRL(12) Conventional prefixes or suffixes are recommended for names. 187
CTRL(13) Radical of a type definition module name. 187
CTRL(14) Radical of a procedure module name. 188
CTRL(15) Prefix of aladin subroutines which are counterparts of arpege/ifs ones. 188
CTRL(16) Namelists handling. 188
CTRL(17) Error detection handling: messages and output units. 188
CTRL(18) Error detection handling: usage of ABOR1. 188
CTRL(19) Postponing of abnormal termination. 188
CTRL(20) “Hook” function. 188
CTRL(21) Universal constants to be stored in data module YOMCST. 188
CTRL(22) Universal constants not be redefined at any other place than YOMCST. 188
CTRL(23) Universal constants not to be accessed via dummy arguments. 188
CTRL(24) Universal constants to be saved and initialized in a unique module YOMCST. 188
CTRL(25) User access to variables va namelists. 189
CTRL(26) Conventional output unit for messages. 189
CTRL(27) mpl subroutines to have their argument CDSTRING explicitly documented. 190
CTRL(28) Partionment of the source code. 191
CTRL(29) Each elementary file should contain only one module or only one procedure. 191
CTRL(30) All internal procedures to be encapsulated inside a module. 191
CTRL(31) File basename to be the name of the module/procedure it contains. 191
CTRL(32) Each namelist to be contained in a specific include file. 191
CTRL(33) Position of explicit interface blocks. 191
CTRL(34) Useless files should be deleted. 191

194 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

F.8 INDEX OF STANDARDS
FOR THE CONCEPTION OF THE CODE

CCPT(01) Subroutines should not have more than 300 executable statements. 174
CCPT(02) It is easier to add or remove lines than to modify existing ones. 174
CCPT(03) Each data module should begin with a documentation header. 174
CCPT(04) Actually unused variables (local in a used module) should be removed. 178
CCPT(05) Variables suffixed with L are local in the sense of the distribution. 180
CCPT(06) Variables suffixed with G are global in the sense of the distribution. 180
CCPT(07) Loops should be as plain as possible. 181
CCPT(08) Usage of dynamic memory. 183
CCPT(09) Do not repeat sequences like: ALLOCATE/DEALLOCATE/ALLOCATE. 183
CCPT(10) The use of array syntax is not recommended. 185
CCPT(11) Usage of the key LECMWF. 189
CCPT(12) Usage of the key LELAM. 189
CCPT(13) The code below the key LELAM should be modular as far as possible. 189
CCPT(14) Use of LELAM should be as rare as possible. 189
CCPT(15) Usage of the key LRPLANE. 189
CCPT(16) Namelist variables to be read and initialized only once. 189
CCPT(17) Namelist variables to be printed out to the listing. 189
CCPT(18) Important messages may be written out to the standard error file. 189
CCPT(19) Verbosity to be controlled by a specific namelist variable. 189
CCPT(20) Observation files to be handled with odb. 190
CCPT(21) Restart files be handled with pbio. 190
CCPT(22) Movies files are fortran sequential binary files. 190
CCPT(23) For ifs other user’s I/O raw data are grib files. 190
CCPT(24) For arpege/aladin other user”s I/O raw data are FA or LFI files. 190
CCPT(25) Usage of the key LARPEGEF. 190
CCPT(26) mpl package to be used as interface for any message passing. 190
CCPT(27) Files to be put in the proper project and below the proper directory. 191
CCPT(28) NAMELIST statement to be declared in a data/procedure module. 191
CCPT(29) Derived types to be declared in a module. 191

IFS Documentation – Cy37r2 195





Part VI: Technical and Computational Procedures

Appendix G

The Perforce source code management
system user guide

Table of contents
G.1 Background

G.1.1 Introduction

G.1.2 Perforce

G.1.3 P4 within ECMWF’s Research Department

G.2 Getting started

G.2.1 Create a branch, edit a file, add another file and then submit

G.2.2 Create a branch, edit a file and then submit using p4v

G.2.3 Migrate branch from Clearcase to Perforce

G.2.4 Selected p4 and q2 commands

G.3 q2 Commands

G.3.1 q2 add projects

G.3.2 q2 addprojects

G.3.3 q2 addprojs

G.3.4 q2 add to client

G.3.5 q2 add vpath

G.3.6 q2 addvpath

G.3.7 q2 cc to p4 branch

G.3.8 q2 check norms

G.3.9 q2 client info

G.3.10 q2 create branch

G.3.11 q2 createbranch

G.3.12 q2 selbranch

G.3.13 q2 diff branch

G.3.14 q2 diffbranch

G.3.15 q2 find files

G.3.16 q2 findfiles

G.3.17 q2 help

G.3.18 q2 import from tar

G.3.19 q2 list branches

G.3.20 q2 branches

G.3.21 q2 list changes

G.3.22 q2 local changes

G.3.23 q2 ls private

G.3.24 q2 lsprivate

G.3.25 q2 merge branch

G.3.26 q2 mergebranch

G.3.27 q2 p4v

G.3.28 q2 recreate client

G.3.29 q2 reintegrate

G.3.30 q2 rm private

IFS Documentation – Cy37r2 197



Appendix G: The Perforce source code management system user guide

G.3.31 q2 rmprivate

G.3.32 q2 select client

G.3.33 q2 selclient

G.3.34 q2 submit

G.3.35 q2 unsync client

G.3.36 q2 remove client

G.4 Local compile of Perforce branch on Linux workstation

G.4.1 compile.p

G.4.2 compile.i

G.4.3 Other helpful notes

G.5 IFS debugging environment for Perforce on workstations

G.5.1 Set up test environment

G.5.2 Compile Perforce branch

G.5.3 To build ifsMASTER and run forecast or adjoint test

G.1 BACKGROUND

G.1.1 Introduction

The main Source Code Management (SCM) system used by RD was changed from ClearCase to
Perforce at CY29R1. The main reason for the change was the difficulties caused by not having access
to ClearCase on all platforms, specifically on the local desktop (ClearCase was available only on the
IBM servers). The change to Perforce leads to more natural working practices where the editing and
preparation of branches is done on the desktop and for the build (under PrepIFS) the source code is
directly available on the HPC.

G.1.2 Perforce

Perforce is a commercial product chosen for its availability on a wide range of platforms. Perforce is
a pure client/server SCM system. The Perforce command line client (p4) talks to a server (p4d) where
the central file repository, or “depot” is situated. You can also access Perforce through a visual client
(p4v). For further information see the Perforce web-site:
http://www.perforce.com/index.html.

G.1.3 P4 within ECMWF’s Research Department

The aim within the Research Department (RD) for the move from ClearCase to Perforce was to
keep as close to established working practices as possible. To facilitate this a new script (q2) replaces the
established set of scripts that RD users used to access ClearCase (selbranch, findfiles etc.).

To get a description of the q2 commands, type:

q2 help all

You will see that most q2 commands have aliases that are the same as the old ClearCase commands
even though the “real” names were changed where they no longer made sense.

198 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.2 GETTING STARTED

Before getting started it is important to understand one important difference between ClearCase and
Perforce. Whereas in ClearCase you had “views”, in Perforce you have “clients” and you always
do your editing etc. on local copies of the files extracted (synced) from the Perforce depot. The place
where your local files will reside is referred to as your client workspace. It is strongly recommended that
you always use your local desktop for the interactive access to Perforce.

What follows is some simple scenarios of what you may want to try to get started. Note that p4 commands
are native Perforce client commands whereas q2 commands are ecmwf’s customized commands.

G.2.1 Create a branch, edit a file, add another file and then submit

(i) To create a branch, a client and change your current working directory to your client’s “root” (see
above):
q2 create branch -r CY29R1 -b test1 -p ifs

(equivalent of ClearCase selbranch)
(ii) cd to the directory where you want to edit a file
(iii) Open the file for edit (like checking out in ClearCase):

p4 open <Filename>.F90

(iv) Edit <Filename> using editor of your choice.
(v) Create a new file <NewFilename>.F90 locally (by copying or editing).
(vi) To tell Perforceyou want to add this file:

p4 add <NewFileName>.F90

(equivalent of ClearCase addfile)
(vii) To update the depot on the server (similar to checking in with ClearCase, but here you do all

the changes in one go rather than individual files):
q2 submit

or
p4 submit

Until you issue the submit your edits are purely local and can be lost if you lose your local disk. Also
the changed files can not be seen by the build environment (PrepIFS) until they have been submitted.
If you use “p4 submit” your editor will open on a form where you have to fill in a description of your
change. It is not recommended that you submit after every edit of a file but only after you have edited
all the files you intend to change or as a precaution before going home.

G.2.2 Create a branch, edit a file and then submit using p4v

(i) q2 create branch -r CY29R1 -b test1 -p ifs -x

(equivalent of ClearCase selbranch -x)
(ii) Use p4v to do your open for edit (right-click on file).
(iii) To add files using p4v the file has to exist so touch it in line mode or save it with new name using

your editor.
(iv) To submit in p4v, click red triangle and then default. You will have to write something on the

comment line otherwise the submit will fail.

The first time you use p4v you should go into “tools -> preferences” where you can change you preferred
editor, fonts etc. The editor can be different for each file type so the first time you try to open a file with
a new suffix you will be prompted for which editor (or other application) to use. If you are a vi user
specifying vi will not work as vi does not open a window by default. In this case change the editor in
p4v to /home/rd/rdx/bin/xvi which will start an xterm with vi.

G.2.3 Migrate branch from Clearcase to Perforce

(i) Select a ClearCase View on a ClearCase host (leda,metis,ecgate ...) using selview.
(ii) Migrate the branch to Perforce by typing:

q2 cc to p4 branch

IFS Documentation – Cy37r2 199



Appendix G: The Perforce source code management system user guide

(iii) After the migrate has completed use q2 select client in a local window to access the branch you
just migrated.

q2 select client is the approximate equivalent of selview. With Perforce you have “clients” not
views, the main difference is that you always work with local copies of the files in the depot.

G.2.4 Selected p4 and q2 commands

Below find some selected p4 and q2 commands. Recall that p4 is the Perforce command client whereas
q2 is an ecmwf script created to simplify the use of p4. A q2 command normally issues one or more p4

commands. For more info type:
p4 help or q2 help.

If you use p4v you don’t need to use any of the p4 commands, they are all accessible from the p4v

interface. The q2 commands are not available inside p4v, they have to be issued from the command line.

p4 edit

Open existing file for edit

p4 add

Open new file for adding to depot

p4 delete

Open existing file for delete

p4 opened

List currently open files

p4 revert

Revert changes to open files

p4 submit

Submit your changes

q2 create branch

Create branch and client

q2 add projects

Add additional projects to branch and client

q2 select client

Select which client/branch to use

q2 cc to p4 branch

Migrate branch from ClearCase to Perforce

q2 merge branch

Merge branch into current client

q2 find files

Find files modified on branch

q2 p4v

Start p4v after select client (if you forgot -x)

q2 submit

Wrapper for p4 submit

q2 rm private

Remote private files

200 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

p4login

Get/update p4 certificate. If you use q2 commands p4login is automatically issued but you may
need to execute p4login if you get a message like “ticket expired”. Note “p4login” not “p4
login”.
The p4login script is written in house to ensure perforce security without users having to actually
type in passwords.

IFS Documentation – Cy37r2 201



Appendix G: The Perforce source code management system user guide

G.3 q2 COMMANDS

What follows is the help text for all q2 commands.

G.3.1 q2 add projects

Add project(s) to current branch and client specs

Usage:
q2 add projects [-g pgroup]

[-p project1[:project2:...]]

[-r release]

Arguments:

-g pgroup

Project group (release stream)
[Default: ifs]

-p project

Project(s) to add

-r release

Release to branch from
[Default: release used for existing projects]

Use this script if you already have a branch but need to modify more projects. If you do not use the -p

option you will be prompted to select project(s).

G.3.2 q2 addprojects

q2 addprojects is an alias for q2 add projects

G.3.3 q2 addprojs

q2 addprojs is an alias for q2 add projects

202 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.4 q2 add to client

Add project(s) to current client without branching

Usage:
q2 add to client [-g pgroup]

[-p project1[:project2:...]]

[-r release]

Arguments:

-g pgroup

Project group (release stream)
[Default: ifs]

-p project

Project(s) to add

-r release

Release

Use this script to add projects to your client for read-only access. You will not be able to modify these
projects as you have not created a branch for them.

IFS Documentation – Cy37r2 203



Appendix G: The Perforce source code management system user guide

G.3.5 q2 add vpath

Add the VPATH directories to your client spec and sync

Usage:
q2 add vpath

Arguments:
None

Add all directories found in the VPATH for your projects to your client specification and sync. This is
needed in order to be able to e.g. locally compile your modified routines using gmake.

G.3.6 q2 addvpath

q2 addvpath is an alias for q2 add vpath

204 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.7 q2 cc to p4 branch

Migrate a branch from ClearCase to Perforce

Usage:
q2 cc to p4 branch [-b branch tag]

Arguments:

-b branch tag

Perforce branch tag
[Default: ClearCase branch tag]

You have to be in a ClearCase view (on an IBM server) to run this script.
A Perforce branch and client will be created.
The client will temporarily create a client workspace on $SCRATCH but at the end this will be removed
and the client root be reset to its normal location (on your desktop).

IFS Documentation – Cy37r2 205



Appendix G: The Perforce source code management system user guide

G.3.8 q2 check norms

Check conformance with coding norms

Usage:
q2 check norms [-p project]

[-m suppress]

[-w] [-W] [-i] [-I]

Arguments:

-p project

Check project <Project>
[Default: ifs]

-m suppress

Messages to be suppressed
[Default: PRES-32]

-w

Print warning messages
[Default: on]

-W

Suppress warning messages

-i

Print information messages
[Default: on]

-W

Suppress information messages

You have to be in a client view to run q2 check norms.

206 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.9 q2 client info

Print out info from client spec

Usage:
q2 client info [-c client]

[-p] [-R] [-m] [-o] [-b]

Arguments:

-c client

Perforce client name
[Default: $P4CLIENT]

-R

Print root

-p

Print projects

-o

Print owner

-m

Print mapping

-b

Print branch

IFS Documentation – Cy37r2 207



Appendix G: The Perforce source code management system user guide

G.3.10 q2 create branch

Create branch and client

Usage:
q2 create branch -b branchtag

[-r release]

[-p project1[:project2:...]]

[-g pgroup]

[-B parent]

[-R] [-D] [-x]

Arguments:

-b branchtag

User definable part of branch name

-r release

Release from which to branch

-p project1[:project2:...]

Create branch for listed project(s)

-g pgroup

Project group (release stream)
[Default: ifs]

-B parent

Parent branch for creation of secondary branch

-R

Do not include release in branch name

-D

Do not prompt for branch descriptor

-x

Start p4v after setting client

Creates a branch specification and a client specification.
The client name will be client branch name, the branch name will be userid release branchtag

unless -R is specified where instead the branch name will be userid branchtag.
After running p4 integrate to setup the branch and submitting, sets the view and optionally “-x” forks
p4v.

G.3.11 q2 createbranch

q2 createbranch is an alias for q2 create branch

G.3.12 q2 selbranch

q2 selbranch is an alias for q2 create branch

208 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.13 q2 diff branch

Diff branch from release it come from

Usage:
q2 diff branch [-b branchname]

[-p project]

[-f file]

[-d] [-x]

Arguments:

-b branchname

Perforce branch identifier
[Default: current branch]

-p project

Restrict to project <project>

-f file

Diff only this file

-g pgroup

Diff only this file

-d

Options for diff (ignore leading blanks, ignore whitespace etc).

-x

Use xdiff instead of line difference

G.3.14 q2 diffbranch

q2 diffbranch is an alias for q2 diff branch

IFS Documentation – Cy37r2 209



Appendix G: The Perforce source code management system user guide

G.3.15 q2 find files

Find files that are modified on branch

Usage:
q2 find files [-b branchname]

[-p project]

[-n] [-O] [-d]

Arguments:

-b branchname

Perforce branch identifier
[Default: current branch]

-p project

Restrict to project <project>

-n

Non-extended path names only

-O

Suppress listing open files

-d

Find also deleted files

If used for current branch q2 find files will also list ALL open files (unless -O)

G.3.16 q2 findfiles

q2 findfiles is an alias for q2 find files

210 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.17 q2 help

General help information for q1

Usage:
q2 help command name | all

Arguments:

command name

Help on specific q2 command

all

Help on all q2 commands

IFS Documentation – Cy37r2 211



Appendix G: The Perforce source code management system user guide

G.3.18 q2 import from tar

Import changes from tar-file into project

Usage:
q2 import from tar -p project

-t tarfile

[-d]

Arguments:

-p project

Import into project <project>

-t tarfile

Path name of tarfile

-d

Delete all files from project not found on tar file

The tar file MUST be created inside the project i.e. so that what you get when you untar it are the
subdirectories of the project. You must already have $P4CLIENT set and the client spec set to include the
project you want to import. If you want files that are in your view but not in the tar file to be deleted
set the -d flag.

212 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.19 q2 list branches

List branches containing certain patterns

Usage:
q2 list branches [-u user]

[-r release]

[-s substring]

[-U]

Arguments:

-u user

Branches for specific user id
[Default: nar]

-r release

Branches for specific release

-s substring

String anywhere in branch tag

-U

Any user (overrides default for user)

Simple filter for output of p4 branches.

G.3.20 q2 branches

q2 branches is an alias for q2 list branches

IFS Documentation – Cy37r2 213



Appendix G: The Perforce source code management system user guide

G.3.21 q2 list changes

List changes

Usage:
q2 list changes [-u user]

[-c]

[-s substring]

[-U]

Arguments:

-u user

Changes for specific user id
[Default: nar]

-c

Changes only for current client ($P4CLIENT

-s substring

String anywhere in change descriptor

-U

Any user (overrides default for user)

Lists submitted and pending changes (using p4 changes). Optionally filters for user, current client
and arbitrary string in change descriptor. To obtain further information about specific change use
p4 describe changelist <#> where <#> is the changelist number or use p4v.

214 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.22 q2 local changes

Finds differences between your local workspace and the depot

Usage:
q2 list changes [-F]

Arguments:

-F

Disable filtering out uninteresting files e.g. .o etc.

You need to be in a view with $P4CLIENT set to run this script. Unless -F, q2 local changes filters out
files with suffixes “.o”, “.list” or “.lst”. Also filters out files names ending with “#” or “~”. If run with
open changelist (files yet to be submitted) the output of this script becomes confusing. It is suggested
that you first submit your changes.

IFS Documentation – Cy37r2 215



Appendix G: The Perforce source code management system user guide

G.3.23 q2 ls private

List private files in your current client workspace

Usage:
q2 ls private

Arguments:
None

You have to have $P4CLIENT set to run this command.

G.3.24 q2 lsprivate

q2 lsprivate is an alias for q2 ls private

216 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.25 q2 merge branch

Merge another branch into current branch

Usage:
q2 merge branch -b branchname

[-p project]

[-f file]

[-r] [-n]

Arguments:

-b branchname

Perforce branch identifier

-p project

Restrict to project <project>

-f file

Merge file <file>only

-r

Resolve

-n

Automatic merge

By default q2 merge branch will be manual. It is recommended to use p4v to resolve and merge. In
Perforce merging is a three stage process: integrate, resolve and optionally merge. In manual mode
this script will only do the integrate part and then do a submit which will fail. You then need to use
either p4v (recommended) or p4 resolve in order to be able to submit.
In automatic mode (-n) this script will also do the resolve (in auto-resolve mode). If there are conflicts
again the submit will fail and you will need to resolve manually using one of the methods outlined above.

G.3.26 q2 mergebranch

q2 mergebranch is an alias for q2 merge branch

IFS Documentation – Cy37r2 217



Appendix G: The Perforce source code management system user guide

G.3.27 q2 p4v

Start p4v in the background with current client,user and port

Usage:
q2 p4v

Arguments:
None

218 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.28 q2 recreate client

Re-create deleted client for existing branch

Usage:
q2 recreate client [-b branchname]

Arguments:

-b branchname

Perforce branch identifier

This script is for re-creating client for an existing branch. Normally to be used when client has been
deleted but the branch spec still exists.

IFS Documentation – Cy37r2 219



Appendix G: The Perforce source code management system user guide

G.3.29 q2 reintegrate

Integrate with current branch spec

Usage:
q2 reintegrate [-n] [-r]

Arguments:

-n

Automatic resolve

-r

Resolve

The intention with this script is to pick up back-stitches in release or for use in a secondary branch where
the primary branch has changed. Avoid running this with open files as you will get a mixed changelist.

220 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.30 q2 rm private

Remove private files in your current client workspace

Usage:
q2 rm private [-f]

Arguments:

-f

Do not ask for confirmation before removing file

You have to have $P4CLIENT set to run this command.

G.3.31 q2 rmprivate

q2 rmprivate is an alias for q2 rm private

IFS Documentation – Cy37r2 221



Appendix G: The Perforce source code management system user guide

G.3.32 q2 select client

Select client and set view

Usage:
q2 select client [-c client]

[-u user]

[-x]

Arguments:

-c client

Client name (unless provided you will be prompted)

-u user

Select other user’s client

-x

Start p4v after setting up view

Normal usage is
q2 select client [-x]

This will offer you a choice of your existing clients and set the view according to your choice.
Setting the view involves setting $P4CLIENT, syncing and changing directory to the client’s working
directory. The script will then start a shell with these settings. With the “-x” option it will also start
p4v with the appropriate settings. With the “-u” option you can create a temporary client to view the
branch of another user. Please note that you will not see changes that this user has yet to submit.

G.3.33 q2 selclient

q2 selclient is an alias for q2 select client

222 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.3.34 q2 submit

Submit changes

Usage:
q2 submit [-d description]

[-n]

Arguments:

-d description

Line describing your edits

-n

No description

IFS Documentation – Cy37r2 223



Appendix G: The Perforce source code management system user guide

G.3.35 q2 unsync client

Remove local workspace for client

Usage:
q2 unsync client [-c client]

[-r] [-d] [-f]

Arguments:

-c client

Client name
[Default: $P4CLIENT]

-r

Also remove local files in workspace tree

-d

Delete client specification

-f

Do not ask for confirmation of actions

If you use the “-d” flag the client specification will be deleted. This does not mean that submitted changes
you have on your branch will be lost, the branch specification is still there and the client can be recreated
using q2 recreate client.

G.3.36 q2 remove client

q2 remove client is an alias for q2 unsync client

224 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.4 LOCAL COMPILE OF PERFORCE BRANCH ON LINUX
WORKSTATION

There are two scripts available in ∼rdx/bin which are described here, which can be used for local
compilation and syntax checking.

Note: You must type:
q2 select client

before compiling using either of the scripts presented here.

IFS Documentation – Cy37r2 225



Appendix G: The Perforce source code management system user guide

G.4.1 compile.p

Compiles all files in a branch.
The script emulates a single task in the PrepIFScompile suite

Usage:
compile.p [-t task]

[-p project]

[-d debug level]

[-c changelist]

[...dir(s)...]

Arguments:

-t task

Compile code for a particular PrepIFS task (eg. odbsqlcompiler) if different from the
specified project.

-p project

Compile code for a particular ifs project (eg. ifs,trans,surf etc.)
[Default: ifs]

-d debug level

If specified, switches on the debug symbol information (“-g” in most compilers). debug level

can take the following values:

0 : Debug with optimisation

1 : Debug with limited optimisation

2 : Debug with no optimisation

Note: Not all compilers support all of these options.

-c changelist

Synchronise the client and compile a previous version of the branch as identified by the
changelist number.

...dir(s)...

If specified, compiles only the selected directories of the chosen project.

The user must take care of the order of compilation if modifications exist across several projects, eg.
compile ifsaux before ifs or surf before ifs.

Examples:

compile.p

Compiles all modifications in the default project (ifs) and puts new libifs.a in
/var/tmp/tmpdir/$USER/p4w/$BRANCH/libs.

compile.p -p odb -t odbsqlcompiler

Compiles and generates the executable odb98.x.

compile.p -p surf module

Compiles all modifications in the module directory of the project surf.

226 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.4.2 compile.i

Compiles one file or one directory in a branch.
The script compiles individual files or directories or more generally to execute any available make target

from the Makefile in the scripts/build directory.

Usage:
compile.i [-t task]

[-p project]

[-d ]

[...target(s)...]

Arguments:

-t task

Compile code for a particular PrepIFS task (eg. odbsqlcompiler) if different from the
specified project.
[Default: Environment variable $TASK]

-p project

Compile code for a particular ifs project (eg. ifs,trans,surf etc.)
[Default: Environment variable $PROJECT or ifs]

-d

Switches on the make debug output to identify potential problems with make, eg. dependencies,
missing files, make rules etc.

...target(s)...

If specified, executes the specified target(s) from the Makefile.

Note: Some targets only work if compile.p has been executed at least once.

Examples:
The following examples are based on modifications made to the surf project. There, before we start
issuing any compile commands, we must first be in the correct directory:
cd /var/tmp/tmpdir/$USER/p4w/naw CY29R1 test odb/surf/module

compile.p -p surf

Compiles all modified files in the current directory.

compile.i -p surf alldepend

Creates the dependencies for all files (modified or not) in the current directory.

compile.i -p surf build

Compiles all files (modified or not) in the current directory.

compile.i -p surf make-src dependency allloc

Finds out all modified files in the current directory, generates the dependencies and compiles the
files.

compile.i -p surf info

Prints information on compile relevant environment variables for this project.

compile.i -p surf arloc

Makes new libsurf.a library in /var/tmp/tmpdir/$USER/p4w/$BRANCH/libs.

compile.i -p surf buildtar

Creates tarfile of source from branch.

IFS Documentation – Cy37r2 227



Appendix G: The Perforce source code management system user guide

G.4.3 Other helpful notes

(i) To clean the local client from all private (compile leftover) files:
q2 rmprivate -f

(The “-f” option means do not ask for confirmation.)
(ii) .o and .mod and listing files are generated where the corresponding source is found.
(iii) Executables are put in $BINS or /var/tmp/tmpdir/$USER/p4w/$BRANCH/bin.
(iv) Libraries are created in $LIBS or /var/tmp/tmpdir/$USER/p4w/$BRANCH/libs.
(v) The order in which different projects need to be compiled may be inferred from the triggers defined

in scripts/def/gen.def or from the VPATH.
(vi) To find the current branch, e.g. /var/tmp/tmpdir/$USER/p4w/naw CY29R1 test

type
q2 client info -R

(vii) To change compiler options change Makefile.in.linux in scripts/build/arch.

228 IFS Documentation – Cy37r2



Part VI: Technical and Computational Procedures

G.5 IFS DEBUGGING ENVIRONMENT FOR PERFORCE ON
WORKSTATIONS

G.5.1 Set up test environment

To set up your own test environment to run the Forecast Model and/or Adjoint Test for T21, login to
your workstation and enter:

q2 select client

ifs setup perforce

This asks which cycle, and copies a test environment to:
/var/tmp/tmpdir/$USER/p4w/<branch name>/ifs t21

G.5.2 Compile Perforce branch

Compile complete Perforce branch and put new library in
/var/tmp/tmpdir/$USER/p4w/<branch name>/libs

by entering:

q2 select client

compile.p

Compile all new routines in a directory and put all the “.o’s” in library by entering:

cd /var/tmp/tmpdir/$USER/p4w/<branch name>/ifs/phys ec

compile.i

compile.i arloc

G.5.3 To build ifsMASTER and run forecast or adjoint test

To create the executable enter:

cd /var/tmp/tmpdir/$USER/p4w/<branch name>/ifs t21

./mkabs

To run the Forecast, enter:

./ifs run -d

(the “-d” is optional, it allows you to run using Totalview. The default is to run without Totalview.

To run the adjoint test, enter: ./ifs adj

IFS Documentation – Cy37r2 229


	VI Technical and Computational Procedures
	Chapter 1 Structure, data flow and standards
	1.1 Introduction
	1.2 Configurations
	1.3 Structure
	1.4 Data flow
	1.4.1 Input/Output
	1.4.2 Major data structures


	1.5 Coding standards and conventions
	1.5.1 Style and layout
	1.5.2 Variables
	1.5.3 Banned features
	1.5.4 I/O
	1.5.5 Parallelisation

	Chapter 2 Parallel implementation
	2.1 Introduction
	2.1.1 High Performance Computing architecture
	2.1.2 Overview of IFS parallelisation
	2.1.3 IFS parallelisation issues

	2.2 Grid point computations
	2.2.1 Grid point dynamics and physics
	2.2.2 EQ_REGIONS
	2.2.3 Radiation
	2.2.4 Semi-Lagrangian advection

	2.3 Fourier transform
	2.4 Legendre transform
	2.5 Semi implicit spectral calculations
	Appendix A Structure, data flow and standards
	A.1 Command line options
	A.2 CDCONF settings
	A.3 Control namelists
	A.3.1 Index of namelists

	A.4 NCONF: IFS configuration parameter
	A.5 Initial data
	A.6 GMV and GFL structures implementation and usage
	A.6.1 GMV structure
	A.6.2 GFL structure

	Appendix B Message Passing Library (MPL)
	B.1 Introduction
	B.2 MPL_ABORT
	B.3 MPL_BARRIER
	B.4 MPL_BROADCAST
	B.5 MPL_BUFFER_METHOD
	B.6 MPL_COMM_CREATE

	B.7 MPL_END
	B.8 MPL_INIT

	B.9 MPL_MESSAGE
	B.10 MPL_MYRANK
	B.11 MPL_NPROC
	B.12 MPL_PROBE
	B.13 MPL_RECV
	B.14 MPL_SEND
	B.15 MPL_WAIT
	Appendix C The TRANS package
	C.1 Introduction
	C.2 SETUP_TRANS0
	C.3 SETUP_TRANS
	C.4 DIR_TRANS
	C.5 DIR_TRANSAD
	C.6 INV_TRANS
	C.7 INV_TRANSAD
	C.8 TRANS_END
	C.9 TRANS_INQ
	C.10 Examples

	Appendix D FullPos user guide
	D.1 Introduction
	D.1.1 Organisation of this manual
	D.1.2 Reporting bugs
	D.1.3 Summary of features
	D.1.4 Acknowledgements

	D.2 Basic usage
	D.2.1 Getting started
	D.2.2 Leading namelists and variables
	D.2.3 Output files handling

	D.3 Advanced usage
	D.3.1 Scientific options
	D.3.2 Optimizing the performance
	D.3.3 Output fields conditioning
	D.3.4 Selective namelists
	D.3.5 Miscellaneous

	D.4 The family of configurations 927
	D.4.1 What it is
	D.4.2 How it works
	D.4.3 Namelists parameters
	D.4.4 Bogussing

	D.5 Expert usage
	D.5.1 Appending fields to a file
	D.5.2 Derivatives on model levels
	D.5.3 3D physical fluxes
	D.5.4 Free-use fields

	D.6 Field descriptors
	D.6.1 Upper air dynamic fields descriptors

	D.7 Selection file example
	D.8 Making climatology files
	D.9 Spectral filters
	D.10 Optimization of the performance
	D.10.1 Communications
	D.10.2 Segmentation


	Appendix E FullPos technical guide
	E.1 Founder principles
	E.1.1 Basic concept
	E.1.2 Scientific layouts
	E.1.3 Technical requirements
	E.1.4 Technical limitations

	E.2 General conception
	E.2.1 Architecture
	E.2.2 Data flow
	E.2.3 Monitoring


	Appendix F Coding standards
	F.1 Introduction
	F.2 Specifications
	F.2.1 Documentation
	F.2.2 Code conception
	F.2.3 Code validation and maintenance
	F.2.4 Current code framework

	F.3 Design
	F.3.1 Typewriting style
	F.3.2 Basic layout
	F.3.3 Header comments
	F.3.4 Declaring variables
	F.3.5 General coding norms
	F.3.6 Specific coding norms
	F.3.7 Purpose and usage of the key LRPLANE
	F.3.8 I/O raw data
	F.3.9 Message passing interface

	F.4 Source code management
	F.5 Index of standards for the presentation of the code
	F.6 Index of standards for the respect of the norm
	F.7 Index of standards for the control of the code
	F.8 Index of standards for the conception of the code

	Appendix G The Perforce source code management system user guide
	G.1 Background
	G.1.1 Introduction
	G.1.2 Perforce
	G.1.3 P4 within ECMWF's Research Department

	G.2 Getting started
	G.2.1 Create a branch, edit a file, add another file and then submit
	G.2.2 Create a branch, edit a file and then submit using p4v
	G.2.3 Migrate branch from Clearcase to Perforce
	G.2.4 Selected p4 and q2 commands

	G.3 q2 Commands
	G.3.1 q2 add_projects
	G.3.2 q2 addprojects
	G.3.3 q2 addprojs 
	G.3.4 q2 add_to_client
	G.3.5 q2 add_vpath
	G.3.6 q2 addvpath
	G.3.7 q2 cc_to_p4_branch
	G.3.8 q2 check_norms
	G.3.9 q2 client_info
	G.3.10 q2 create_branch
	G.3.11 q2 createbranch
	G.3.12 q2 selbranch
	G.3.13 q2 diff_branch
	G.3.14 q2 diffbranch
	G.3.15 q2 find_files
	G.3.16 q2 findfiles
	G.3.17 q2 help
	G.3.18 q2 import_from_tar
	G.3.19 q2 list_branches
	G.3.20 q2 branches
	G.3.21 q2 list_changes
	G.3.22 q2 local_changes
	G.3.23 q2 ls_private
	G.3.24 q2 lsprivate
	G.3.25 q2 merge_branch
	G.3.26 q2 mergebranch
	G.3.27 q2 p4v
	G.3.28 q2 recreate_client
	G.3.29 q2 reintegrate
	G.3.30 q2 rm_private
	G.3.31 q2 rmprivate
	G.3.32 q2 select_client
	G.3.33 q2 selclient
	G.3.34 q2 submit
	G.3.35 q2 unsync_client
	G.3.36 q2 remove_client

	G.4 Local compile of Perforce branch on Linux workstation
	G.4.1 compile.p
	G.4.2 compile.i
	G.4.3 Other helpful notes

	G.5 IFS debugging environment for Perforce on workstations
	G.5.1 Set up test environment
	G.5.2 Compile Perforce branch
	G.5.3 To build ifsMASTER and run forecast or adjoint test










