

UNIVERSITÄT

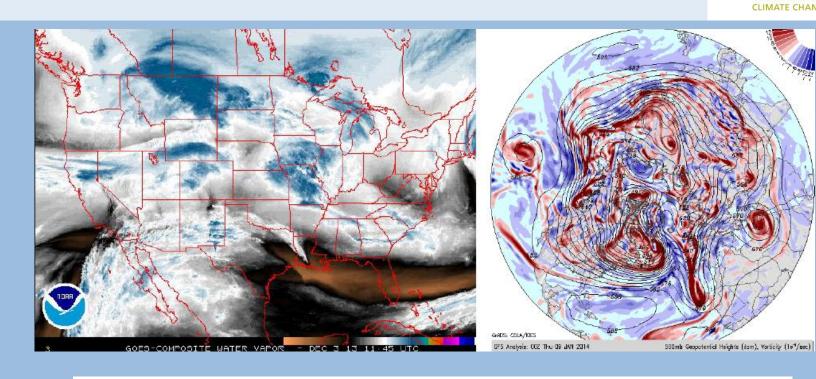
OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

Copernicus Workshop

Data rescue and homogenization requirements

Stefan Brönnimann
Oeschger Centre for Climate Change Research and
Institute of Geography, University of Bern

Outline


b UNIVERSITÄT BERN

- > Introduction
- Data rescue
- > Homogenization
- Conclusions and outlook

Introduction

UNIVERSITÄT BERN

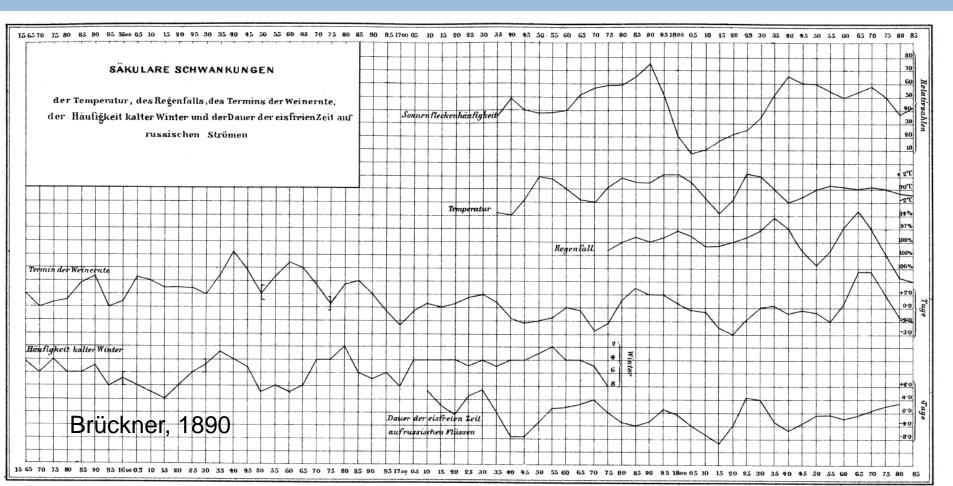


January.	Thermoscope.	Baroscope.	166 5 .
Day. Hour.	inches.	inches.	
19. 8. Morn.	_	29 1.	Hard frost. Close.
4. Even.	14 1.	29 4.	Hard frost. Cloudy.
9. Even.	14 4.	29 4.	Rain. Wind
20. 8. Morn.		28 4.	Sunshine. Wind.

u^{b}

Observing systems

UNIVERSITÄT BERN



Historical importance of climate data

UNIVERSITÄT BERN

- > Some meteorological data have been compiled in the 19th century
- > Some have made the transition to electronic format. Some not

The problem

b UNIVERSITÄT BERN

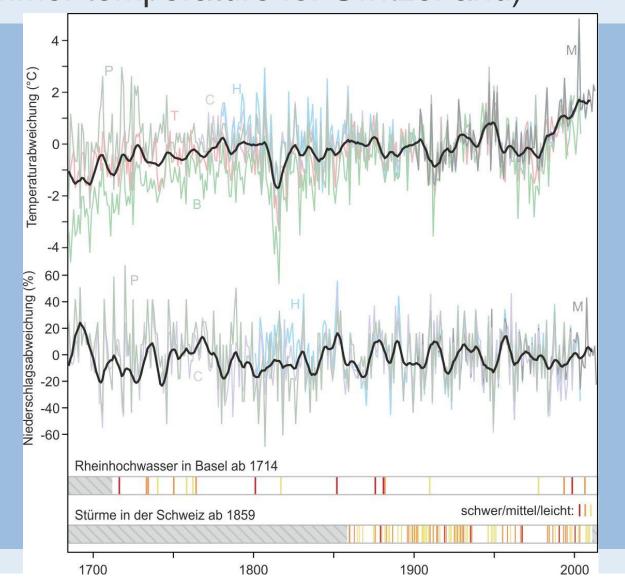
OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

> A huge (unknown) fraction is not digitised

Why data rescue is an ongoing effort

- The needs have changed: Climate science is no longer just about monthly means, but about daily weather and extrema. Climate also no longer is just about temperature, but about the water cycle etc. Metadata were often not digitised
- New methods create new opportunities: Data assimilation allows exploiting historical observations in a completely new manner. Pressure data have become important etc.
- An obligation: Meteorological observations are also part of the cultural heritage. Paper data are often in bad shape and need to be preserved.

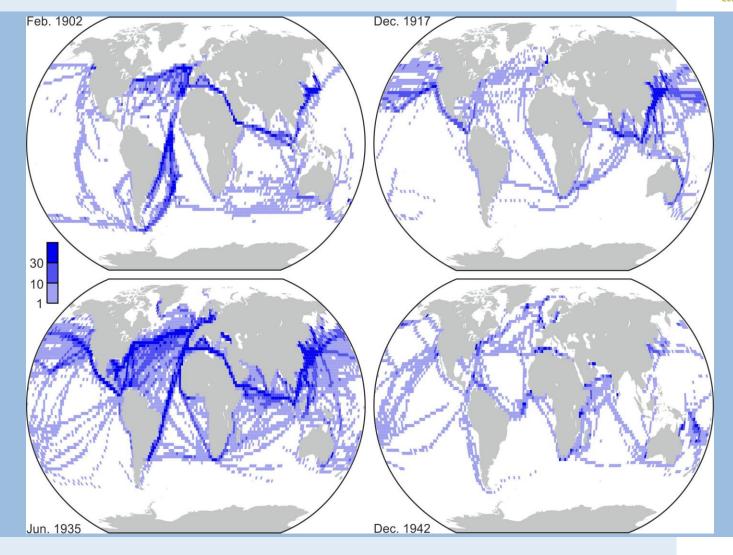
Therefore: Data rescue is a perpetual task.



UNIVERSITÄT BERN

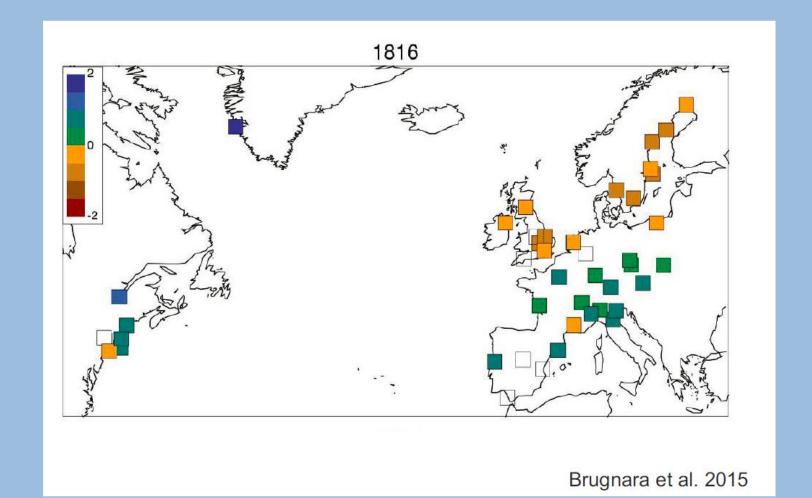
- Long time series (supplement)
- Input for data products (reanalyses and others) fill coverage gaps
- Validation

Long time series (Summer temperature for Switzerland)



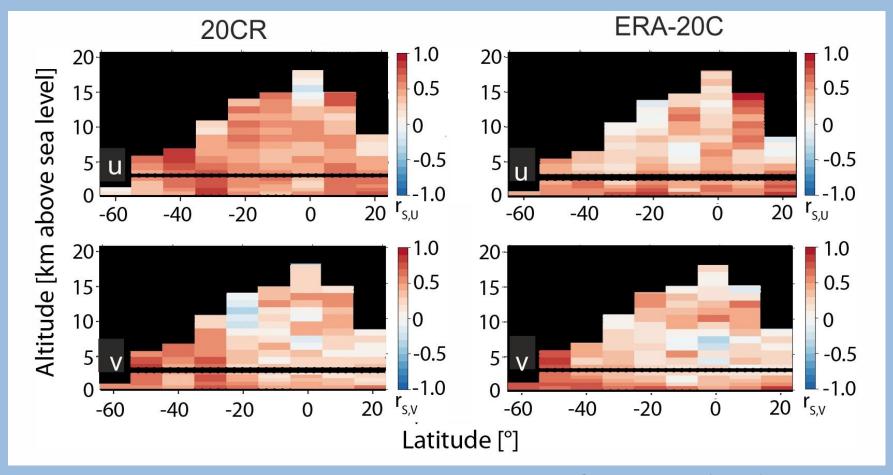
UNIVERSITÄT BERN

Fill gaps (#obs in ICOADS SSTs)


UNIVERSITÄT BERN

Input for data products (Pressure data for 20CR-1816)

UNIVERSITÄT BERN



Independent validation

(Upper-air wind from ship "Meteor", 1920s)

b
UNIVERSITÄT
BERN

OESCHGER CENTRE

Stickler et al. (2015)

Who is currently doing the job?

Digitization

- > Weather services (e.g. DWD)
- > Research Projects: ERA-CLIM2, UERRA, etc.
- > Foundations: IEDRO
- Users: Old Weather
- Development programmes (PPCR)

Coordination

- > Atmospheric Circulation Reconstructions over the Earth (ACRE)
- > WMO DARE (I-DARE talk: Peter Siegmund)
- International Surface Temperature Initiative (ISTI)

- Sustained expertise (community)
- Data repository for data rescue efforts
- Coordination activities
- Link to research projects
- Repository for paper data

Role of Copernicus

Maintaining data rescue infrastructure (incl. expertise, coordination, repository etc.) should become part of operational services

Copernicus should support data rescue that contributes to climate services

What should be digitised?

- > Data from the 18th and 19th century (examples):
 - Pressure data for reanalyses
 - The Mannheim collection
 - Europe and North America

What should be digitised?

 u^{t}

UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

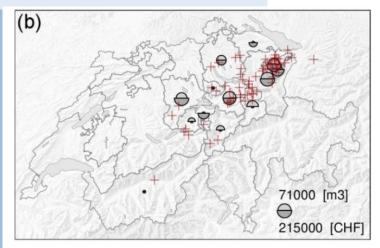
> Data from the 20th century:

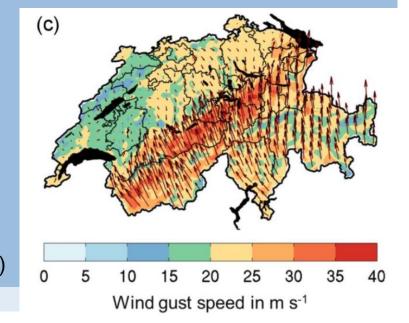
Precipitation data

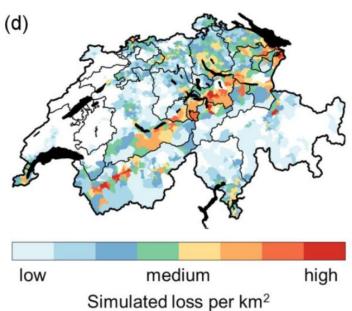
Irradiances/spectra

Upper-air

	H ₄ Geopotential in geodyn.m Ta Temperatur absolut — 200 U Rel. Feuchtigkeit in ⁰ / ₀ .										SCHIPHO IANUAR-FEBRUAR							
Ė								Hau	ptisol	barenfläc	hen.				41.7		100	
Datum.	1000 mb	000 mb	ar	90	900 mbar		800 mbar		700 mbar		600 mbar			500 mbar				
-	Ha	Ta	U	Ha	Ta	U	Ha	Ta	U	Ha	Ta	U	Ha	Ta	U	Ha	Ta	
2 3 4 4 5 5 6 9 9 10	78 77 77 99 107 137 263 271 315		76 90 80 95 82 88 90 78 72	905 908 909 928 948 974 1087 1099 1130	73.8 75.3 77.5 78.9 74.8 72.2 72.9 70.4	96 58 49 52 52 78 53 47 58	1826 1833 1838 1859 1886 1902 1997 2013 2037	67.0 66.2 64.8	33 48 39 39 36 47 43 41 50	2858 2867 2877 2894 2929 2935 3022 3034 3043	65.5 67.2 66.8 67.2 66.9 68.6 65.3 64.8 66.0 59.6	27 38 32 31 30 38 40 37 45	4033 4045 4059 4100 4091 4177 4196 4185	61.3 59.9 60.2 59.8 59.4 56.2 57.2 57.7 55.5	30 37 30 30 30 29 38 33 32 42		HILL 11111	
10 11 11 12 12	300 300 281	69.7 66.2 68.5 74.0 74.2	72 63 68	1112 1119 1112		59 52 48	2016 2027 2035	65.7 65.4 69.0 71.9 73.4	47 49 42	3066	61.4 62.9 66.5 65.8 68.7	42 44 36	4219 4231	57.9 58.2 59.0 61.3 62.1	42 47 46		11111	




u^{b}


UNIVERSITÄT

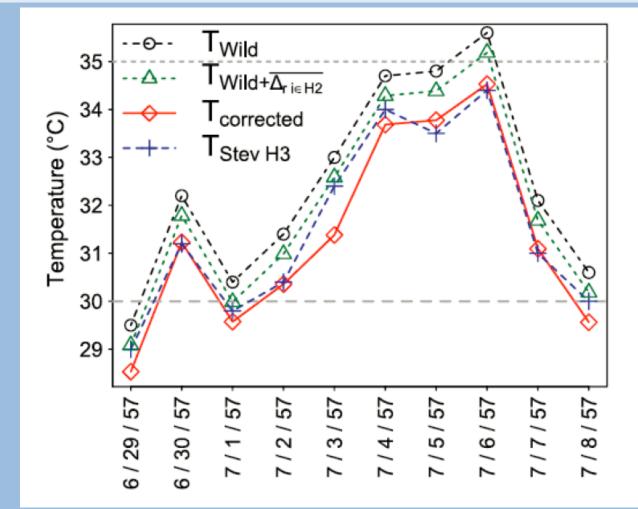
OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

- What should be digitised?
- > Beyond weather data:
 - Documentary information
 - Damage data

Stucki et al. (2015)

Homogenization

CLIMATE CHANGE RESEARCH


- > Operational (weather services)
- Research needs: Daily homogenization, precipitation, physics-based homogenization
- > Parallel measurements
- Cost Action HOME
- > ISTI Group, EUSTACE

Relevance for extremes

DUNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

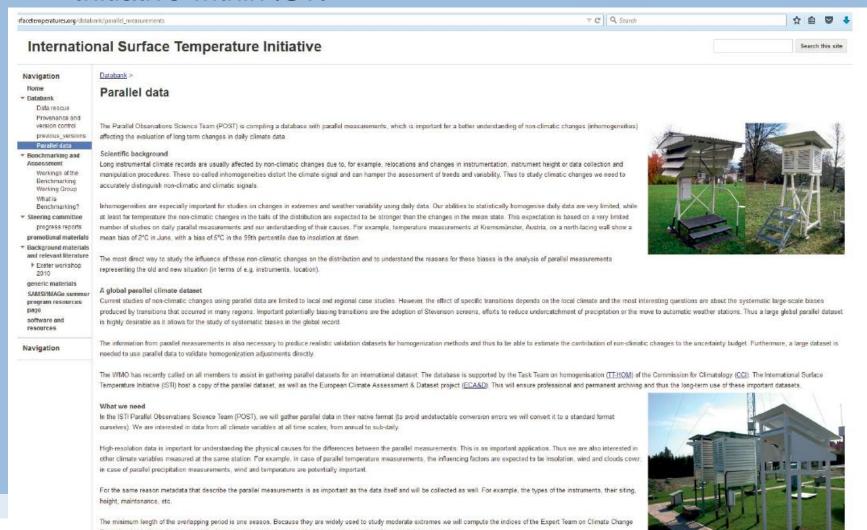
Auchmann and Brönimann (2012)

Change of screen

UNIVERSITÄT BERN

Wild Screen

Stevenson screen


Parallel measurements

UNIVERSITÄT BERN

OESCHGER CENTRE
CLIMATE CHANGE RESEARCH

Initiative within ISTI

- Coordinated Benchmarking and Homogenization Activities
- Metadata Data Coordination
- Parallel Measurements Coordination
- Link to Research Projects

Role of Copernicus

Maintaining homogenisation infrastructure (incl. expertise, coordination, repository etc.) should become part of operational services

- Data rescue:
 - Historical weather data continue to be an underused resource
 - Needs and opportunities change: Back to the archive!
 - Role of Copernicus: Support the infrastructure (expertise, coordination, repositories)
 - Role of Copernicus: Recover data that contribute to climate services (example: Mannheim compilation)
 - Beyond weather data
- Homogenization
 - Homogenization of daily data and precipitation
 - Parallel data collections for homogenization
 - Copernicus could support the infrastructure (expertise, coordination, repositories)