IRI Data Library: enhancing accessibility of climate knowledge

CDS Workshop 2015-03 Data Library Team

for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

Data Library Team

Benno Blumenthal Michael Bell John del Corral Rémi Cousin Igor Khomyakov Audrey Vadillo

The challenges of providing portals for diverse user communities

Our institutional challenge is to deliver information to people outside of our (climate) community so they can make informed analyses and decisions that lead to solutions

- non-climate scientists
- decision makers
- organizations and businesses

tools need to be part of that work flow

Database, tables, spreadsheets, GRIB, netCDF, images, binary, servers, OpenDAP, THREDDS, shapefile

Datasets Inter-operability

		Jul Sep 1961																													
untry		country codes	item	item codes	19	961	1	962	1	963	1	1964	19	65	19	66	1	967	1	968		1969	1970	19	971	197	2	1	973	15	74
	Mali	133	Agave Fibres Nes	800		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Almonds, with shell	221		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Anise, badian, fennel, corian.	711		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Apples	515		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Apricots	526		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Arecanuts	226		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Artichokes	366		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Asparagus	367		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Avocados	572		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Bambara beans	203	8000	tonnes F	8000	tonnes	F 8000	tonnes	F 8000	tonnes	F 8000 t	tonnes F	8000	tonnes	F 8000	tonnes	F 8000	tonnes	F 800	0 tonnes	F 8000 tonnes F	8000	tonnes	F 8000 to	nnes	F 8000	tonnes F	8000	tonn
	Mali	133	Bananas	486	24000	tonnes F	24000	tonnes	F 2400	tonnes	F 24000	tonnes	F 24000 t	tonnes F	24000	tonnes	F 24000	tonnes	F 24000	tonnes	F 2400	0 tonnes	F 28000 tonnes F	28000	tonnes	F 28000 to	nnes	F 30000	tonnes F	30000	tonn
	Mali	133	Barley	44		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Beans, dry	176		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Beans, green	414		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Berries Nes	558		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Blueberries	552		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn
	Mali	133	Brazil nuts, with shell	216		tonnes		tonnes		tonnes		tonnes	t	tonnes		tonnes		tonnes		tonnes		tonnes	tonnes		tonnes	to	nnes		tonnes		tonn

co

Datasets Inter-operability

Generating Knowledge

Issues?

Solutions

Database, tables, spreadsheets, GRIDB, netCDF, images, binary, servers, OpenDAP, THREDDS, shapefile

Data Library Technology Semantics Framework

Serving data

1.

-4

Issues?

Solutions

Database, tables, spreadsheets, GRIDB, netCDF, images, binary, servers, OpenDAP, THREDDS, shapefile

Data Library Technology Semantics Framework

The birth and life of the IFRC Maprooms

If floods relate to unusual rainfall, does this map tell where rainfall is unusual?

No! Need for historical context: Compare current 6day forecast with historical 30-year average same 6day period

Need for a new dataset

The birth and life of the IFRC Maprooms

See the "More Information" tab for forecast details.

reliable discrimination between vegetation and no vegetation. It identifies efficiently the vegetation close to the onset and avoids the classic commission errors (i.e., detecting vegetation when there is no vegetation on the ground), encountered with the NDVI-based approach in these arid and semi-arid areas.

D - 4 - - - - - -

International Research Institute for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

1-10 Sep 2013

Malaria Early Warning

Probablistic Precipitation Forecast

Precipitation Flexible Seasonal Forecast

This seasonal forecasting system consists of probabilistic precipitation seasonal forecasts based on the full estimate of the probability distribution.

Probabilistic seasonal forecasts from multi-model ensembles through the use of statistical recalibration, based on the historical performance of those models. provide reliable information to a wide range of climate risk and decision making communities, as well as the forecast community. The flexibility of the full probability distributions allows to deliver interactive maps and point-wise distributions that become relevant to user-determined needs.

The default map shows globally the seasonal precipitation forecast probability (colors between 0 and 1) of exceeding the 50th percentile of the distribution from historical 1981-2010 climatology. The quantitative value (in mm/day) of that percentile is indicated by the contours. The forecast shown is the latest forecast made (e.g. Sep 2012) for the next season to come (e.g. Oct-Dec 2012). Five different seasons are forecasted and it is also possible to consult forecasts made previously. What makes the forecast flexible is that underlying the default map is the full probability distribution for the forecast and climatology.

Therefore, the user can specify the historical percentile or a quantitative value (here precipitation in mm/day) for probability of exceedance or non-exceedance. The climatological reference on which the forecast probability of (non-)exceeding is computed can be tailored by defining its starting and ending years.

> International Research Institute for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

clig

Lead

Time

2015

2.5

Issues?

Solutions

Database, tables, spreadsheets, GRIDB, netCDF, images, binary, servers, OpenDAP, THREDDS, shapefile

Data Library Technology Semantics Framework

Technology Transfer

Chile Coquimbo Region Climate Monitoring - Historical

Drought Monito

NMA (Ethiopia) TMA (Tanzania) AGRHYMET (West Africa) CEAZA (Chile) SNIA (Uruguay) ACMAD (Africa) IIT-Delhi, IMD (India) CAZALAC (LAC) **CCROM** (Indonesia) Syngenta Nairobi (East Africa)

> International Research Institute for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

starej 1. .a. 10. in .a. 🔊 🚺 🚺 🖸

Tanzania (ENACTS)

Madagascar

Technologies to support dissemination

Ingrid -- data and analysis server, hides technical detail from user, flexible

maproom -- lightweight client-side user interface with semantic gathering of metadata, connects analysis to use with distilled set of choices

Data Flow based Analysis with explicit semantics

Example: SSTA Maproom

Example: SSTA dataset

Revn Smitholy weekly ssta Sea Surface Temperature Anomaly from NOAA NCEP EMC CMB GLOBAL Reyn_SmithOlv2: SST fields updated from version 1 with more COADS data, new sea-ice to SST conversion algorithm, and 1971-2000 climatology.

Independent Variables (Grids)

Time (time)

grid: /T (julian_day) ordered [(5-11 Nov 1981) (12-18 Nov 1981) (19-25 Nov 1981) ... (8-14 Feb 2015)] N= 1737 pts :grid

Longitude (longitude)

grid: /X (degree_east) periodic (0.5E) to (0.5W) by 1.0 N= 360 pts :grid

Latitude (latitude)

weekly documentation

help

grid: /Y (degree_north) ordered (89.5S) to (89.5N) by 1.0 N= 180 pts :grid

Other Info

Example: SSTA calculation

NOAA NCEP EMC CMB GLOBAL Reyn_SmithOIv2 [weekly - pentad-climatology] sst: Sea Surface Temperature data

NOAA NCEP EMC CMB GLOBAL Reyn_SmithOIv2 [weekly - pentad-climatology] sst.

Independent Variables (Grids)

Time (time) grid: /T (julian_day) ordered [(5-11 Nov 1981) (12-18 Nov 1981) (19-25 Nov 1981) ... (8-14 Feb 2015)] N= 1737 pts :grid *Longitude* (longitude) grid: /X (degree_east) periodic (0.5E) to (0.5W) by 1.0 N= 360 pts :grid *Latitude* (latitude) grid: /Y (degree_north) ordered (89.5S) to (89.5N) by 1.0 N= 180 pts :grid

function: classify

	Help Resources	Documentation	(Function)	Language
(IRI	Function Documentation	Function Documentation ▼	classify	english 🔻

classify

Classifies data into categories, i.e. labels ranges of values.

var {classes 1 ... 2n+1 } (facet) classify

Description

classify is used to assign ranges of values from a variable into userdefined classes. Given a variable with a given range of values, the classify statement accepts a list of alternating class names and constants which define the boundaries between the classes within that range. As a result, a new grid composed of the defined classes is created, and the values from the input variable are transformed into flags of 0 (not a member of the class), 1 (is a member of the class), or NaN (not a number -- missing). This is best illustrated with an example.

	Arguments									
label	type	Description								
var	variable	input data to be classified								
classes	name and number set	alternating names and numbers, starting and ending with a name, so that there are N+1 names and N numbers (optional)								
facet	string	name of new independent variable (name of var if omitted) (optional)								
weights	output variable	output. There is an additional grid consisting of the N+1 names, and the values are 0, 1, or missing depending on whether the data was between the values given in the <i>classify</i> number set. This variable is sometimes referred to as being in <i>complete disjunctive</i> form.								

<u>Examples</u>

SOURCES .KAPLAN .Indices .NINO3 .avOS T (Jan 1901) (Dec 1990) RANGE T 3 boxAverage [T]percentileover {LaNina 0.2 Neutral 0.8 ElNino}(ENSO)classify

This example first takes non-overlapping 3-month seasonal averages of sea surface temperature anomalies (SSTA) from the NINO3 region of the equatorial Pacific Ocean over the period January 1901 to December 1990. This gives a single time series of seasonal sea surface temperature anomalies. The first time step is Jan-Mar 1901, the second is Apr-Jun 1901, and so on until Oct-Dec 1990.

Then, the SSTA values are converted into percentiles, from 0. to 1., using [T]percentileover. The most negative SSTA values in the distribution are assigned a value near zero, and the most positive values are assigned a value near one, with intermediate values ranging between these extremes.

The next line comprises the classify statement and its parameters. The class names and the boundaries between them are placed within the curly braces. Since the input

ENSO Classify by 1D

The full table is available here. Alternatively, the table is also available as tab-separated-value, R tab-separated-value, comma-separated-value, or LaTeX files.

reset

ENSO	summer monsoon rainfall
ids	mm
LaNina	921.6111
Neutral	849.5849
ElNino	765.8333

Entries 1 to 3 of 3

ENSO Classify by 3D

International Research Institute for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

Function Library

 ✓ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	Y ■ Y ③ Y ③ Y ③ Y ③ Y ④ Y ■ Y ④ Y ④ X □ - □ × X
Help Resources Documentation Function Documentation Function Menu	
 2xtoNaN8 Changes missing_values into NaNs. Uses either missing_value or valid_range flags. Outputs are both real*4 or both real*8. :butt_filter designs a Butterworth filter and applies it to stream :c Defines a numeric constant with units and (optionally) other attributes :cressman Performs a cressman objective analysis to create gridded data from station data 	 monthlySD Standard deviation (by month of year) of multiple years of monthly values mul Multiplies the last two items on the stack. mulavg Multiplies and averages over a set of independent variables mulsum Returns A*B multiplied and summed along independent variables. If independent variable is an array of independent variables, sums over all of them N normalize Divides var1 by var2. Points less than minimum in var2 become NaN in the output.
 :Water_Balance applies a water balance algorithm to daily climate data (precipitation, average temperature and temperature amplitude), crop cultivars (Kc) and soil total available water. :WCT computes Worrall Connor Thomson climate-driven malaria dynamical model :weaver Performs a simplified weaver objective analysis 	normalizeddistrib1D Returns the normalized frequency distribution of a set of data for a specified range and step interval. <u>normalizeddistrib2D</u> Computes the distribution of A vs B (see distrib2D) and then renormalizes by the integral along B. This new variable has the property that the integral along B is 1
 A abrat Ratio of alpha to beta abs Returns the absolute value of a variable or a constant add Adds the last two items on the stack add_variable adds a variable to a dataset addGRID Adds a single-valued independent variable addGRIDast Adds a single-valued independent variable addGRIDast Adds a single-valued independent variable as the slowest-varying independent variable average Calculates the average 	 openquery Opens a query openqueryby Opens a query indexed by indexvar pad0 pads begining and end of stream along ordered grid with a length of pl steps of grid with mean value, ie the zeroth derivative order boundary constraint. pad1 pads begining and end of stream along ordered grid with a length of pl steps of grid by y-axis reflection symmetry at each extremity point stream, ie the first derivative order boundary constraint.
 B beginLoop marks the beginning of a loop bias_mean calculates the mean bias for deterministic forecasts fcst from observations obs. BofA=C Converts a variable A to a variable B using a table B(C=A) and linear interpolation. Out of range values beyond half a grid step are NaN BofA=C-bounded Converts a variable A to a variable B using a table B(C=A) and linear interpolation. Out of range values are pegged to the extreme values boxAverage Calcuates the box average. Commonly used for creating seasonal averages. Note: function should only be used with continuous data domain (see example below). 	 pad2 pads begining and end of stream along ordered grid with a length of pl steps of grid by pi-rotation symmetry at each extremity point of stream, ie the second derivative order boundary constraint. pairsums Pairwise sums along independent variable of variable. This is the variable equivalent of integralgrid partial Takes partial derivative of variable along grid partialeast Applies zonal derivative to variable in spectral coordinates partialnorth Applies meridional derivative to variable in spectral coordinates partitiongrid splits an independent variable into two parts: a coarse scale grid and a fine-scale subgrid. The two ivars point to each other with sophisticated By.

Search

• The maprooms are designed to be found and understood by a search engine

But we also have our RDF-based search

- The maprooms are semantically tagged using RDFA
- We have an RDF-crawler with inferencing to gather metadatata
- uicore (maproom clientside) interface code talks with a SPARQL service point (sesame server)
- Function documentation
- comprehendible terms
- faceted browser

All very much works-in-progress

Faceted Browser

Faceted Browser

Climate Data Lib	rary Faceted Browser	Distinguishing Characteristics	taset	Language english v
Fundamental QuantityMassContent (7)Rate (17)InstitutionCanadian Centre for Climate Modelling and Analysis (55)COLA (23)IRI (12)NASA (7)NOAA (51)GFDL (35)NCEP (16)RSMAS (23)ModelCanCM (55)CanCM (55)CanCM4 (28)CCSM (23)CCSM (23)CCSM3 (12)CCSM4 (11)CFS (16)CFSv1 (6)CFSv2 (10)ECHAM4.5 (12)CM (35)CM2p1 (6)CM2p5-FLOR-A06 (9)CMAO (7)	Project NMME (172) Quantity runoff_flux (4) Classification (1) LandCover (1) Geopotential Height (5) Precipitation Rate (17) Pressure (4) Atmospheric Pressure (4) Soil Moisture Content (7) Temperature (57) Air Temperature (39) Sea Surface Temperature (17) Total Temperature (17) Total Temperature (17) Total Temperature (17) Velocity (9) Meridional Velocity (5) Northward Wind (5) Zonal Velocity (4) Eastward Wind (4) Realm Atmosphere (74) Planetary Surface (18) Sea Surface (17) Soil Layer (7) Water Surface (17) Spatial Resolution	Time Span 1948-01/2011-04 (2) 1979-01/2010-10 (2) 1980-03/2016-01 (16) 1981-01/2011-08 (5) 1981-01/2011-11 (25) 1981-01/2013-01 (6) 1982/2010 (4) 1982/2014 (2) 1982-01/2011-09 (5) 4 more Vertical Location Surface (18) Standard Name air_pressure (4) air_pressure (4) air_temperature (39) eastward_wind (4) geopotential_height (5) Iwe_precipitation_rate (17) moisture_content_of_soil _layer (7) northward_wind (5) runoff_flux (4) sea_surface_temperature (3) isea_surface_temperature (2) isoil_moisture_content_(7) time (16)	Models NMME from SOURCES: the IRI/LDEO of	ollection of climate data
			Interna for Cli	ational Research Institute

Earth Institute | Columbia University

Semantic Mapping

Git packages

code and content

- ingrid
- maproom
- dlentries
- dldoc
- maproom_template
- uicore
- semantic_tools
- pure, jsonId.js, miconf, dlsquid, and others