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ABSTRACT

This report details the specific modifications to the assimilation system at European Centre for Medium Range
Weather Forecasts (ECMWF) that will be required for the inclusion of Earth, Clouds, Aerosols and Radia-
tion Explorer (EarthCARE) cloud radar and lidar data directly into the Four-Dimensional Variational (4D-Var)
system. The work is divided into three sections. Firstly, the differences between EarthCARE observations com-
pared to CloudSat (NASA’s cloud radar mission) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations) data are considered and updates to the forward models are made. Secondly, the off-line
observation handling of raw EarthCARE L1b data into Binary Universal Format (BUFR) is outlined. In par-
ticular, the capability of EarthCARE’s High Spectral Resolution Lidar (HSRL) to separate Mie and Rayleigh
signals is accounted for. Finally, the system is tested using simulated EarthCARE nominal data of radar reflec-
tivity and attenuated backscatter, where data flow through the assimilation system is tested.
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1 Introduction

Preparations are underway to assimilate satellite cloud radar and lidar observations into the ECMWF Integrated
Forecast System (IFS), with the aim for real-time assimilation of Earth, Clouds, Aerosols and Radiation Ex-
plorer (EarthCARE; Illingworth et al., 2015) measurements upon its launch. Prior to launch, initial feasibility
studies will make use of existing CloudSat (NASA’s cloud radar mission; Stephens et al., 2002) and CALIPSO
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations; Winker et al., 2009) observations and,
so far, developments have therefore been tailored towards these instruments. However, to ensure operational
assimilation can commence in a timely manner, it is important to prepare the adaptions required of the system
and the observation data handling before the EarthCARE satellite is launched and actual observations become
available.

The necessary EarthCARE-specific developments can be roughly separated into two sections. The first involves
adaptations to the ‘off-line’ observation data handling routines that convert the raw satellite data into the format
recognised by the system. The second set of developments involve some adaptions to the 4D-Var data assimila-
tion system itself related to the difference between EarthCARE and CloudSat and CALIPSO. These adaptions
mainly relate to the forward operator, but also include changes to the observation pre-processing, such as the
screening criteria. As was the case for previous developments, all the modifications will subsequently need to
be tested thoroughly.

This document outlines the technical modifications to the ECMWF 4D-Var assimilation system to prepare for
the operational assimilation of EarthCARE radar and lidar observations. In Section 2, the key differences
between EarthCARE observations and CloudSat and CALIPSO observations are reviewed and the necessary
updates to the forward models are described. The technical pre-processing and handling developments are
given in Section 3. Section 4 gives examples of the testing of the system. A summary concludes the report in
Section 5.
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2 Differences between A-train instruments and EarthCARE

The CloudSat radar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar share many charac-
teristics of the EarthCARE CPR (Cloud Profiling Radar) and ATLID (ATmospheric LIDar) and can be consid-
ered synonymous for technical testing and feasibility studies. However, to assimilate the CPR and the ATLID
with scientific meaning, several modifications are required. Tables 2.1 and 2.2 list the key differences between
the CloudSat radar and the CPR, and CALIOP and ATLID respectively. For the radars, the main differences
between the instruments relate to the larger antenna of the CPR, which leads to greater sensitivity and reduced
multiple scattering. The CPR also detects the phase shift of signals, such that the Doppler velocity of targets
can be measured. For the lidars, the differences are more significant; the wavelength of the instruments are also
different, which leads to different cloud and molecular scattering properties. The smaller field of view of the
ATLID also leads to reduced multiple scattering.

2.1 CPR-specific forward model developments
Radar sensitivity

Despite having a similar configuration to CloudSat, the EarthCARE CPR is expected to be 7 dB more sensitive,
due to its lower orbit and larger antenna. This will allow a greater frequency of cloud detection, particularly
for clouds with small particle sizes such as boundary layer clouds or cirrus. If all other parameters remain
constant, this allows the detection of clouds with around 30 % smaller radii. To represent this change in
the forward model, the screening for the lower bound on model-equivalent radar reflectivity will be lowered
from —30dBZ to —35dBZ. Note the screening value used for CloudSat is lower than the reported minimum
detectable reflectivity (see Table 2.1) as a greater sensitivity is obtained through noise reduction and averaging
techniques. It is likely that the reported figure for the EarthCARE CPR is also conservative and therefore the
screening threshold will be reviewed in the commissioning phase of the mission.

As a guide to the additional benefits that the increased sensitivity will bring, Fig. 2.1 shows the fraction
of clouds missed by a radar for a range of sensitivities using the radar forward model applied to IFS model
clouds. Overall the fraction of clouds missed by the CPR is halved (also reported in Stephens et al., 2002,
but using high sensitivity ground based radar measurements) with similar absolute reductions across different
hydrometeor types. The absolute amount of clouds missed is lowest for precipitation dominated scenes and
greatest for ice cloud. Note that subgrid variability is not currently accounted for in the forward model so the
probability distribution function of radar reflectivity ‘observed’ is likely to underestimate extremes leading to
an averaging effect compared to actual observations. The increased sensitivity should benefit assimilation as
it increases the dynamic range of the observations, which should increase the gaussianity of the observation
errors by reducing the truncation of the observation probability distribution function and hence asymmetry of
the first guess departures.

Multiple scattering

Multiple scattering occurs when transmitted pulses undergo more than one scattering even within the field of
view of the instrument. To aid understanding, it is helpful to imagine two types of multiple scattering. The
first, ‘narrow angle’ multiple scattering refers to photons that are forward scattered and remain within the field
of view of the instrument as if they had not been scattered at all. The second, ‘wide angle’ multiple scattering,
refers to all other scattering events, including photons that are scattered out of the field of view and then back in.
Wide angle multiple scattering leads to so-called ‘pulse stretching’, where an apparent backscatter is detected
beyond a cloud’s boundaries due to the increased path length of these multiple scattered photons.
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Characteristic

CloudSat

EarthCARE CPR

Specification

Satellite altitude

Nadir-pointing 94-GHz with 1.85 m
diameter antenna
700 km

Nadir-pointing 94-GHz with 2.5 m di-
ameter antenna
400 km

Resolution 480 m vertical, 1.1 km horizontal sam- 500 m vertical, 0.5 km horizontal sam-
pling, 1.7 km footprint pling, 0.66 km footprint

Sensitivity —28 dBZ —35dBZ

Misc. Doppler capability
Table 2.1: Similarities and differences between the CloudSAT radar and the EarthCARE CPR relevant for data assimila-
tion.

Characteristic CALIOP EarthCARE ATLID

Specification 3° off-Nadir dual wavelength (532 and 3° off-Nadir 335 nm lidar with 0.62

Satellite altitude
Resolution

1064 nm) lidar with 1.00 m diameter
telescope. Half-angle reciever field of
view 65 urad.

700 km

30 m vertical, 0.33 km horizontal sam-
pling, 0.09 km footprint

m diameter telescope. Half-angle re-
ceiver field of view 35 prad.

400 km
103 m vertical, 0.285 km horizontal
sampling, 0.03 km footprint

Misc. High-spectral-resolution receiver with
Rayleigh and Mie copolar and total
cross-polar channels.

Table 2.2: Similarities and differences between the CALIOP lidar and the EarthCARE ATLID relevant for data assimila-
tion.

For cloud radar wavelengths, where the wavelength is typically much longer than the hydrometeor size, wide-
angle multiple scattering is the dominant source of multiple scattering. An option to account for this is included
in the radar forward model by implementing the time dependent two-stream (TDTS; Hogan and Battaglia, 2008)
scheme. The method involves tracking the propagation of radar pulses in time as well space. However, as this
method is relatively costly to run and the explicit coding of the tangent linear and adjoint are not within the
scope of the project, profiles that are suspected to be affected by multiple scattering are screened.

The full screening procedure for multiple scattering is described in Fielding and Janiskova (2017), so we will
only provide a short description here. Following Battaglia et al. (2011), the integrated reflectivity, dBZ;,, is
used to blacklist profiles. Battaglia et al. (2011) showed that for CloudSat observations, integrating observations
that exceed 8dBZ and using a threshold of 41.3 dBZ,;,; gave an optimum detection of cases where the magnitude
of multiple scattering exceeds 3 dB. For EarthCARE’s CPR, where multiple scattering is expected to be less due
to a narrower field-of-view, they show the threshold for integrating observations increases to 12dBZ. Applying
the CloudSat thresholds to the CloudSat superobs results in the blacklisting of around 3% of observations (Fig.
2.2), in agreement with Battaglia et al. (2011). To estimate the fraction of observations that will be screened
with EarthCARE, if we apply the EarthCARE thresholds to the CloudSat data the percentage of observation
blacklisted is around 1%.

Doppler Velocity

In addition to radar reflectivity, the EarthCARE CPR will also measure Doppler velocity. While the scientific
merits of assimilating Doppler velocity will not be considered in this project, the technical capability to include
the measurement in BUFR format will be provided for future use. A basic forward model is also provided here

WP-4000 3



S ECMWF EarthCARE data handling and testing

SS
°
\‘

o
(6}
T

L Total i

0.2 / Ice cloud
— Liquid cloud
Precipitation

0 L 1 1 1
-60 -50 -40 -30 -20 -10 0 10 20
Minimum detectable reflectivity (dBZ)

Figure 2.1: Fraction of the total number of cloud model gridboxes (black line) that have radar reflectivity below a given
minimum detectable reflectivity along the CloudSat path during August 2007. Also shown is the fraction of ice cloud
dominated (blue), liquid cloud dominated (red) and precipitation dominated (yellow) grid boxes.
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Figure 2.2: Percentage of observations passing screening for integrated radar reflectivity, as shown in WP-2000.

for testing purposes. The mean Doppler velocity, Vp, measured by a radar is the sum of the vertical air motion,
w, and the mean radar reflectivity weighted droplet terminal fall velocity, v;:

Vb =w+vg, 2.1
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Hydrometeor Cy dy
Rain 386.8 0.67
Snow 16.8  0.527

Table 2.3: List of hydrometeor terminal velocity parameters used within the IFS.

where

Vg = — y (2.2)

n(D) is the radar reflectivity for a hydrometeor of size D and n(D) is the droplet number concentration (depen-
dent on hydrometeor type and defined in WP-2000; Fielding and Janiskovd, 2017). The terminal velocity of a
hydrometeor particle is defined by a power law:

0.5
W(D) = D% (’;0) 2.3)

where ¢, and d, are constants defined for each hydrometeor type in Table 2.3. The last term accounts for the
decreased drag in less dense air where py is a reference air density (1 kgm™3).

Figure 2.3 gives an example of the revised forward model for the EarthCARE CPR and the corresponding
Doppler velocity. Within ice cloud the Doppler velocity varies between O0ms~! to 1 ms~!, while for rain the
absolute Doppler velocity is greater than 4 ms~!. Interestingly within ice cloud the Doppler velocity appears to
be strongly correlated with radar reflectivity (in fact by definition from a single moment microphysics scheme)
and therefore is unlikely to provide much additional benefit to assimilation. However, the benefit is likely to
arise from a better constraint on the location of transitions between hydrometeor types, such as the melting
layer. Also, Doppler is not affected by attenuation, so in rain it is likely to be a more direct measurement
of rain rate. Finally, the Doppler velocity could be used to help optimize the forward model microphysical
assumptions, particularly of the larger, faster falling, precipitation hydrometeors.
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Figure 2.3: Panel (a) shows forward modelled radar reflectivity (dBZ) colocated with a CloudSat transect during August
2007, panel (b) shows the corresponding forward modelled Doppler velocity (ms™'). To aid the reader, a black line
denoting the cloud boundaries is also plotted.
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2.2 ATLID-specific forward model developments
Hydrometeor scattering properties

The change of wavelength between the CALIPSO lidar and ATLID means the scattering properties for the
forward model look up table need to be re-computed. Most differences in backscatter (Fig. 2.4) are superficial
and much smaller than other sources of uncertainty. However, for larger rain drops (Fig. 2.4a and c) the
backscatter is significantly greater at 355 nm. This is due to variations in the narrow backward peaks of the
phase functions for large size parameter. Both the asymmetry parameter and single scattering albedo tend to be

slightly less at 355 nm for all hydrometeor types (not shown).
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Figure 2.4: Comparison of hydrometeor lidar backscatter at 355 nm (black) and 532 nm (dashed) for six different hy-
drometeor types as a function of water content at 250K for solid hydrometeor types and 290 K for liquid hydrometeor
types. dBB is calculated from 101og,, B, where B’ has units km™'sr=1.

Molecular scattering and sensitivity issues

The molecular backscatter at 355 nm is roughly 5 times the value at 532 nm (Reverdy et al., 2015), which,
while a simple change to the lidar forward model, has some implications for the detection of clouds. Unlike the
CALIORP lidar, ATLID is an HSRL (High Spectral Resolution Lidar) with three separate channels: a Rayleigh
channel, a co-polar Mie channel and a cross-polar Mie channel. Although the ability to separate the molecular
backscatter (in the Rayleigh channel) from the cloud and aerosol backscatter (in the Mie channel) should theo-
retically allow the cloud extinction (a more direct measurement of cloud amount than attenuated backscatter) to
be assimilated, initially only the total attenuated backscatter will be assimilated as its error characteristics are
better known and it should behave similar to CALIPSO observations. However, the greater molecular backscat-
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ter at 355 nm contained within the total attenuated backscatter will make cloud detection more difficult than at
532 nm (see Fig. 2.5).

To illustrate the additional difficulties in detecting cloud from attenuated backscatter at 355 nm, Fig. 2.6 shows
the scattering ratio (SR), defined by Reverdy et al. (2015) as the ratio between total attenuated backscatter over
the molecular-only attenuated backscatter. The ratio is equal to 1 in the absence of both particle scattering and
any previous particle attenuation, and is generally greater than 1 in the presence of cloud/aerosol particles. The
ratio can be below 1 anywhere where attenuation from cloud/aerosol has occurred.

Comparing Fig. 2.6a with Fig. 2.6b, we can see that the SR at 355 nm tends to be much smaller than that at 532
nm. At the shorter wavelength, there are also a significant amount of clouds where the SR is less than 1. The
actual ability to detect clouds will partly depend on the noise in the molecular backscatter, which will have to
be calibrated in the commissioning phase of the mission. Details of the cloud masking procedure and screening
are provided in Sec. 3.3.

Height (km) &
- O
o o

o

b) 20 -20
= mVar IFS ATLID lidar backscatter (dBg)
= -30
€10 \ |
2 | ‘ -40
2 L/ ‘
0 Lam - -50
-60 -30 0 30 60
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Figure 2.5: Forward modelled lidar backscatter at (a) 355 nm and (b) 532 nm using the full complex observation operator
(including multiple scattering effects) for IFS model data collocated with a CALIPSO transect during August 2007.

Multiple scattering

A lidar signal entering a cloud is generally much more likely to be affected by multiple scattering than radar. At
visible frequencies, the distance a photon travels before interacting with its medium (known as the mean-free
path) is much shorter, hence the chances of two or more scattering events occurring are greater. In particular, in
the optical limit, when the particles are much larger than the wavelength, the phase function becomes peaked
at 0°, implying strong forward scattering. For cloud particles at lidar wavelengths, half of all scattered photons
can be defined as scattering in a narrow forward-lobe.

Several methods exist to approximate the effect of multiple-scattering and, in particular, the Photon Variance-
Covariance (PVC; Hogan, 2008) method is included in the complex observation operator and has been shown
to be fast yet accurate compared with a slower explicit method. Indeed the PVC method is sufficiently fast
for data assimilation (Fielding and Janiskovd, 2017), but, while the adjoint has been coded and validated, the
explicit tangent linear would need to be coded for inclusion in the IFS, which is beyond the scope of the current
project. Therefore, we will follow the approach of Di Michele et al. (2014b), who used the PVC method to
train a simple multiple scattering approximation for CALIPSO, and train the method to EarthCARE’s ATLID.
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Figure 2.6: Same as Fig. 2.5, but showing the scattering ratio (SR; the ratio between total attenuated backscatter and
molecular-only backscatter).

The simplest ways to approximate narrow-angle multiple scattering in the literature is using the so-called ‘Platt
coefficient’, 1, originally proposed by Platt (1973), where the apparent backscatter is defined as:

B (r)/ _ ﬁ (r)672(71Tclaud(rHTgax(’)) (2.4)

and Tejpuq(r) and Tyq(r) are the optical depth of hydrometeors and optical depth of gases between the instrument
and a distance or range r respectively. Theoretically, the value of 1 is bounded between 1 (the single-scattering
limit) and 1/2 (the wide field-of-view limit). The ‘correct’ value of 17 depends on the wavelength, scattering
medium and the lidar geometry. For ATLID and typical hydrometeors, 1 lies somewhere between the two
limits.

For any individual profile and lidar range gate, if the true apparent backscatter is known, it is possible to
calculate an exact 7 by a straight-forward re-arrangement of Eq. 2.4:

log <B> _ gas 2.5)

B Teloud '

n=-
2Tcloud

While obtaining the true apparent backscatter and unattenuated backscatter from observations would be prob-
lematic, we can use the PVC to estimate the true apparent backscatter for a set of cloud profiles and then apply
equation 2.5 to obtain an estimate for 7). Note that this yields a range-dependent value for eta. In the following
discussion, 24 hours of IFS model data collocated with real CALIPSO tracks during August 2007 have been
used. Only model gridboxes where the lidar backscatter passes initial screening thresholds are included (see
Fielding and Janiskova, 2017).

Firstly, applying the approach to the CALIOP lidar configuration and stratifying by temperature (top row of
Fig. 2.7) leads to two clear regimes related to hydrometeor type. Below 273 K, where hydrometeors are
predominantly solid, 1 tends to be between 0.5-0.6, indicating that the effect of multiple scattering is close to
the ‘wide-angle’ field-of-view regime. For small optical depths less than 1, an increase in 1 is observed for
very low temperatures (around 200K), where particle sizes are smaller and the forward lobe is larger, so the
lidar pulse is more likely to escape the field of view. At all temperatures, Fig. 2.7a contains larger values of
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than Fig. 2.7b because it includes cases where the optical depth is small enough for a non-negligible proportion
of photons to undergo single-scattering only.

a) CALIOP,0< 7 <1 b) CALIOP,1<7<10 o
200 200 '
3 3 0.08
o 220 o 220
=] S 0.06
§ 240 T 240
3 260 3 260 0.04
£ £
© 280 ’ i = 280 0.02

300 i 300 0
0 0.5 1
n

) ATLID, 0 <7 <1 d) ATLID, 1 <7<10 o
200 200 '
3 3 0.08
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3 260 8 260 0.04
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300 300 0
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n n

Figure 2.7: Frequency distributions of small-angle correction factor 1 derived using the Photon Variance-Covariance
method to account for narrow-angle multiple scattering across a range of temperatures. Each panel only contains the
backscatter from model levels where the optical depth integrated down from the top model level, T, is within the range
indicated in the plot title. Top row assumes the lidar configuration for CALIOP aboard CALIPSO, bottom row assumes
the configuration for ATLID aboard EarthCARE (see Table 2.2). The red curve shows the median 1M for each temperature
bin.

For optical depths below one and for temperatures above freezing, two modes are apparent. The greatest
probability is for 1) of about 0.65, while another mode exists around 0.85. Broadly speaking, these relate to
liquid precipitation and liquid cloud respectively. However, the optimum 7 at any given gate also depends on
the hydrometeor properties encountered by the lidar beam above. Interestingly, for optical depths greater than
1 the bimodal shape is lost, with a broad range of possible 1) between 0.5-0.6. Again, this actually highlights
the weakness in parameterizing 1 as a function of temperature; the most appropriate value of 1 for a particular
profile depends on the cloud properties above rather than the layer itself.

Despite the differences in wavelength and footprint, the values of 11 for ATLID are surprisingly similar to those
found for CALIOP. The median values (red lines in Fig. 2.7) are almost identical for optical depths less than
1, and slightly larger for ATLID for optical depths greater than 1. The similarity is a consequence of two
competing effects. ATLID’s shorter wavelength leads to a greater size parameter and hence a narrower forward
lobe, which decreases 1. At the same time ATLID’s smaller footprint increases 1 as photons are more likely to
leave its field of view.

Although ATLID’s and CALIOP’s field-of-view are much smaller than the CPR or CloudSat, wide-angle mul-
tiple scattering still has some effect on the apparent backscatter. To test this, the TDTS multiple scattering
algorithm was also applied to the same cloud profiles analysed in Fig. 2.7. Because wide-angle multiple scat-
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tering introduces interactions between lidar range gates, the physical justification for 1 to be bounded between
0.5 and 1 is no longer applicable. Further, there is no real physical basis for using 1 at all in cases where there
is strong wide-angle multiple scattering, but the range of values 17 takes when applying Eq. 2.5 is a useful
illustration of the range of uncertainty neglecting wide-angle multiple scattering can bring.

Figure 2.8 shows that when accounting for wide-angle multiple scattering, 11 has a greater range for CALIOP
than ATLID due to its greater field-of-view. For optical depth less than 1, Fig. 2.8a and c are very similar
to Fig. 2.7, indicating that wide-angle multiple scattering is only significant for greater optical depths. Wide-
angle multiple scattering has the greatest effect for range gates where the temperature is warmer than freezing,
because optical depths of liquid cloud tend to be greater than for ice cloud, and have a broader forward lobe.
The greatest differences between CALIOP and ATLID are seen here. At 280K, the interquartile range for
ATLID is confined to 0.48 to 0.61, compared to 0.35 to 0.58 for CALIOP.

a) CALIOP,0< 7 <1 b) CALIOP,1<7<10 o

200 200

3 3 0.08
o 220 o 220

S S 0.06
£ 240 £ 240

3 260 3 260 0.04
£ £

2 280 2 280 0.02

300 0

ATLID, 1 <7<10

0.1
0.08
0.06
0.04
0.02
0

n n
Figure 2.8: Same as Fig. 2.7, but also accounting for wide-angle multiple scattering using the TDTS method.
Alternatively, multiple scattering could be parameterized as a function of particle phase rather than temperature.

Extending Eq. 2.4 to separate the optical depth due to solid hydrometeors, 7;.., from the optical depth due to
liquid hydrometeors, Tjiguiq, yields the following equation:

B(”)/ _ ﬁ(r)6—2(nicefice(r)+nuqfnq(r)+fgas(r)) (2.6)

where ;. and 1y, are multiple scattering coefficients for solid and liquid hydrometeors respectively. Given that
the multiple scattering is now parameterized by just two parameters, we can treat the problem as an optimisation
exercise, where values for the parameters are found by minimizing differences between the backscatter from
Eq. 2.6 and the ‘true’ backscatter given by the PVC or TDTS algorithms. Following a similar procedure used in
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nliq Nice

CALIOP
PVC  0.709 0.532
TDTS 0.350 0.525
ATLID
PVC  0.709 0.543
TDTS 0.551 0.543

Table 2.4: Coefficients for the alternative phase-dependent multiple scattering parameterization (Eq. 2.6) for different
lidars and multiple scattering algorithms.

WP-2000 (Fielding and Janiskova, 2017) to optimize coefficients for the scattering look-up tables, we perform
a non-linear regression, where the cost function is the root-mean square error of the backscatter in log space.

Using the same data as Figs. 2.7 and 2.8, Table 2.4 shows the optimum parameters for Eq. 2.6. The values
broadly agree with the temperature dependent parameterization. Using just the PVC method, there is very little
difference between the CALIOP and ATLID lidars; 7y, is identical to three significant figures, while ¢, is
close to the wide-angle field-of-view limit for both lidars. The greatest difference is seen for 1;;, found with the
TDTS algorithm, with a lower value for CALIOP compared to ATLID, corroborating the results seen in Fig.
2.8.

In conclusion, there does not appear to be much justification for a complex temperature dependent parameter-
ization for 1. However, it is clear that 1 should be greater for liquid cloud and precipitation compared to ice
cloud. If a temperature dependent parameterization is used (to be consistent with previous work), it would ap-
pear to be a reasonable approximation to use the Platt approximation with a value of n = 0.55 for temperatures
colder than 273 K. Ideally, for liquid cloud and precipitation, the TDTS method should be used. As this is not
possible within the scope of the project, using the Platt approximation with 1 = 0.6 for temperatures warmer
than 273 K would seem to be reasonable compromise between the larger values obtained when the optical depth
is low, with the smaller values seen for greater optical depth. As the lidar signal is strongly attenuated in liquid
cloud, the observation error will automatically be greater, but it might need to be revised higher to take into
account for the neglect of wide-angle multiple scattering. Alternatively, if a phase dependent parameterization
is used, Table 2.4 provides coefficients for use in Eq. 2.6. This approach has the advantage over the temperature
dependent approach of accounting for mixed-phase cloud.
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3 EarthCARE data handling

In this section we will review the technical preparations for handling EarthCARE data. Firstly we will identify
the data products to ingest with consideration of the likely latencies. Then we will discuss the conversion tools
for shaping the data into a readable format by the data assimilation system. Finally we will adapt the selection
and initial screening of the data using test data as an example.

3.1 Data identification and nominal test data

Choosing which radar and lidar products to assimilate is a trade-off between the product latency and the gain
in information or value added by additional processing. Lower level products, which are typically closer to the
physical measurement of the instrument, are likely to be available sooner compared to higher level products
which are released with a longer delay. A further consideration, is that although higher level products may
contain measurements of variables closer to model variables (such as cloud water content), their errors may be
more complicated and/or contain biases that are difficult to characterize.

However, to be certain of reasonable availability of the data we will only assimilate data from the following
L1B products:

* L1b C-NOM (CPR Nominal data). This product (generated by JAXA) will contain the calibrated radar
reflectivity factor and basic quality control information.

* L1b A-NOM (ATLID Nominal data). This product (generated by ESA) will contain the calibrated co-
polar and cross-polar Mie and Rayleigh channels, and basic quality control information.

Nominally, 60% of these data should be available within 5.5 hours of being taken (Illingworth et al., 2015), with
the worst case delay typically 12 hours (depending on the choice of down-linking ground station location). As
the data assimilation window at ECMWF is currently 12 hours long, we can expect to have around 80% of L1B
data available in time, although as the worst case delay matches the data assimilation window, it is theoretically
possible for no data to be available in time if there are successive ‘blind orbits’.

3.2 Data ingestion (BUFR)

As explained in the assimilation system development for cloud radar and lidar observations work package
(WP-3000; Janiskova et al., 2017), all observations entering the ECMWF data assimilation system must first
be converted to BUFR format. The BUFR sequences for the CPR (Table 3.1) and ATLID (Table 3.2) are
similar to those for CloudSat and CALIPSO respectively. For the CPR, two additional descriptors has been
added for Doppler Velocity and its corresponding uncertainty. For ATLID, four additional descriptors have
been added to accommodate the additional Mie and Rayleigh channels and their respective uncertainties. In
addition to updating the BUFR sequences, the BUFR conversion tool was modified to be compatible with the
hdf5 data format used by the EarthCARE L1b products. The variable names of the L.1b data mapped to the
BUFR descriptors is also given in Tables 3.1 and 3.2.

3.3 Data selection, pre-processing and screening

The data selection, pre-processing and screening follows a similar method to that described for CloudSat and
CALIPSO in WP-2000 (Fielding and Janiskovd, 2017) and WP-3000 (Janiskova et al., 2017) . Once the raw
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Code Description Scale Ref. Width Units Comment  and/or
L1b C-NOM vari-
able name

001 007 Satellite identifier 0 0 10 satID=TBD

002019 Satellite instruments 0 0 11 instrumentID=TBD

301011 Year, month, day ‘profileTime’

301013 Hour, minute, second ‘profileTime’

301021 Latitude / Longitude (high ‘longitude’ and ‘lati-

accuracy) tude’

010033 Altitude (Platform to El- 1 0 27 m

lipsoid)

025182 LI processing flag

025181 L2 processing flag

021194 Data classification type 0 0 4 CODE TABLE 0 Surface
1 Cloud likely
2 Cloud probable
3 Cloud possible
4 Unclassified
15 Missing value

033003 Quality information CODE TABLE

008 049 Number of observations

021195 Cloud fraction 3 0 11

031000 Delayed replication factor

002 153 Satellite Channel Centre -8 0 26 Hz 94 GHz

Frequency

021197 Height 0 -1000 17 m

021192 Cloud radar reflectivity 2 -9000 15 dBZ ‘radarReflectivityFactor’

021193 Cloud radar reflectivity 2 0 9 dB see text

uncertainty
021198 Doppler velocity 0 20 6 ms~!
021199 Doppler velocity uncer- 0 -20 6 ms~!

tainty

Table 3.1: BUFR sequence for EarthCARE CPR observations.

WP-4000
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Code Description Scale Ref. Width Units Comment
001007 Satellite identifier 0 0 10 satID=TBD
002019 Satellite instruments 0 0 11 instrumentID=TBD

301011 Year, month, day
301013 Hour, minute, second
301021 Latitude / Longitude (high
accuracy)
010033 Altitude (Platform to EI- 1 0 27 m
lipsoid)
025182 L1 processing flag
025181 L2 processing flag
021194 Data classification type 0 0 4 CODE TABLE 0 Surface
1 Cloud
2 Aerosol
3 Unclassified
15 Missing value

033003 Quality information CODE TABLE

008 049 Number of observations

021195 Cloud fraction 3 0 11

031000 Delayed replication factor

002 153 Satellite Channel wave- 9 0 16 m
length

021197 Height 0 -1000 17 m

021202 Mie Copolar Attenuated 2 -9000 15 m~!sr! Range: 0 to
Backscatter 0.1m !sr!

021203 Uncertainty in Mie Copo- 2 -9000 15 m~!sr! Range: 0 to
lar Attenuated Backscatter 0.1m 'sr!

021204 Rayleigh Attenuated 2 -9000 15 m~!sr! Range: 0 to
Backscatter 0.1m !sr!

021205 Uncertainty in Rayleigh 2 -9000 15 m~!sr! Range: 0 to
attenuated backscatter 0.1m 'sr!

021206 Total attenuated backscat- 2 -9000 15 m~sr! Range: 0 to
ter 0.1m !sr!

021207 Uncertainty in total atten- 2 -9000 15 m~sr! Range: 0 to
uated backscatter 0.1m !sr!

Table 3.2: BUFR sequence for ATLID observations.
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input data has been converted to BUFR, the observations undergo a pre-processing task where the observations
are averaged to a specified grid and height levels (typically the native model grid and height resolution). In this
step, the ‘cloud fraction’ and standard deviation of the averaged observations are also computed. However, for
the CloudSat and CALIPSO processing all these computations could make use of level 2 data. In particular,
for the real-time assimilation of CPR and ATLID, a cloud mask will need to computed ‘in house’ as this is
not contained within the L1b products. Further, it is expected that the radar reflectivity will need to be noise
corrected to ensure the detection and correct values of clouds with small radar reflectivity such as cirrus. Some
minor changes are also made to the screening thresholds.

CPR noise subtraction and cloud mask

The radar reflectivity contained within the L1b C-NOM product will not be corrected for noise, nor will it
contain a cloud mask or an estimate of the measurement uncertainty. As these are all required for data assim-
ilation, we will compute them ‘in-house’. Firstly, the mean noise will be computed following the approach of
Hildebrand and Sekhon (1974) as is implemented in the L2 C-PRO algorithm and documented in the algorithm
theoretical basis document (ATBD; Kollias et al., 2016):

1. For each profile, the power, P(i), is sorted in ascending order
2. Set n=N, where N is the total number of range gates
3. While the profile is determined to be coloured noise according to:

2
n n 0, White noi
nZP(i)2—2<;P(i)> — {< ,  Wltenoise 3.1)

i=1 > (0, Coloured noise

set n=n-1 and repeat.
4. When the profile is determined to be free from signal (white noise), the mean noise power is calculated
by averaging the remaining gates.

The standard deviation of the noise, oy is also calculated from the remaining gates under the assumption of
Gaussian white noise. It is possible that a given profile may not contain sufficient target-free range gates
to provide a reasonable estimate of the mean noise. Therefore, after estimating the noise for each profile a
threshold noise is computed as:

Pyr = median(P) + 3median(oy). 3.2)

Any profiles where P is greater than Pyr will have Py set equal to Pyz.

The cloud mask (known as the ‘significant detection mask’, SDM, in the ATBD) can then be produced using
the following rules:

1. Fori=1...n

2. SDM(i) = 1if P(i) > Py + loy

3. SDM(i) = 0if P(i) < Py + 1oy
OR {Py+ 1oy < Py + 1oy < Py + 30y
AND P(i—1) > Py + 30y
AND P(i+1) < Py + 1oy}

WP-4000 15
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where i + 1 refers to the range gate immediately above gate i. The third condition is in place to reduce the
stretching of cloud top caused by the 500 m resolution of the CPR. An optional speckle filter is then applied to
remove isolated false detections that are likely when using a low detection threshold of 1 s.d. above the mean
noise (see e.g. Clothiaux et al., 1995). The speckle filter will be tuned in the commissioning phase of the
mission.

The measurement uncertainty in radar reflectivity in logarithmic units, AZ;p, can be estimated from the linear
signal-to-noise ration (SNR) using the following equation (Hogan et al., 2005):

4.343 1

AZdB - W(l—’_ﬁ)?

3.3)

where N is the number of radar pulses averaged (around 500 at the native CPR resolution) and we have assumed
each pulse is independent.

ATLID cloud mask

The L1b A-NOM will also not contain a cloud mask. Whereas significant detections away from the near-
surface at cloud radar wavelengths are highly likely to be from hydrometeors, aerosols in significant quantities
can be readily detected by the ATLID. Sophisticated classification algorithms exist for the separation of cloud
and aerosol signals for CALIPSO based on the backscatter signals and supplementary information such as
temperature, altitude and location (e.g., Liu et al., 2004).

For ATLID, there are several different L2 products, sequentially produced, to transform the L1b raw backscatter
to the particle type classification product. Firstly, the feature mask product is produced, which does not distin-
guish between cloud or aerosol types. Next, Particle Optical Properties (POP) products are produced derived
directly using the observed three channels of the HSRL. The planetary boundary layer height is then derived
exploiting a signal in the gradient of attenuated backscatter. Finally the particle type classification product is
generated using information from the various products.

Implementing in-house versions of all these processes is technically possible, but is not within the scope of this
project. For data assimilation of cloud it will initially be sufficient to apply an empirically derived threshold
in total attenuated backscatter (see Sec. 4) calibrated in the commissioning phase of the mission. However,
one of the key advantages of ATLID versus CALIPSO is its capability to separate Mie from Rayleigh signals.
It should be therefore possible for a greater sensitivity to be obtained by assimilating only the Mie co-polar
channel. However, the exact noise characteristics are not known at this stage and will require further testing.

Taking advantage of the HSRL (if time allows), a more sophisticated method could be employed following the
JAXA level 2 product ATBD, based on all three HSRL channels, using a diagnostic parameter P, equivalent to
the total unattenuated particle backscatter:

P — Bmie,co +ﬁmie+ray,cr -5 ﬁm (3 4)
' Bray,co 146’ ‘

where 9§ is the depolarization ratio, 3, is the unattenuated molecular backscatter, Bpieco is the backscatter
from the co-polar Mie channel, Bray,co is the backscatter from the co-polar Rayleigh channel, and Bmieﬂay,cr 18
the backscatter from the cross-polar channel. The value of P, can then be used to distinguish between clouds,
aerosol and molecular-only layers. The exact thresholds of P, to determine the classification would be optimised
after launch.
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< ECMWF

Indicator Min Max Reason
Height (km) 1 20  Lower limit (relative to surface) to avoid surface return, upper limit
(absolute) to discard spurious signals (although some stratospheric
clouds may be removed)
CFgs 0.2 1.0  To avoid non-linearity and representativity issues
CFobs 0.2 1.0  To avoid non-linearity and representativity
dBZgs, dBZy,s —35 20.0 Plausible bounds for radar
dBpirs, dBBobs —36 0.0  Plausible bounds for lidar
FG departures —20 20  Remove large departures
dBZ;y, 0.0 41.3 Radar multiple scattering not modelled by observation operator
Bint 0.0 0.04 Avoid observations with excessive attenuation
Table 3.3: Screening thresholds for CPR and ATLID observations.
Screening

Not all the L1b radar reflectivity and lidar backscatter is suitable for assimilation; care must be taken to remove
data that could be detrimental to the analysis. Unsuitable data include observations that the forward model
does not represent (such as ground return or aerosols) and situations where the cost function may be strongly
non-linear or ill-posed (such as when the model sees cloud and the observations do not, or lidar profiles with
strong attenuation). The screening will use the same indicators as in WP-2000 (Fielding and Janiskova, 2017)
for CloudSat and CALIPSO, but with revised values (Table 3.3). The main differences are a reduction in the

minimum radar reflectivity due to the increased sensitivity of the CPR and an increase in the minimum lidar
backscatter due to the reduced sensitivity of the ATLID total backscatter relative to the background molecular

signal.

WP-4000
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4 Technical testing

To prepare and test the L2 EarthCARE products prior to EarthCARE’s launch, L1b nominal test data have been
prepared for both the CPR (thanks to Aleksandra Tatarevic) and ATLID (thanks to ESA). It is worth noting
that the C-NOM is a best estimate prepared using information from the JAXA product description document.
The test data itself is generated using simulations conducted with Environment Canada’s high-resolution NWP
model known as the Global Environment Multi-scale Model (GEM; Coté et al., 1998). GEM is a nested model
that can run at a range of horizontal grid-spacings. For the test data, a high resolution of 0.25 km was applied for
a 150 km wide swath along the A-train satellite orbit on 7th December 2014 (39316D). The so-called ‘Halifax’
transect begins at Greenland, crosses Eastern Canada and ends in the Caribbean. The GEM model output was
then used as input for the EarthCARE simulator, ECSIM.

The Halifax transect contains three distinct regimes, which is ideal for testing the system. Between 20 °N and
30 °N there is a cluster of shallow cumulus convection over ocean. Further North, between 35°N and 45°N
there is a region of deeper convection and a frontal system with mixed phase clouds occupying the whole free
troposphere. Towards Greenland between 55°N and 65°N there are liquid water topped stratiform clouds with
some convection embedded.

4.1 BUFR conversion and pre-processing

The first task of an assimilation experiment is to process the incoming data into BUFR format so that it can be
read by the system. Figure 4.1 shows the direct output of the BUFR converter tool described in Sec. 3.2 when
the Halifax test data is given as input (Fig. 4.1a). The radar reflectivity contained within the BUFR file is at
native resolution, but is thinned to every 10th profile for plotting. Although not obvious in the plot of thinned
BUFR data, once averaged to the model grid resolution (Fig. 4.1b) the cumulus regime is clearly visible with
radar reflectivity maxima around —20 dBZ. The standard deviation of the observations (Fig. 4.1c) is reasonably
large (between 3 dB to 5dB), and coupled with low cloud fraction (Fig. 4.1d), suggests large representativity
errors, as will be shown later.

Within the region of deeper convection, the radar reflectivity exhibits a greater standard deviation, particularly
within the precipitating congestus clouds. As expected, there is less variability in the ice cloud of the frontal-
like region. Note the number of observations (Fig. 4.1e) shows a striped pattern due to the way the satellite
track traverses the model gridboxes. To account for this, superobs with very few observations (typically less
than 5) will be blacklisted or have substantially greater observation error.

The simulated lidar backscatter for the Halifax transect has also been converted to BUFR and is shown in
Fig. 4.2a. Using a simple threshold in lidar backscatter appears to be sufficient in masking most cloud and
precipitation. The shallow cumulus regime can be seen at the native resolution, but again is clearer in the
superobs. For the deep convective regime, regions of super cooled cloud liquid water are apparent where there
are large backscatter values and strong attenuation of the signal. A band of ice-only cloud is located around
40°N. In conclusion, the adapted data handling and processing routines behave as expected and are ready for
real data once EarthCARE is launched. Small changes to the incoming data format, such as variable name or
type, will be straightforward to correct.

4.2 ODB integration and screening

Once the observations have been pre-processed, they are used to populate the Observation Data Base (ODB).
Also included in the ODB is any additional information required for assimilation. Figure 4.3 shows a selection
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Figure 4.1: Direct output of the pre-processing of the EarthCARE L1b C-NOM test data. Panels show: (a) native resolu-
tion radar reflectivity from input BUFR test file, (b) Superobbed radar reflectivity to native model resolution (TC0639), (c)
standard deviation of radar reflectivity within each superob, (d) cloud fraction of superob (number of cloudy observations
divided by total number of observations), (e) total number of observations.

of fields contained within the ODB. The superobbed radar reflectivity is shown in Fig. 4.3a (identical to Fig.
4.1b), while the corresponding IFS model equivalent radar reflectivity is shown in Fig. 4.3b. Note no significant
scientific insight should be drawn from comparing the two figures, as both observations are simulated. However,
it is a useful testing exercise and confidence from the processing system is drawn from the fact the two models
actually produce remarkably similar observed radar reflectivity.

The bias correction (Fig. 4.3¢) uses the look-up tables trained from CloudSat data (see WP-2000), which com-
bine biases in both the observation and the model. Unfortunately, there is no way to separate these two sources
of bias, so until a climatology of EarthCARE observations is available we will use the CloudSat bias correction
as an estimate of the CPR bias. The observation errors (Fig. 4.3d) are partially derived from CloudSat data and
in a less direct way than the bias correction. For example, the representativity error is scaled using a clima-
tology of correlation statistics derived from CloudSat observations. As both CloudSat and CPR have similar
characteristics, the measurement correlation is expected to be sufficiently similar that the representativity error
scaling is not significantly different.

A graphical representation of the screening of the C-NOM data is shown in Fig. 4.3f. The majority of data
points actually pass screening (shown in red), with the main cause for rejection being surface return (all ob-
servations below 1 km above the surface are rejected). Also shown for illustrative purposes are data where the
forward modelled radar reflectivity is below the sensitivity of the CPR (yellow); only a small amount of forward
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Figure 4.2: Direct output of the pre-processing of the EarthCARE L1b A-NOM test data. Panels show: (a) native resolu-
tion lidar backscatter from input BUFR test file, (b) Superobbed lidar backscatter to native model resolution (TC0639), (c)
standard deviation of lidar backscatter within each superob, (d) cloud fraction of superob (number of cloudy observations
divided by total number of observations), (e) total number of observations.

modelled radar reflectivity is below the sensitivity of the CPR.

Figure 4.4 shows the same fields stored in the ODB as Fig. 4.3, but for lidar backscatter. Due to the much
greater attenuation of the lidar signal, less data is stored in the ODB than for the CPR. The first guess departures
(Fig. 4.4e) tend to be quite large, particularly where super cooled liquid water exists in the A-NOM, but not
in the model equivalent lidar backscatter. As for the CPR, the bias correction (Fig. 4.4c) look-up table uses
a climatology built using data from a different instrument. However, the differences between CALIOP and
ATLID are more significant than those between CloudSat and the CPR (see Sec. 2), so the bias correction must
be used with caution and will be tested carefully in the commissioning phase of the mission. The screening for
lidar backscatter (Fig. 4.4f) is generally either ‘pass’ (red) or ‘excessive first guess departures’ (green).
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Figure 4.3: Example of observations stored in the ODB related to the EarthCARE L1b C-NOM test data. Panels show: (a)
Superobbed radar reflectivity to native model resolution (TC0639; dBZ), (b) forward modelled radar reflectivity (dBZ), (¢)
bias correction applied to model equivalent (dB), (d) total observation error of each superob (dB), (e) observation minus
background first guess departures (dB), (f) Screening value, blank areas have a cloud mask of zero in either observation
or model equivalent.
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Figure 4.4: Example of observations stored in the ODB related to the EarthCARE L1b A-NOM test data. Panels show: (a)
Superobbed lidar backscatter to native model resolution (TCo639; dBf), (b) forward modelled lidar backscatter (dBf),
(c) bias correction applied to model equivalent (dB), (d) total observation error of each superob (dB), (e) observation
minus background first guess departures (dB), (f) Screening value, blank areas have a cloud mask of zero in either

observation or model equivalent.
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S5 Summary

In this report, the required modifications of the operational data assimilation system at ECMWF for EarthCARE
cloud radar and lidar are documented. The work is separated to three sections. Firstly a summary of the required
adaptations to account for the scientific differences between EarthCARE and CloudSat-CALIPSO data is given.
While the CloudSat radar and CALIOP share many characteristics of the EarthCARE CPR and ATLID there
are some differences that must be represented in the forward models. For the radars, the main difference is
shown to be the sensitivity, with the CPR detecting significantly smaller hydrometeors (typically up to 30%
smaller radii). For the lidar, the sensitivity in total attenuated backscatter is less for ATLID due to the increased
molecular backscatter at 355nm. The effects of multiple scattering is shown to be similar in the two lidars due
to compensating effects.

We then provide a summary of the technical changes needed to process the EarthCARE data into a format that
can be ingested and used by the data assimilation system. Developments focus on the tools to convert the L1b
data format into BUFR, which required the definition of new BUFR descriptors. Some changes to the data
selection, pre-processing and screening were shown, particularly in relation to the cloud masks, which will not
be provided in the L1b raw data. A short discussion on the likely latencies of the L1b is also made. In the final
section a summary of tests demonstrating the technical capability of the system to assimilate EarthCARE data is
shown and discussed. The tests make use of the A-NOM and C-NOM test data produced using a high-resolution
model and the ECSIM.

Some fine-tuning of the developments will be necessary in the commissioning phase of the EarthCARE mission,
but the framework for assimilating EarthCARE observations is now in place.
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List of Acronyms

4D-Var Four-Dimensional Variational Assimilation

A-NOM ATLID Nominal data

ATBD Algorithm Theoretical Basis Document

ATLID ATmospheric LIDar

BUFR Binary Universal Form for the Representation of meteorological data
C-NOM CPR Nominal data

C-PRO Cloud profiling radar PROcessing

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
CloudSat NASA'’s cloud radar mission

CPR Cloud Profiling Radar

EarthCARE Earth, Clouds, Aerosols and Radiation Explorer
ECSIM EarthCARE Instrument Simulator

ECMWF European Centre for Medium Range Weather Forecasts
ESA European Space Agency

ESTEC European Space Research and Technology Centre
GEM Global Environment Multi-scale Model

HSRL High Spectral Resolution Lidar

IFS Integrated Forecasting System of ECMWF

JAXA Japan Aerospace eXploration Agency

NASA National Aeronautics and Space Administration
NWP Numerical Weather Prediction

ODB Observation Data Base

POP Particle Optical Properties

PVC Photon Variance-Covariance

SDM Significant Detection Mask

SNR Signal-to-Noise Ratio

SR Signal Ratio

TCo0639 Model cubic octahedral grid with spectral truncation T639
TDTS Time-Dependent Two-Stream

WP Work Package
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