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OUTLINE

1. The carbon cycle: a coupled data assimilation problem

2. Meteorology/constituent coupling in models
▪ Sources of coupling in online constituent transport models

▪ Impacts of constituents on meteorological forecasts

3. Data assimilation for constituents and surface fluxes
▪ Inverse modelling with a Chemistry Transport Model (CTM)

▪ Constituent transport  model error

▪ Impact of meteorological uncertainty on constituent forecasts

▪ Coupled meteorological, constituent state, flux estimation

4. Challenges of greenhouse gas surface flux (emissions) 

estimation
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1. The carbon cycle: a 

coupled data assimilation 

problem
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• The natural carbon cycle involves CO2 exchange between the 
terrestrial biosphere, oceans/lakes and the atmosphere.

• Fossil fuel combustion and anthropogenic land use are additional 
sources of CO2 to the atmosphere.

Pg C/yr

http://www.scidacreview.org/0703/html/biopilot.html

The Global Carbon Cycle

Earth’s crust 100,000

1 Pg = 1 Gt = 1015 g

Net surface to 

atmosphere flux for 

biosphere or ocean is 

a small difference 

between two very 

large numbers

http://www.scidacreview.org/0703/html/biopilot.html
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Net perturbations to global carbon 

budget LeQuéré et al. (2018, ESSDD)

• Based on 2005-2014

• 44% of emissions remain 

in atmosphere

• 28% is taken up by 

terrestrial biosphere

• 22% is taken up by 

oceans

1 Pg = 1 Gt = 1015 g
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Interannual variability

The largest uncertainty and interannual variability in the global CO2

uptake is mainly attributed to the terrestrial biosphere

IPCC AR5 WG1 2013

We need to better 

understand biospheric 

sources and sinks
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Interannual variability in 

atmospheric CO2 due to climate

75% of interannual 

variability in CO2 growth 

rate is related to ENSO 

and volcanic activity 

(Raupach et al. 2008)

Keeling et al. (2005)

• Tropical CO2 flux goes from uptake to release in dry, warm ENSO. 

• More CO2 uptake by plants with more diffuse sunlight and cooler 

temperatures after volcanic eruptions.

* * * *El Niño

Pinotubo
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Coupled Carbon Data Assimilation 

Systems

http://www.globalcarbonproject.org/misc/JournalSummaryGEO.htm



Page 9 – September 12, 2018

Coupled land/ocean/atmosphere
https://www.esrl.noaa.gov/gmd/ccgg/basics.html

http://web.mit.edu/globalchange/www/tem.html

weather

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-NOBM/model_description.php
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CO2 Time scales

• Diurnal, synoptic, seasonal, annual

• Hemispheric gradient

• Signals are mixed by middle of Pacific ocean

Colour 

bar 

range is 

3.5% of 

mean

Simulation of CO2 with GEM-MACH-GHG using NOAA CarbonTracker optimized fluxes

Video by Mike Neish (ECCC)
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Atmospheric CO2 observations
Keeling et al. (2005)

Time signals:

• Linear trend

• Seasonal cycle
• Amplitude ↓ with latitude
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Evolution of the in situ obs network
Bruhwiler et al. (2011)

Routine flask samples

Continuous obs

Not used flask obs

Aircraft sampling

• Original goal: Long 

term monitoring of 

background sites

• Later on: Add 

continental sites to 

better constrain 

terrestrial biospheric 

fluxes at continental 

scales

29 sites 48 sites

103 sites 120 sites
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Increasing in situ measurements

ICOS network has stations in 12 

countries: atmospheric (30+), 

ecosystem flux (50+) , ocean 

measurements (10+)

2018 ECCC GHG network

Hourly obs of CO2, CH4, CO

https://www.icos-ri.eu/greenhouse-gases

Figure courtesy of Elton Chan (ECCC)
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Slide from Dave Crisp, JPL

7
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WMO/UNEP - Integrated Global Greenhouse 

Gas Information System (IG3IS)

Objective: Provide timely actionable GHG information to stakeholders

https://public.wmo.int/en/resources/bulletin/integrated-global-greenhouse-gas-information-system-ig3is

1. Support of Global Stocktake and national GHG emission inventories

• Establish good practices and quality metrics for inverse methods and how to 

compare results to inventories

• Reconcile atmospheric measurements and model analyses (inverse modelling) 

with bottom up inventories 

2. Detection and quantification of fugitive methane emissions

▪ Extend methods used by EDF, NOAA and others to identify super emitters in 

N.American oil and gas supply chain to countries and other sectors: offshore 

platforms, agriculture, waste sector

3. Estimation and attribution of subnational GHG emissions

▪ Urban GHG information system using atmospheric monitoring, data mining and 

(inverse) models, Provide sector-specific information to stakeholders
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ECMWF and CO2 monitoring
https://www.che-project.eu/

Slide from Gianpaolo Balsamo presentation at CHE workshop Feb. 2018
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The carbon cycle data assimilation 

problem
• Estimating surface fluxes (emissions):  

– By following the movement of carbon.

– Ultimately, we want to be able to attribute distributions to source 

sectors (e.g. fossil fuel, natural, etc.)

• Multiple spheres are coupled: 

– atmosphere, ocean, constituents, terrestrial biosphere

– Assimilation window lengths vary from hours to years

• Multiple time scales:  

– interannual, seasonal, synoptic, diurnal

• Multiple spatial scales: 

– global, regional, urban

• Long lifetime species: CO2 (~5-200 years), CH4 (~12 years)
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2. Meteorology and 

constituent coupling in 

atmospheric models
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Coupled meteorology and chemistry

• Meteorological model equations (momentum, 

thermodynamic, equation of state)

• Species continuity equation for mixing ratio: 

• For greenhouse gases: tracer mass conservation desired

• Tracer variable: dry air mixing ratio is desired

species

moist air

mass

emission, dry 

deposition, wet 

deposition, 

photochemistry, 

gas/particle 

partitioning, etc.

Density moist air Diffusion coefficient
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Lack of global dry air conservation
Takacs et al. (2015)

Global monthly mean mass anomalies
Dry air mass is not 

conserved because:

1) Model conserves 

moist air mass

2) Model continuity eq

does not account for 

sources

3) Analysis increments 

of surface P and 

water vapour are not 

consistent
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Conserving tracer mass in GEM

Tracer adv

1. The model loses mass during the dynamics step, so psadj-dry adjusts the global dry 

air mass so it is conserved.  The tracer mixing ratio is not adjusted even though the 

dry air mass is not locally conserved.

2. Tracer mass is changed during advection so the mass fixer is applied for global 

conservation.  This requires knowledge of the dry air mass field (Ps, q) 

3. During Physics, water vapour (q) is changed so dry air is changed so tracer needs 

adjusting.

4. Mass change due to change in q from physics is added to Ps.

5. Emission is added so the tracer mass changes.  q and Ps are needed.

Met. Dyn. Physics

Chemistry

Emission

mass fixer

One time step

Psadj-dry Ps_source

1 2

3

5

4

Met. Dyn.

21
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Processes that couple meteorological 

and chemistry variables

Meteorological impacts on constituents:

• Surface pressure, water vapour through dry air mass

• Wind fields through advection

• Temperature through chemical reaction rates

• Temperature through photosynthesis, respiration 

• Convection schemes: transport constituents

• Boundary layer parameterizations: transport constituents

Constituent impacts on meteorology:

• Forecast model’s radiation calculation 

• Assimilation of constituents could potentially impact 

– Temperature analyses through improved radiance assimilation

– Wind field analyses through coupling in dynamics, covariances
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CO2 and radiance assimilation
Engelen and Bauer (2012)

August 2009 mean CO2 minus 377 ppm, ~210 hPa

Constant CO2
Variable CO2

Bias correction has less 

work to do if CO2 is a 3D 

field.

Impact on temperature 

analyses/forecasts is 

positive at 200 hPa in 

tropics, neutral elsewhere

AIRS ch. 175 ~200 hPa
Bias correction Aug. 2009
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Impact of assimilating CO2 , CH4 on 

wind fields Massart (WMO WWRP e-news Jan. 2018)

Impact of IASI CO2 and CH4

retrievals with EnKF for Jan-Feb 

2010 is positive in stratospheric 

southern hemisphere
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3. Data assimilation:  

Constituent/flux estimation
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The surface flux estimation problem

Using atmospheric observations from the present, what 

was the past flux of GHG from the surface to the 

atmosphere?

Time presentpast

Prior flux estimate

observations
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The standard inverse modeling approach

World Data Centre for Greenhouse Gases (WDCGG)

http://gaw.kishou.go.jp/cgi-bin/wdcgg/map_search.cgi http://transcom.project.asu.edu

22 TransCom regions

Weekly avg obs

One or more years

J F M A M J J A S O N D J F M A M J J

Monthly scaling factors

http://gaw.kishou.go.jp/cgi-bin/wdcgg/map_search.cgi
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The standard inverse problem for 

carbon flux estimation

• In flux inversions, if one solves for surface fluxes only, the transport 

model is needed to relate the surface flux to the observation

• Can solve inverse problem with 4D-Var

• Extension for imperfect tracer initial conditions, add a term

• Assumptions

• Anthropogenic and biomass burning emissions are perfectly known

• Observations and forecast errors are unbiased

• Prior flux error covariance is known (correctly modelled)

• Model-data mismatch covariance is known (correctly modelled)

• Perfect model assumption since forecast model is used as a strong constraint

flux conc obs

Spatial interpolation Forecast model

Prior flux
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Fixed Lag Kalman Smoother

• e.g. CarbonTracker NOAA, CT-Europe, CT-Asia

• State vector:  5-12 sets of weekly-mean fluxes

• Lag: 5-12 weeks

• Forecast step: Persistence, static prior covariances

• Perfect model: transport model in observation operator

obs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

weekly mean flux

Peters et al. (2005, JGR)
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Transport model is not perfect

Even with the same 

surface fluxes, 

different models give 

different CO2.

Gurney et al. (2003, Tellus)

Zonal mean annual mean CO2

Range of 

4 ppm

Transport model 

errors are an 

important source of 

error in surface flux 

inversions (Chevallier 

et al., 2014, 2010; 

Houweling et al.,2010; 

Law et al., 1996)
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Forecast or “Transport error”

1) Transport model
met state                2D flux

chem state

Model error

2) True evolution

Meteor. state error

Constituent error

Flux error

Forecast error: (1) – (2)
Flux error

Higher 

order 

terms

Chem error
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Sources of constituent transport 

model error
• If constituent state, meteorological state and fluxes are 

perfect, the constituent forecast can still be wrong due to 

model error.  For CO2, sources of model error are:

– Boundary layer processes (Denning et al. 1995)

– Convective parameterization (Parazoo et al. 2008)

– Synoptic scale and frontal motions (Parazoo et al. 2008)

– Mass conservation errors (Houweling et al. 2010)

– Interhemispheric transport (Law et al. 1996)

– Vertical transport in free atmosphere (Stephens et al. 2007, 

Yang et al. 2007)

– Chemistry module, if present. (CO2 is a passive tracer; CH4, CO use 

parameterized climate-chemistry with monthly OH)

• Comparing CO2 simulations to observations reveals 

model errors due to meteorological processes  leading 

to feedback on meteorological model
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Dealing with model error: variational 

approach

• Use constituent observations to constrain both fluxes and 

model errors, u (3D fields of mixing ratio)
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Application of weak constraint 4D-

Var to GOSAT CH4 assimilation
Stanevich et al. (2018, ACPD*)

*To be submitted

• GEOS-Chem 4° x 5°

• 3-day forcing window

• Forcing over whole domain

• Weak constraint solution 

better matches independent 

observations

Strong constraint

Weak constraint

Solving for fluxes only 

misattributes model errors 

to flux increments
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Dealing with model error: Coupled 

constituent and flux estimation

• Flux forecast model is persistence:  Fk = I

• Chinese Tan-Tracker: GEOS-Chem, 5 week lag, weekly fluxes (Tian 

et al. 2014, ACP)

• Fixed interval Ens. Kalman smoother, 3-day window (Miyazaki et al. 

2011, JGR)

Flux forecast
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Errors in meteorological analyses
Liu et al. (2011, GRL)

Using same sources/sinks, same model, same initial condition, CO2

forecasts are still different due to errors in wind fields.

Uncertainty in CO2 due to 

errors in wind fields is 

1.2–3.5 ppm at surface 

and 0.8–1.8 ppm in 

column mean fields.

Global annual mean of 

natural fluxes is ~2.5 ppm
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Sub-daily fluxes (biospheric, ocean, anthropogenic, biomass burning)

Coupled global weather and 

greenhouse gas models

Coupled systems using global models:

• ECMWF CAMS  (Agusti-Panareda et al. 2014)

• NASA GMAO (Ott et al. 2015)

• ECCC (Polavarapu et al. 2016)

Initial CO2 on 

1 Jan 2009 from 

CarbonTracker

3-hourly CT2013B fluxes from NOAA CarbonTracker
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Experimental design: predictability

• Analyses constrain CO2 transport using observed 

meteorology even with no CO2 assimilation

• What if we don’t use analyses (after the initial time) and 

replace them with 24h forecasts?   Climate cycle

• Climate cycle will drift from control cycle which uses 

analyses

Reference cycle Climate cycle
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Predictability error definition used

• Drift of climate cycle from reference cycle:

• E=(CO2
clim-CO2

ref)   

• A measure of variability:

• P = Global mean (zonal standard deviation (E)) 

• Normalize by variability in full state itself (at initial time):

• P0 = Global mean (zonal standard deviation (CO2
ref(t0))) 

• Define Normalized Predictability error:

• N=P/P0

• Dimensionless

• Can compare different variables, (e.g. T, vorticity, divergence)

• N<<1 for small variability relative to state itself

• Global measure (including tropics)
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Normalized predictability error for Jan 2009
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Climate time scales: seasonal

• CO2 predictability is short ~2 days in the free troposphere 

and follows pattern of wind field predictability.  CO2

predictability increases near the surface and in the lower 

stratosphere

• Can we see predictability on longer (sub-seasonal to 

seasonal) time scales?

• Do a spherical harmonic decomposition of drift E and 

average over one month of spectra, and over 12 model 

levels
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Predictability error

CO2 state

Largest scales are 

predictable in July

July 2009

Where does this 

predictability come from?
• CO2 surface fluxes

• Land/ocean surface
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Experimental design: analysis error

• Meteorological analyses keep our CO2 transported by 

realistic wind fields.  But analyses are not perfect.  What 

is the impact of analysis error on CO2 spatial scales?  

• Experiment: Perturb reference analyses by error

• Analysis error proxy:  Cycle with analysis 6h early

Reference cycle Perturbed analysis cycle
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• Error spectra asymptote to predictability error spectra.  For smaller 

spatial scales, we don’t gain much over predictability error.

• For some wavenumber, the power in this error equals that in the 

state itself (red arrows). There is a spatial scale below which  CO2

is not resolved due to meteorological analysis uncertainty. This 

spatial scale increases with altitude.

Impact of meteorological analysis uncertainty

2000 500

770 km 1000 km 1000 km400 km

Imperfect winds

No wind info

CO2 state ref

Polavarapu et al. (2016, ACP)
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Spatial scales seen in fluxes

If CO2 can be reliably simulated only for large spatial scales, this 

translates to flux uncertainties which are unaccounted for.

Time presentpast

Prior flux estimate

observations
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Implications on flux inversions

If CO2 can be reliably simulated only for large spatial scales, this 

translates to flux uncertainties which are unaccounted for.

Time presentpast

observations

Posterior flux estimate
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Implications on flux inversions

If CO2 can be reliably simulated only for large spatial scales, this 

translates to flux uncertainties which are unaccounted for.

Time presentpast

observations

Posterior flux estimate
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Coupled meteorology, constituent 

and flux estimation

• Assimilate meteorology and chemistry observations

• State vector (x, c, s): meteorology, chemistry, fluxes

• Meteorological uncertainties (e.g. boundary layer, 

convection) can be simulated with an EnKF

• Demonstrated w LETKF with a 6h window (Kalnay group)

– OSSEs w SPEEDY model: Kang et al. (2011, JGR; 2012, JGR)

• Flux estimates obtained through cross covariances with 

CO2 state estimates through ensemble requires a good 

state estimate constrained by lots of observations

• How to deal with differing assimilation window lengths: 

6h – meteorology, CO2 state, weeks/months for fluxes?
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Challenges of GHG data assimilation

• Multiple time scales: diurnal, synoptic, seasonal, interannual

• Multiple spatial scales: Global, regional, urban

• Multiple systems:  Atmosphere, ocean, constituents, biosphere.  How 

to deal with different assimilation window lengths?

• Multiple chemical species may be needed to attribute components of 

fluxes to natural or anthropogenic origin

• New satellite observations: need to improve bias corrections, 

develop inter-satellite bias corrections

• Need independent obs for validation, anchoring bias corrections

• Moving to near-real-time systems
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EXTRA SLIDES
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Spatial scales of fluxes seen in CO2

Compare:

CO2 (fluxprior, metref) – CO2 (fluxpost,metref)

and

CO2 (fluxpost, metref) – CO2 (fluxpost,metpert)

GOSAT GEOS-Chem/GEM

In situ GEOS-Chem/GEM

• Impact of updated fluxes on CO2 exceeds CO2 uncertainty due to 

meteorological uncertainty most seasons, if GOSAT data is used

• This occurs only in boreal summer, if flask data is used

Polavarapu et al. (2018, ACP)

Zonal standard deviation of DCO2 (global mean)

Posterior fluxes from GOSAT assimilation

Posterior fluxes from flask obs assimilation
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Land and ocean surface affects CO2 predictability

CO2 state

Pred. error
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The flux estimation problem

Using atmospheric observations from the present, what 

was the past flux of GHG from the surface to the 

atmosphere?

Time presentpast

Prior flux estimate

observations

CO2 forecast Fluxes

Meteorological

analysis

CO2 analysis

Forecast model Model error



Page 54 – September 12, 2018

Dealing with model error: Coupled 

state/flux estimation

• Fixed interval Kalman

smoother

• 3-day window

• 48 members

• Flux forecast: persistence

Miyazaki (2011, JGR)

• Temporal and spatial localization is done.

• CO2 mass not conserved due to analysis increments
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Coupled state/flux estimation

• EnVar, GEOS-Chem

• State vector: CO2, l

• Flux forecast: 

persistence

Tian et al.  (2014, ACP)

• Temporal and spatial localization is done.

• CO2 mass not conserved due to analysis increments
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Predictability of CO2 in a regional model

Reference cycle (GLBref)

Climate IC (GLBclim)

Perturbed cycle (GLB pert)

Reg. IC LBC

LAM ref-ref Analysis GLBref

LAM clim-ref Forecast GLBref

LAM ref-clim Analysis GLBclim

LAM clim-clim Forecast GLBclim

LAM pert-ref Perturbed

Analysis

GLBref

LAM ref-pert Analysis GLBpert

LAM pert-pert Perturbed 

Analysis

GLBpert

Jinwoong Kim (ECCC)

90 km 10 km
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Predictability of CO2 in a regional model

June 2015 monthly mean spectra

Jinwoong Kim (ECCC)

L01-12 lower troposphere L13-24 mid troposphere

L25-36 upper troposphere L37-48 stratosphere

Wrong BC

Wrong IC
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Optimal window length for CO2 flux
Liu et al. (2018, GMDD)

With an assimilation window of 1 day, the optimal observation window is 8 

days based on OSSEs with GEOS-Chem and OCO-2 data.  LETKF with 

GEOS-Chem coupled CO2 state and flux estimation was used.
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Evolution of ensemble spread
Animation of column mean CO2

Dec. 28, 2008 to Jan. 23, 2009

Ensemble 

mean

Ensemble 

spread



Page 60 – September 12, 2018

How does uncertainty in winds affect 

CO2 spread?

• CO2 spread (left) does not mainly resemble spread in 

winds (middle) but rather the spatial variability of 

biospheric fluxes (right)

• Only where tracer gradients exists does uncertainty in 

winds matter

CO2 ens std dev at eta=0.997 ppmv U ens std dev at eta=0.994 ECLA RMS 2009012200 ±2 days
m/s

mg/m2/s

2009012206 2009012206
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Ensemble Kalman Filter – first look

• No tracer assimilation, only passive advection

• Testing with 64 ensemble members, 0.9° grid spacing

• Start on 28 Dec 2008.  Run for 4 weeks to 23 Jan 2009

• All members have same initial CO2 and same fluxes.  

Spread is due to spread in winds only.  

• Winds differ among ensemble members due to 

differences in: model parameters (convection scheme, 

parameters involved in PBL model, diffusion of potential 

temperature, etc. ), observation error perturbations

• How does uncertainty in winds affect CO2 spread? 
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Slide from Dave 

Crisp, JPL
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Slide from Dave 

Crisp, JPL
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Slide from Dave Crisp, JPL
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CO2 Variations with height

• Diurnal variations, linked to 

surface sources and sinks, are 

strongly attenuated in the free 

troposphere

• Diurnal variations in column CO2

are less than 1 ppm

• Large changes in the column 

reflect the accumulated influence 

of the surface sources and sinks 

on timescales of several days

Olsen and Randerson (2004, JGR)

Surface CO2

Column CO2

Diurnally 

varying 

surface 

fluxes

Park Falls: 29 May-10 June, 1996

5-day running 

mean surface 

fluxes
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Inversions using surface network

• Inversion methods 

differ in:

– Methodology

– Observations

▪ Sfc: 100 flask + 

continuous

– A priori fluxes

– Transport models

• Interannual variability 

is similar and due to 

land 

Peylin et al. (2013)

1 5-6

2 7-8

3 9

4 10

11
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Spatial information

• Good agreement on 

global fluxes and 

partition into land and 

ocean

Peylin et al. (2013)

Not as good agreement 

on spatial distributions 

even for very large 

regions (only 3 latitude 

bands)

25N-25S
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Flux inversions using GOSAT data
Houweling et al. (2015, ACP)


